
Design Through Verilog HDL

padmanabham-fm.qxd 8/18/2003 8:43 AM Page i

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Stamatios V. Kartalopoulos, Editor in Chief

M. Akay M. E. El-Hawary M. Padgett
J. B. Anderson R. J. Herrick W. D. Reeve
R. J. Baker D. Kirk S. Tewksbury
J. E. Brewer R. Leonardi G. Zobrist

M. S. Newman

Kenneth Moore, Director of IEEE Press
Catherine Faduska, Senior Acquisitions Editor

Christina Kuhnen, Associate Acquisitions Editor

Technical Reviewers

Robert S. Hanmer, Lucent Technologies, Naperville, IL
Zhou Feng, Fudan University, China

padmanabham-fm.qxd 8/18/2003 8:43 AM Page ii

Design Through Verilog HDL

T. R. Padmanabhan
B. Bala Tripura Sundari

A JOHN WILEY & SONS, INC., PUBLICATION

IEEE PRESS

padmanabham-fm.qxd 8/18/2003 8:43 AM Page iii

Copyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4744, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Padmanabhan, T. R.
Design through Verilog HDL / T. R. Padmanabhan, B. Bala Tripura Sundari.

p. cm.
Includes bibliographical references and index.
ISBN 0-471-44148-1 (cloth)
1. Verilog (Computer hardware description language) I. Tripura Sundari, B. Bala. II.

Title.

TK7885.7.P37 2003
621.39'2–dc22 2003057671

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

padmanabham-fm.qxd 8/18/2003 8:43 AM Page iv

v

To my parents

B. Bala Tripura Sundari

To Ravi and Chandra

T.R. Padmanabhan

vii

CONTENTS

PREFACE ... xi

ACKNOWLEDGEMENTS .. xiii

1 INTRODUCTION TO VLSI DESIGN 1

1.1 INTRODUCTION ... 1

1.2 CONVENTIONAL APPROACH TO DIGITAL DESIGN 1
1.3 VLSI DESIGN ... 3

1.4 ASIC DESIGN FLOW ... 4

1.5 ROLE OF HDL ... 9

2 INTRODUCTION TO VERILOG 11

2.1 VERILOG AS AN HDL ... 11
2.2 LEVELS OF DESIGN DESCRIPTION ... 11

2.3 CONCURRENCY .. 13

2.4 SIMULATION AND SYNTHESIS ... 14
2.5 FUNCTIONAL VERIFICATION .. 14

2.6 SYSTEM TASKS .. 16

2.7 PROGRAMMING LANGUAGE INTERFACE (PLI) 16
2.8 MODULE .. 16

2.9 SIMULATION AND SYNTHESIS TOOLS .. 22
2.10 TEST BENCHES ... 27

3 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG 31

3.1 INTRODUCTION ... 31

3.2 KEYWORDS ... 31

3.3 IDENTIFIERS ... 32
3.4 WHITE SPACE CHARACTERS .. 33

3.5 COMMENTS ... 33

3.6 NUMBERS .. 34
3.7 STRINGS ... 36

3.8 LOGIC VALUES ... 38

3.9 STRENGTHS .. 39
3.10 DATA TYPES .. 40

3.11 SCALARS AND VECTORS ... 41

3.12 PARAMETERS .. 42

viii CONTENTS

3.13 MEMORY .. 43

3.14 OPERATORS .. 43

3.15 SYSTEM TASKS .. 44
3.16 EXERCISES .. 46

4 GATE LEVEL MODELING – 1 47

4.1 INTRODUCTION ... 47

4.2 AND GATE PRIMITIVE ... 47

4.3 MODULE STRUCTURE ... 50
4.4 OTHER GATE PRIMITIVES .. 51

4.5 ILLUSTRATIVE EXAMPLES .. 51

4.6 TRI-STATE GATES ... 64
4.7 ARRAY OF INSTANCES OF PRIMITIVES .. 66

4.8 ADDITIONAL EXAMPLES ... 69

4.9 EXERCISES .. 79

5 GATE LEVEL MODELING – 2 81

5.1 INTRODUCTION ... 81
5.2 DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES 81

5.3 DELAYS .. 91
5.4 STRENGTHS AND CONTENTION RESOLUTION 102

5.5 NET TYPES ... 109

5.6 DESIGN OF BASIC CIRCUITS .. 115
5.7 EXERCISES .. 124

6 MODELING AT DATA FLOW LEVEL 127

6.1 INTRODUCTION ... 127

6.2 CONTINUOUS ASSIGNMENT STRUCTURES .. 127

6.3 DELAYS AND CONTINUOUS ASSIGNMENTS 133
6.4 ASSIGNMENT TO VECTORS ... 135

6.5 OPERATORS .. 136

6.6 ADDITIONAL EXAMPLES ... 150
6.7 EXERCISES .. 157

7 BEHAVIORAL MODELING — 1 159

7.1 INTRODUCTION ... 159

7.2 OPERATIONS AND ASSIGNMENTS ... 160

7.3 FUNCTIONAL BIFURCATION .. 161
7.4 INITIAL CONSTRUCT ... 164

7.5 ALWAYS CONSTRUCT .. 168

7.6 EXAMPLES ... 170
7.7 ASSIGNMENTS WITH DELAYS ... 184

7.8 wait CONSTRUCT .. 192
7.9 MULTIPLE ALWAYS BLOCKS .. 195

CONTENTS ix

7.10 DESIGNS AT BEHAVIORAL LEVEL ... 197

7.11 BLOCKING AND NONBLOCKING ASSIGNMENTS 201

7.12 THE case STATEMENT .. 205
7.13 SIMULATION FLOW ... 214

7.14 EXERCISES .. 217

8 BEHAVIORAL MODELING II 219

8.1 INTRODUCTION ... 219

8.2 if AND if–else CONSTRUCTS .. 219
8.3 assign–deassign CONSTRUCT ... 225

8.4 repeat CONSTRUCT .. 236

8.5 for LOOP .. 238
8.6 THE disable CONSTRUCT ... 244

8.7 while LOOP .. 249

8.8 forever LOOP ... 254
8.9 PARALLEL BLOCKS .. 258

8.10 force–release CONSTRUCT ... 261

8.11 EVENT .. 266
8.12 EXERCISES .. 268

9 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES 273

9.1 INTRODUCTIUON .. 273

9.2 FUNCTION .. 273
9.3 TASKS ... 286

9.4 USER-DEFINED PRIMITIVES (UDP) .. 292

9.5 EXERCISES .. 302

10 SWITCH LEVEL MODELING 305

10.1 INTRODUCTION ... 305
10.2 BASIC TRANSISTOR SWITCHES .. 305

10.3 CMOS SWITCH .. 318

10.4 BIDIRECTIONAL GATES .. 328
10.5 TIME DELAYS WITH SWITCH PRIMITIVES .. 333

10.6 INSTANTIATIONS WITH STRENGTHS AND DELAYS 334

10.7 STRENGTH CONTENTION WITH TRIREG NETS 334
10.8 EXERCISES .. 337

11 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES 339

11.1 INTRODUCTION ... 339

11.2 PARAMETERS .. 339

11.3 PATH DELAYS ... 348
11.4 MODULE PARAMETERS .. 371

11.5 SYSTEM TASKS AND FUNCTIONS .. 373
11.6 FILE-BASED TASKS AND FUNCTIONS ... 383

x CONTENTS

11.7 COMPILER DIRECTIVES .. 385

11.8 HIERARCHICAL ACCESS ... 393

11.9 GENERAL OBSERVATIONS .. 404
11.10 EXERCISES .. 405

12 QUEUES, PLAS, AND FSMS 407

12.1 INTRODUCTION ... 407

12.2 QUEUES ... 407

12.3 PROGRAMMABLE LOGIC DEVICES (PLDs) 414
12.4 DESIGN OF FINITE STATE MACHINES .. 418

12.5 EXERCISES .. 433

APPENDIX A (Keywords and Their Significance) ... 443

APPENDIX B (Truth Tables of Gates and Switches) 447

REFERENCES .. 449
INDEX ... 451

xi

PREFACE

Verilog has rapidly become a widely accepted language for VLSI design. The

language is well-structured and defined to cater to the steady increase in the size of

ICs to be designed without sacrificing the advantages associated with design at the

“grass roots” level. A designer aspiring to master the language in its versatility

should become familiar with the various constructs in it, practice their use in real

applications, and use them in combinations to be successful.

Describing a design using Verilog is only half the story: Writing Test

benches, testing a design for all its desired functions, and identifying the faults and

removing them remain equally challenging tasks. This book is an attempt to

address these issues effectively. The constructs in Verilog are discussed through

apt illustrative examples. Equal importance is given to design description and test

benches. The examples have been tested with popular and commonly used

simulation packages and the results reproduced. In many of the cases the tested

designs have been synthesized, and the synthesized circuit has also been

reproduced. “Seeing is believing”: Seeing a design available as a software routine,

transformed to a circuit, will add a lot to the confidence level of novices who use

the book. flip-flops, counters, registers, coders, decoders, mux, demux etc., have

been considered at different levels of design; this should help in clarifying the

perspectives regarding levels, need, and significance.

Place and significance of Verilog in VLSI design have been brought out in

Chapters 1 and 2. Basics of the language, its conventions, etc., are dealt with in

Chapters 2 and 3. Chapters 4 and 5 form an introduction to design through

Verilog. It is done at the gate level, which may be the most comfortable for the

beginner. Any design, however involved it may be, can be completely realized in

terms of the gate primitives of Verilog. We hope that the illustrative examples

considered and the exercises at the end of the chapters, impart such a confidence to

a designer. Chapter 6 is devoted to design at the data flow level. Continuous

assignments using operators linking operands, which allow designs to be described

more compactly but still close enough to the circuit level, form the theme of this

chapter. Behavioral level design is discussed in Chapters 7 and 8. Mastery at this

level – akin to the C language – is essential for a successful designer working at

the system level. Functions and tasks, which facilitate structuring of designs and

their orderly description, form the theme of Chapter 9. The switch primitives in

Verilog constitute the link with actual VLSI implementation although their

mastery is not essential to many of the designers with their higher level activities.

Chapter 10 is devoted exclusively to switch level design; since it stands out from

xii PREFACE

the main text flow so far, its discussion is consciously deferred to this stage.

Chapter 11 forms an introduction to the system tasks and functions in Verilog and

their use in typical environments. Chapter 12 deals with design using PLDs and

FSMs. Though subdued, the treatment is enough to give the necessary lead to

more comprehensive designs.

All the chapters have enough exercises at the end. Some help mastery of the

material in the chapter, through practice; others are structured to stimulate the

users to explore avenues of their own. The step-by-step build-up of a processor in

Chapter 12 is of this type.

All simulation results presented in the text as part of illustrative examples,

have been obtained using the “Modelsim” software of Mentor Graphics. All

synthesis results wherever presented, have been obtained using the “Leonardo

Spectrum” software of Mentor Graphics. These have been reproduced by courtesy

of Mentor Graphics.

Users’ views and suggestions are welcome; for this purpose, the website

www.aitec.amrita.edu/publications may be accessed.

 T. R. PADMANABHAN

 B. BALA TRIPURA SUNDARI

July 2003

ACKNOWLEDGEMENTS

Many of our acquaintances and associates have contributed to the fruition of this

venture. K.N.C. Eswaran is responsible for all the delicate and subtle touches with

Word. Our colleagues — Subha, Sathyapriya, and Rajagopal — have made many

useful suggestions. Anand Srinivasan helped with simulation in his own way.

Ajai Narendran of the Systems Wing of our Institute has been helpful in many

ways. Our families — Krishna Sudarshan, Saketh, Srikanth, Ravi, Chandra, and

Uma — have put up with our transient oddities. Brahmachari Abhayamrita

Chaitanya — Chief Operating Officer of Amrita Vishwa Vidyapeetham — made

the Institute facilities, especially the VLSI laboratory, available for us.

Dr. N. Narayana Pillai, Dean (Students), and Prof. R. Sundararajan of our Institute

have been of great encouragement to us. Ms Christina Kuhnen, Associate

Acquisitions Editor at IEEE Press, has been quite helpful throughout; she has

effectively bridged the distance between New York and Coimbatore. The

painstaking efforts of the Referees to wade through the manuscript, understand the

matter and their constructive suggestions have conspicuously contributed to the

book in its present form. We give our sincere thanks to all of them.

Our obeisance goes to Mata Amritanandamayi Devi for her commitment to

societal transformation through quality education; this is a humble attempt to add

another brick to the edifice being built by her.

1

1

INTRODUCTION TO VLSI DESIGN

1.1 INTRODUCTION

The word digital has made a dramatic impact on our society. More significant is a

continuous trend towards digital solutions in all areas – from electronic

instrumentation, control, data manipulation, signals processing, telecom-

munications etc., to consumer electronics. Development of such solutions has been

possible due to good digital system design and modeling techniques.

1.2 CONVENTIONAL APPROACH TO DIGITAL DESIGN

Digital ICs of SSI and MSI types have become universally standardized and have

beenaccepted for use. Whenever a designer has to realize a digital function, he

uses a standard set of ICs along with a minimal set of additional discrete circuitry.

Consider a simple example of realizing a function as

Q n+1 = Q n + (A B)

Here Qn, A, and B are Boolean variables, with Q n being the value of Q at the nth

time step. Here A B signifies the logical AND of A and B; the ‘+’ symbol signifies

the logical OR of the logic variables on either side. A circuit to realize the

function is shown in Figure 1.1. The circuit can be realized in terms of two ICs –

an A-O-I gate and a flip-flop. It can be directly wired up, tested, and used.

A

clk
Q

n

B

Figure 1.1 A simple digital circuit.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

2 INTRODUCTION TO VLSI DESIGN

With comparatively larger circuits, the task mostly reduces to one of

identifying the set of ICs necessary for the job and interconnecting; rarely does one

have to resort to a microlevel design [Wakerly]. The accepted approach to digital

design here is a mix of the top-down and bottom-up approaches as follows [Hill &

Peterson]:

Decide the requirements at the system level and translate them to circuit

requirements.

Identify the major functional blocks required like timer, DMA unit, register-

file etc., say as in the design of a processor.

Whenever a function can be realized using a standard IC, use the same –for

example programmable counter, mux, demux, etc.

Whenever the above is not possible, form the circuit to carry out the block

functions using standard SSI – for example gates, flip-flops, etc.

Use additional components like transistor, diode, resistor, capacitor, etc.,

wherever essential.

Once the above steps are gone through, a paper design is ready. Starting with

the paper design, one has to do a circuit layout. The physical location of all the

components is tentatively decided; they are interconnected and the ‘circuit-on-

paper’ is made ready. Once a paper design is done, a layout is carried out and a

net-list prepared. Based on this, the PCB is fabricated, and populated and all the

populated cards tested and debugged. The procedure is shown as a process

flowchart in Figure 1.2.

System requirements

ICs

Circuit requirements

Other components

PCB layout

Wiring & testing

Final circuit

Figure 1.2 Sequence of steps in conventional electronic circuit design.

VLSI DESIGN 3

At the debugging stage one may encounter three types of problems:

Functional mismatch: The realized and expected functions are different. One

may have to go through the relevant functional block carefully and locate any

error logically. Finally the necessary correction has to be carried out in

hardware.

Timing mismatch: The problem can manifest in different forms. One

possibility is due to the signal going through different propagation delays in

two paths and arriving at a point with a timing mismatch. This can cause

faulty operation. Another possibility is a race condition in a circuit involving

asynchronous feedback. This kind of problem may call for elaborate

debugging. The preferred practice is to do debugging at smaller module

stages and ensuring that feedback through larger loops is avoided: It becomes

essential to check for the existence of long asynchronous loops.

Overload: Some signals may be overloaded to such an extent that the signal

transition may be unduly delayed or even suppressed. The problem manifests

as reflections and erratic behavior in some cases (The signal has to be suitably

buffered here.). In fact, overload on a signal can lead to timing mismatches.

The above have to be carried out after completion of the prototype PCB

manufacturing; it involves cost, time, and also a redesigning process to develop a

bugfree design.

1.3 VLSI DESIGN

The complexity of VLSIs being designed and used today makes the manual

approach to design impractical. Design automation is the order of the day. With

the rapid technological developments in the last two decades, the status of VLSI

technology is characterized by the following [Wai-kai, Gopalan]:

A steady increase in the size and hence the functionality of the ICs.

A steady reduction in feature size and hence increase in the speed of operation

as well as gate or transistor density.

A steady improvement in the predictability of circuit behavior.

A steady increase in the variety and size of software tools for VLSI design.

The above developments have resulted in a proliferation of approaches to VLSI

design. We briefly describe the procedure of automated design flow [Rabaey,

Smith MJ]. The aim is more to bring out the role of a Hardware Description

Language (HDL) in the design process. An abstraction based model is the basis of

the automated design.

4 INTRODUCTION TO VLSI DESIGN

1.3.1 Abstraction Model

The model divides the whole design cycle into various domains (see Figure 1.3).

With such an abstraction through a division process the design is carried out in

different layers. The designer at one layer can function without bothering about

the layers above or below. The thick horizontal lines separating the layers in the

figure signify the compartmentalization. As an example, let us consider design at

the gate level. The circuit to be designed would be described in terms of truth

tables and state tables. With these as available inputs, he has to express them as

Boolean logic equations and realize them in terms of gates and flip-flops. In turn,

these form the inputs to the layer immediately below. Compartmentalization of

the approach to design in the manner described here is the essence of abstraction;

it is the basis for development and use of CAD tools in VLSI design at various

levels.

 The design methods at different levels use the respective aids such as

Boolean equations, truth tables, state transition table, etc. But the aids play only a

small role in the process. To complete a design, one may have to switch from one

tool to another, raising the issues of tool compatibility and learning new

environments.

1.4 ASIC DESIGN FLOW

As with any other technical activity, development of an ASIC starts with an idea

and takes tangible shape through the stages of development as shown in Figure 1.4

and shown in detail in Figure 1.5. The first step in the process is to expand the

idea in terms of behavior of the target circuit. Through stages of programming, the

same is fully developed into a design description – in terms of well defined

standard constructs and conventions.

Behavioral domain

System (Performance

specifications)

Chip (Micro-operations)

Register

(Truth tables, state tables)

Gate (Boolean equations)

Circuit (differential equations)

Silicon (none)

Structural domain

Processing core : nondigital,

nonelectronic systems

Microprocessors,

memories, I/O devices

Registers, ALU,

multipliers

Gates, flip-flops

Transistors, L, R, C

Geometric objects

Figure 1.3 Design domain and levels of abstraction.

ASIC DESIGN FLOW 5

Idea

SynthesisSimulation

Design description

Physical

design

Figure 1.4 Major activities in ASIC design.

The design is tested through a simulation process; it is to check, verify, and

ensure that what is wanted is what is described. Simulation is carried out through

dedicated tools. With every simulation run, the simulation results are studied to

identify errors in the design description. The errors are corrected and another

simulation run carried out. Simulation and changes to design description together

form a cyclic iterative process, repeated until an error-free design is evolved.

Design description is an activity independent of the target technology or

manufacturer. It results in a description of the digital circuit. To translate it into a

tangible circuit, one goes through the physical design process. The same

constitutes a set of activities closely linked to the manufacturer and the target

technology

1.4.1 Design Description

The design is carried out in stages. The process of transforming the idea into a

detailed circuit description in terms of the elementary circuit components

constitutes design description. The final circuit of such an IC can have up to a

billion such components; it is arrived at in a step-by-step manner.

The first step in evolving the design description is to describe the circuit in

terms of its behavior. The description looks like a program in a high level

language like C. Once the behavioral level design description is ready, it is tested

extensively with the help of a simulation tool; it checks and confirms that all the

expected functions are carried out satisfactorily. If necessary, this behavioral level

routine is edited, modified, and rerun – all done manually. Finally, one has a

design for the expected system – described at the behavioral level. The behavioral

design forms the input to the synthesis tools, for circuit synthesis. The behavioral

constructs not supported by the synthesis tools are replaced by data flow and gate

level constructs. To surmise, the designer has to develop synthesizable codes for

his design.

6 INTRODUCTION TO VLSI DESIGN

Data flow level

description

Gate level

description

Switch level

description

Compile / edit Simulate

Compile / edit Simulate

Compile / edit Simulate

Compile / edit Simulate

Optimization

Prototype

Synthesis

FPGA based

design

Final circuit System partitioning

Floor planning

Placement

Routing

Mask

Verification

Feature extraction

P
h
y
si

ca
l

d
es

ig
n

Idea

Behavioral level

description

Logical design

(Scope of HDL)

Scope of

simulation tool

Figure 1.5ASIC design and development flow.

The design at the behavioral level is to be elaborated in terms of known and

acknowledged functional blocks. It forms the next detailed level of design

description. Once again the design is to be tested through simulation and

iteratively corrected for errors. The elaboration can be continued one or two steps

further. It leads to a detailed design description in terms of logic gates and

transistor switches.

ASIC DESIGN FLOW 7

1.4.2 Optimization

The circuit at the gate level – in terms of the gates and flip-flops – can be

redundant in nature. The same can be minimized with the help of minimization

tools. The step is not shown separately in the figure. The minimized logical

design is converted to a circuit in terms of the switch level cells from standard

libraries provided by the foundries. The cell based design generated by the tool is

the last step in the logical design process; it forms the input to the first level of

physical design [Micheli].

1.4.3 Simulation

The design descriptions are tested for their functionality at every level –

behavioral, data flow, and gate. One has to check here whether all the functions

are carried out as expected and rectify them. All such activities are carried out by

the simulation tool. The tool also has an editor to carry out any corrections to the

source code. Simulation involves testing the design for all its functions, functional

sequences, timing constraints, and specifications. Normally testing and

simulation at all the levels – behavioral to switch level – are carried out by a single

tool; the same is identified as “scope of simulation tool” in Figure 1.5.

1.4.4 Synthesis

With the availability of design at the gate (switch) level, the logical design is

complete. The corresponding circuit hardware realization is carried out by a

synthesis tool. Two common approaches are as follows:

The circuit is realized through an FPGA [Oldfield]. The gate level design

description is the starting point for the synthesis here. The FPGA vendors

provide an interface to the synthesis tool. Through the interface the gate level

design is realized as a final circuit. With many synthesis tools, one can

directly use the design description at the data flow level itself to realize the

final circuit through an FPGA. The FPGA route is attractive for limited

volume production or a fast development cycle.

The circuit is realized as an ASIC. A typical ASIC vendor will have his own

library of basic components like elementary gates and flip-flops. Eventually

the circuit is to be realized by selecting such components and interconnecting

them conforming to the required design. This constitutes the physical design.

Being an elaborate and costly process, a physical design may call for an

intermediate functional verification through the FPGA route. The circuit

realized through the FPGA is tested as a prototype. It provides another

opportunity for testing the design closer to the final circuit.

8 INTRODUCTION TO VLSI DESIGN

1.4.5 Physical Design

A fully tested and error-free design at the switch level can be the starting point for

a physical design [Baker & Boyce, Wolf]. It is to be realized as the final circuit

using (typically) a million components in the foundry’s library. The step-by-step

activities in the process are described briefly as follows:

System partitioning: The design is partitioned into convenient compartments

or functional blocks. Often it would have been done at an earlier stage itself

and the software design prepared in terms of such blocks. Interconnection of

the blocks is part of the partition process.

Floor planning: The positions of the partitioned blocks are planned and the

blocks are arranged accordingly. The procedure is analogous to the planning

and arrangement of domestic furniture in a residence. Blocks with I/O pins

are kept close to the periphery; those which interact frequently or through a

large number of interconnections are kept close together, and so on.

Partitioning and floor planning may have to be carried out and refined

iteratively to yield best results.

Placement: The selected components from the ASIC library are placed in

position on the “Silicon floor.” It is done with each of the blocks above.

Routing: The components placed as described above are to be interconnected

to the rest of the block: It is done with each of the blocks by suitably routing

the interconnects. Once the routing is complete, the physical design cam is

taken as complete. The final mask for the design can be made at this stage

and the ASIC manufactured in the foundry.

1.4.6 Post Layout Simulation

Once the placement and routing are completed, the performance specifications like

silicon area, power consumed, path delays, etc., can be computed. Equivalent

circuit can be extracted at the component level and performance analysis carried

out. This constitutes the final stage called “verification.” One may have to go

through the placement and routing activity once again to improve performance.

1.4.7 Critical Subsystems

The design may have critical subsystems. Their performance may be crucial to the

overall performance; in other words, to improve the system performance

substantially, one may have to design such subsystems afresh. The design here

may imply redefinition of the basic feature size of the component, component

design, placement of components, or routing done separately and specifically for

the subsystem. A set of masks used in the foundry may have to be done afresh for

the purpose.

ROLE OF HDL 9

1.5 ROLE OF HDL

An HDL provides the framework for the complete logical design of the ASIC. All

the activities coming under the purview of an HDL are shown enclosed in bold

dotted lines in Figure 1.4. Verilog and VHDL are the two most commonly used

HDLs today. Both have constructs with which the design can be fully described at

all the levels. There are additional constructs available to facilitate setting up of

the test bench, spelling out test vectors for them and “observing” the outputs from

the designed unit.

IEEE has brought out Standards for the HDLs, and the software tools conform

to them. Verilog as an HDL was introduced by Cadence Design Systems; they

placed it into the public domain in 1990. It was established as a formal IEEE

Standard in 1995. The revised version has been brought out in 2001. However,

most of the simulation tools available today conform only to the 1995 version of

the standard.

Verilog HDL used by a substantial number of the VLSI designers today is the

topic of discussion of the book.

11

2

INTRODUCTION TO VERILOG

2.1 VERILOG AS AN HDL

Verilog has a variety of constructs as part of it. All are aimed at providing a

functionally tested and a verified design description for the target FPGA or ASIC.

The language has a dual function – one fulfilling the need for a design description

and the other fulfilling the need for verifying the design for functionality and

timing constraints like propagation delay, critical path delay, slack, setup, and hold

times [Smith DJ, Wai-Kai].

Verilog as an HDL has been introduced here and its overall structure

explained. A widely used development tool for simulation and synthesis has been

introduced; the brief procedural explanation provided suffices to try out the

Examples and Exercises in the text.

2.2 LEVELS OF DESIGN DESCRIPTION

The components of the target design can be described at different levels with the

help of the constructs in Verilog.

2.2.1 Circuit Level

At the circuit level, a switch is the basic element with which digital circuits are

built. Switches can be combined to form inverters and other gates at the next

higher level of abstraction. Verilog has the basic MOS switches built into its

constructs, which can be used to build basic circuits like inverters, basic logic

gates, simple 1-bit dynamic and static memories. They can be used to build up

larger designs to simulate at the circuit level, to design performance critical

circuits. Figure 2.1 shows the circuit of an inverter suitable for description with the

switch level constructs of Verilog.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

12 INTRODUCTION TO VERILOG

2.2.2 Gate Level

At the next higher level of abstraction, design is carried out in terms of basic gates.

All the basic gates are available as ready modules called “Primitives.” Each such

primitive is defined in terms of its inputs and outputs. Primitives can be

incorporated into design descriptions directly. Just as full physical hardware can

be built using gates, the primitives can be used repeatedly and judiciously to build

larger systems. Figure 2.2 shows an AND gate suitable for description using the

gate primitive of Verilog. The gate level modeling or structural modeling as it is

sometimes called is akin to building a digital circuit on a bread board, or on a

PCB. One should know the structure of the design to build the model here. One

can also build hierarchical circuits at this level. However, beyond 20 to 30 of such

gate primitives in a circuit, the design description becomes unwieldy; testing and

debugging become laborious.

2.2.3 Data Flow

Data flow is the next higher level of abstraction. All possible operations on signals

and variables are represented here in terms of assignments. All logic and algebraic

operations are accommodated. The assignments define the continuous functioning

of the concerned block. At the data flow level, signals are assigned through the

data manipulating equations. All such assignments are concurrent in nature. The

design descriptions are more compact than those at the gate level. Figure 2.3

shows an A-O-I relationship suitable for description with the Verilog constructs at

the data flow level.

Supply0

out

in

Q
1

Q
2

V
CC

a
c

b

c = a . b

Figure 2.1 A simple Inverter circuit at the

switch level.

Figure 2.2 A simple AND gate represented

at the gate level.

CONCURRENCY 13

2.2.4 Behavioral Level

Behavioral level constitutes the highest level of design description; it is essentially

at the system level itself [Bhaskar]. With the assignment possibilities, looping

constructs and conditional branching possible, the design description essentially

looks like a “C” program. The statements involved are “dense” in function.

Compactness and the comprehensive nature of the design description make the

development process fast and efficient. Figure 2.4 shows an A-O-I gate expressed

in pseudo code suitable for description with the behavioral level constructs of

Verilog.

2.2.5 The Overall Design Structure in Verilog

The possibilities of design description statements and assignments at different

levels necessitate their accommodation in a mixed mode. In fact the design

statements coexisting in a seamless manner within a design module is a significant

characteristic of Verilog. Thus Verilog facilitates the mixing of the above-

mentioned levels of design. A design built at data flow level can be instantiated to

form a structural mode design. Data flow assignments can be incorporated in

designs which are basically at behavioral level.

2.3 CONCURRENCY

In an electronic circuit all the units are to be active and functioning concurrently.

The voltages and currents in the different elements in the circuit can change

simultaneously. In turn the logic levels too can change. Simulation of such a

circuit in an HDL calls for concurrency of operation. A number of activities –

may be spread over different modules – are to be run concurrently here. Verilog

simulators are built to simulate concurrency. (This is in contrast to programs in the

normal languages like C where execution is sequential.) Concurrency is achieved

by proceeding with simulation in equal time steps. The time step is kept small

enough to be negligible compared with the propagation delay values. All the

activities scheduled at one time step are completed and then the simulator

dcbae ..

If (a, b, c or d changes)

Compute e as

dcbae ..

Figure 2.3 An A-O-I gate represented as a

data flow type of relationship.

Figure 2.4 An A-O-I gate in pseudo code at

behavioral level.

14 INTRODUCTION TO VERILOG

advances to the next time step and so on. The time step values refer to simulation

time and not real time. One can redefine timescales to suit technology as and

when necessary and carry out test runs.

In some cases the circuit itself may demand sequential operation as with data

transfer and memory-based operations. Only in such cases sequential operation is

ensured by the appropriate usage of sequential constructs from Verilog HDL.

2.4 SIMULATION AND SYNTHESIS

The design that is specified and entered as described earlier is simulated for

functionality and fully debugged. Translation of the debugged design into the

corresponding hardware circuit (using an FPGA or an ASIC) is called “synthesis.”

The tools available for synthesis relate more easily with the gate level and data

flow level modules [Smith MJ]. The circuits realized from them are essentially

direct translations of functions into circuit elements. In contrast many of the

behavioral level constructs are not directly synthesizable; even if synthesized they

are likely to yield relatively redundant or wrong hardware. The way out is to take

the behavioral level modules and redo each of them at lower levels. The process is

carried out successively with each of the behavioral level modules until practically

the full design is available as a pack of modules at gate and data flow levels (more

commonly called the “RTL level”).

2.5 FUNCTIONAL VERIFICATION

Testing is an essential ingredient of the VLSI design process as with any hardware

circuit. It has two dimensions to it – functional tests and timing tests. Both can be

carried out with Verilog. Often testing or functional verification is carried out by

setting up a “test bench” for the design. The test bench will have the design

instantiated in it; it will generate necessary test signals and apply them to the

instantiated design. The outputs from the design are brought back to the test bench

for further analysis. The input signal combinations, waveforms and sequences

required for testing are all to be decided in advance and the test bench configured

based on the same.

The test benches are mostly done at the behavioral level. The constructs there

are flexible enough to allow all types of test signals to be generated.

In the process of testing a module, one may have to access variables buried

inside other modules instantiated within the master module. Such variables can be

accessed through suitable hierarchical addressing.

FUNCTIONAL VERIFICATION 15

2.5.1 Test Inputs for Test Benches

Any digital system has to carry out a number of activities in a defined manner.

Once a proper design is done, it has to be tested for all its functional aspects. The

system has to carry out all the expected activities and not falter. Further, it should

not malfunction under any set of input conditions. Functional testing is carried out

to check for such requirements. Test inputs can be purely combinational, periodic,

numeric sequences, random inputs, conditional inputs, or combinations of these.

With such requirements, definition and design of test benches is often as

challenging as the design itself.

As the circuit design proceeds, one develops smaller blocks and groups them

together to form bigger circuit units. The process is repeated until the whole

system is fully built up. Every stage calls for tests to see whether the subsystem at

that layer behaves in the manner expected. Such testing calls for two types of

observations:

Study of signals within a small unit when test inputs are given to the whole

unit.

Isolation of a small element and doing local test to facilitate debugging.

Verilog has constructs to accommodate both types of observation through a

hierarchical description of variables within.

2.5.2 Constructs for Modeling Timing Delays

Any basic gate has propagation delays and transmission delays associated with it.

As the elements in the circuit increase in number, the type and variety of such

delays increase rapidly; often one reaches a stage where the expected function is

not realized thanks to an unduly large time delay. Thus there is a need to test

every digital design for its performance with respect to time. Verilog has

constructs for modeling the following delays:

Gate delay

Net delay

Path delay

Pin-to-pin delay

In addition, a design can be tested for setup time, hold time, clock-width time

specifications, etc. Such constructs or delay models are akin to the finite delay

time, rise time, fall time, path or propagation delays, etc., associated with real

digital circuits or systems. The use of such constructs in the design helps simulate

realistic conditions in a digital circuit. Further, one can change the values of

16 INTRODUCTION TO VERILOG

delays in different ways. If a buffer capacity is increased, its associated delays can

be reduced. If a design is to migrate to a better technology, the delay values can be

rescaled. With such testing, one can estimate the minimum frequency of

operation, the maximum speed of response, or typical response times.

2.6 SYSTEM TASKS

A number of system tasks are available in Verilog. Though used in a design

description, they are not part of it. Some tasks facilitate control and flow of the

testing process. The values of signals in a module can be displayed in the course

of simulation. The tasks available for the purpose display them in desired formats.

Reading data from specified files into a module and writing back into files are also

possible through other tasks. Timescale can be changed prior to simulation with

the help of specific tasks for the purpose.

A set of system functions add to the flexibility of test benches: They are of

three categories:

Functions that keep track of the progress of simulation time

Functions to convert data or values of variables from one format to another

Functions to generate random numbers with specific distributions.

There are other numerous system tasks and functions associated with file

operations, PLAs, etc.

2.7 PROGRAMMING LANGUAGE INTERFACE (PLI)

PLI provides an active interface to a compiled Verilog module. The interface adds

a new dimension to working with Verilog routines from a C platform. The key

functions of the interface are as follows:

One can read data from a file and pass it to a Verilog module as input. Such

data can be test vectors or other input data to the module. Similarly, variables

in Verilog modules can be accessed and their values written to output devices.

Delay values, logic values, etc., within a module can be accessed and altered.

Blocks written in C language can be linked to Verilog modules.

2.8 MODULE

Any Verilog program begins with a keyword – called a “module.” A module is

the name given to any system considering it as a black box with input and output

terminals as shown in Figure 2.5. The terminals of the module are referred to as

‘ports’. The ports attached to a module can be of three types:

MODULE 17

module

output port input port

inout port

module adder(a, b, . . .p, q, . . . x, y);

Figure 2.5 Representation of a module as black box with its ports.

input ports through which one gets entry into the module; they signify the

input signal terminals of the module.

output ports through which one exits the module; these signify the output

signal terminals of the module.

inout ports: These represent ports through which one gets entry into the

module or exits the module; These are terminals through which signals are

input to the module sometimes; at some other times signals are output from

the module through these.

Whether a module has any of the above ports and how many of each type are

present depend solely on the functional nature of the module. Thus one module

may not have any port at all, another may have only input ports, while a third may

have only output ports, and so on.

All the constructs in Verilog are centered on the module. They define ways of

building up, accessing, and using modules. The structure of modules and the

mode of invoking them in a design are discussed here.

A module comprises a number of “lexical tokens” arranged according to some

predefined order. The possible tokens are of seven categories:

White spaces

Comments

Operators

Numbers

Strings

Identifiers

Keywords

18 INTRODUCTION TO VERILOG

The rules constraining the tokens and their sequencing will be dealt with as

we progress. For the present let us consider modules. In Verilog any program

which forms a design description is a “module.” Any program written to test a

design description is also a “module.” The latter are often called as “stimulus

modules” or “test benches.” A module used to do simulation has the form shown

in Figure 2.6. Verilog takes the active statements appearing between the

“module” statement and the “endmodule” statement and interprets all of them

together as forming the body of the module. Whenever a module is invoked for

testing or for incorporation into a bigger design module, the name of the module

(“test” here) is used to identify it for the purpose.

A digression into design using SSI ICs is in order here. Consider the IC 7430,

an eight input NAND gate. In any design using it, the IC can be looked up on as a

black box with eight input leads and one output lead (Figure 2.7a). Three aspects

characterize the IC – its function, its input leads, and its output lead. Other ICs

may have more output leads. A NAND gate module is defined in an analogous

manner in terms of its function, input leads and the output lead. The module used

to describe the circuit here also follows the earlier format; that is, the “module”

statement signifies the beginning of the module, the “endmodule” statement

signifies the end of the module. However, the initial statement “module” has to

be more elaborate with the input and the output ports forming part of it (see Figure

2.7b).

module test ;

....
statement1 ;

statement2 ;

...

endmodule

Signifies declaration of a module

Name assigned to the module

The semicolon ';' signifies termination of a

module statement

Signifies termination of a module

Individual statements within the module

Figure 2.6 Structure of a typical simulation module.

MODULE 19

O

 NAND gate

I1

I8

I7

I2

Figure 2.7(a) Eight input NAND gate (IC 7430). Gate proper with terminals.

Signifies declaration of a module(keyword)

Name assigned to the module

The semi-colon ';' signifies termination of a module statement

Signifies termination of a module

(keyword)

Individual statements within the module

Signifies the set of I/O leads to the module

module nand_gate (O, I1, I2, I3, I4, I5, I6, I7, I8) ;

....

statement1 ;

statement2 ;

...

endmodule

Figure 2.7(b) Eight input NAND gate (IC 7430). Structure of the gate module.

The same type of IC – 7430 – may be repeatedly used in a circuit. Each time

it is used, a different name is assigned to it in the design sheet. Part of such a

typical design sheet will look as in Figure 2.8. The associated table (Table 2.1)

allows us to identify each type of IC to be used and put in its proper place. An

automated design description can use a module defined above, repeatedly in a

number of places as in the circuit of Figure 2.8. Each such use is an

“instantiation.” A typical instantiation of the module defined above has the form

shown in Figure 2.9. The following observations are in order here:

20 INTRODUCTION TO VERILOG

Table 2.1 Partial list of IC numbers and their types for a typical design

IC No IC1 IC2 IC3 … IC9 …

IC type 7430 7430 … 7405 …

IC1

IC2

IC3

I1

I8

a

o1

o2

Figure 2.8 Part of the circuit diagram of a typical digital circuit.

nand_gate ic1 (b1, a1, a2, ...a8) ;

nand_gate ic2(b2, c1, c2, ...c8) ;

A typical instantiation of the

NAND gate in Figure 2.2

Another instantiation of the NAND

gate in Figure 2.2

Names of the input leads

Name of the output lead

Name assigned to the

instantiation

Figure 2.9 Instantiations of module nand_gate in another module.

The designer has defined a specific function within a module; the module is

assigned the name “nand_gate.”

The nand_gate can be invoked (instantiated) by him in a design as many

times as desired.

Each instantiation has to be assigned a separate identifier name by him (called

“IC1”, “IC2”, etc.).

MODULE 21

As part of the instantiation declaration, the input and output terminals are to

be defined. The convention followed is to stick to the same order as in the

module declaration. It is further illustrated in Figure 2.9.

Some modules may have a large number of ports. Sticking to the order of the

ports in an instantiation is likely to cause (human) errors. An alternative (and

sometimes more convenient) form of instantiation is also possible – shown in

Figure 2.10. The terminal identifications are explicit (though elaborate) here.

Further one need not stick to the order of the ports as they appear in the module

definition. With such a form of port assignments, the possibility of errors is

considerably reduced.

The following aspects of the modules and their instantiation are noteworthy:

Each module can be defined only once.

Module definitions are to be done independently. One module cannot be

defined inside another – they cannot be nested.

Any module can be instantiated inside another any number of times. Each

instantiation has to be done with a separate name assigned to it.

The various constructs and features available in Verilog are discussed in the

following chapters. However, certain conventions and constructs essential for the

progress of the book at this stage are discussed in Chapter 3.

nand gate module

IC1

I1

I8

bO

a8

a1

nand_gate ic1(O(b), I8(a8), ... I1(a1));

(a)

(b)

Figure 2.10 (a) A typical circuit block and (b) its instantiation.

22 INTRODUCTION TO VERILOG

2.9 SIMULATION AND SYNTHESIS

A variety of Software tools related to VLSI design is available. We discuss here

two of them directly relevant to us – Modelsim and Leonardo Spectrum of Mentor

Graphics. Modelsim has been used to simulate the designs. Simulation results

presented for the variety of examples discussed in the book have been obtained

using it. Leonardo Spectrum has been used to obtain the synthesized circuits

presented. We would like to draw the attention of the readers to the following in

this context:

Only the essential aspects of the tools are presented – those essential for

the progress of the book.

For more details of the tools and the variety of facilities they offer, one

can refer to the respective user manuals and the Help menus.

Tools from other sources are similar in essentials. Any of them can be

used.

2.9.1 Use of Modelsim SE 5.5

The procedure to invoke the tool and use it is briefly described here. The tool can

be used to prepare a source file, edit and compile it, and simulate the compiled

version.

Editing and Compilation

Open the Modelsim Window. We get the following menus listed at the top:

File Edit Design View Project Run Compare Macro

Click on “View.” We get the following menus:

All

Hide Workspace

Sources

Structure

Variables

Signals

List

Process

Wave

SIMULATION AND SYNTHESIS 23

Data flow

Data sets

New

Other

Click on “Source.” The “Source” window opens with the following set of

menus listed at the top:

File Edit Object Options Window

Click on “File” option. We get the following options:

New

Open

Use source

Source directory

Properties

Save

Save as

Compile

Close

Click on “New.” We get the following options:

VHDL

Verilog

Others

Click on “Verilog.” A “Source_edit-new.v” opens.

The Verilog design can be keyed in. It forms the source file. The source file

considered in various examples in the book can be created in this manner

(e.g., Example 4.2 and Figure 4.4).

Click on “File” option. We get a pull down menu.

Click on “Save as.”

Select a Directory of your choice. Give a suitable filename with extension

“.v” (Say “demo.v”). Click on “Save” and save the file. The source (design)

file has been created and saved. Now it is ready for compilation.

24 INTRODUCTION TO VERILOG

Click on “Compile.” “Compile HDL Source Files” window opens. File name

“demo” is displayed. Library “Work” is displayed. The selected file

(demo.v) will be compiled and loaded into Work. The lines of display in the

main window confirm this.

If the source file has any syntax or logical errors, compilation will not take

place. The errors will be indicated in the main window. The source file can

be opened (by clicking on the main menu) and edited. Once again

compilation can be attempted. The procedure has to be repeated iteratively

until all the errors in the source file have been removed and compilation is

successfully completed.

Simulation

In the main window click on “Design” pulldown menu.

In the options displayed, click on “Load Design.” The following options are

displayed at the top:–

Design VHDL Verilog Libraries SDF

Select “Design” and click on it. A small window appears on the screen.

“Library: Work” is displayed, implying that the working library is open. The

module name “demo” is displayed under it. In the normal course the names of

all the compiled files will be listed alphabetically one below the other. The

specific file to be simulated is to be selected by clicking on the same.

The “Load” button below gets highlighted. Click on it. The design gets

loaded and is ready for simulation run.

Click the “Run” menu in the Modelsim main window. Select 100 ns runtime.

The design runs for 100 ns (by default) and the output list appears in the main

window. The listing can be selected, copied, and pasted to another file. The

simulation results for the various examples in the book have been obtained in

this manner. If necessary, the time duration of simulation can be altered in

the main window.

Observing Waveforms

Simulation results can alternately be viewed as waveforms with the following

procedure:

In the main Modelsim window click on “Signals.” The signals window opens

with the following options displayed at the top:

File Edit View Window

SIMULATION AND SYNTHESIS 25

Click on the “View” pulldown menu. We get the options as shown below:

Wave

List

Log

Filter

Amongst the options available, click on “Wave.” We get the following

options:

Selected Signals

Signals in Region

Signals in Design

Select “Signals in Design.” The “Waveform Window” opens and shows the

signals in the design. The Window has a “Run” option.

Click on “Run” to run the design and get the waveforms displayed.

The waveforms shown as simulated outputs for different examples in the book

have been obtained in this manner.

One can practice simulation of a few examples given in the book.

Subsequently options available at the different stages can be tried, and the tool

with its full versatility can be mastered.

2.9.2 Synthesis

Conversion of the code into hardware logic and fitting it into an FPGA or ASIC to

realize the circuit is termed “Synthesis.” We have used the Mentor Graphics

Synthesis tool called “Leonardo Spectrum” for the purpose. The synthesis

procedure is briefly described here:

Double click on “Leonardo Spectrum 2000.1b.”

The Main Window named “Examplar Logic – Leonardo Spectrum Level

3”opens with a pulldown menu as follows:

File Edit View Tools Window Help

Click on “File”. A pulldown menu opens with options such as the following:

26 INTRODUCTION TO VERILOG

New

Open

Save

…

…

Select “New.” A window named “untitled” opens. We can type in a new

program and save it as a file with a name assigned to it (Say “name.v”) in a

directory of our choice. The procedure is similar to that followed above to

create and save a new file with extension “.v” (signifying that it is a Verilog

file). The file is now ready for synthesis. However, it is always preferable to

simulate a file and be fully satisfied with at the simulation stage itself before

synthesizing it.

Click on the “Tools” menu on the main window. A set of options appear on

the screen.

Select “Quick Set up.” A window of the type shown in Figure 2.11 appears.

All the settings necessary to complete the synthesis can be carried out with it.

Click on “Open files.” Select the Verilog source file to be synthesized. It will

be visible under “Input” in the figure.

Under “Technology” select “FPGA.” Select a device of (say) Xilinx – for

example, XC4000XL. The selected Xilinx device name is displayed under

‘Device’.

Select a “Clock Frequency” – say 10 MHz.

Click on the “Run Flow” button. The synthesis program runs and completes

the synthesis. Summarized results will be displayed on the screen.

If the coding is correct and synthesizable, the display “Ready” appears

highlighted at the bottom left-hand corner. If not, error details will be

displayed. The program may be rectified and synthesis attempted again.

Icons for “RTL Schematic”, “Gate Level Schematic” and “Critical Path

Schematic” at the top become active.

We can click on each of them in succession. The circuit schematic can be

viewed at the RTL level or the gate level. The critical path can be viewed – it

represents the path that takes the maximum time of operation on a pin-to-pin

basis. It sets the upper limit to the speed of operation of the circuit.

The synthesized circuits shown for the different examples in the book have

been obtained in this manner. The device selected to synthesize the design, is

called the “Target Device.” One can select any other suitable target device of

Xilinx or other FPGA vendors like Actel, Altera, Cypress, Lattice, Lucent,

Quicklogic, etc.

The program generates a summary of the synthesis activity and displays it as

a “Sum File.” It gives a report on the utilization of the “Target Device” by the

TEST BENCHES 27

Technology

FPGA

ASIC

Input

Speed grade

Device

HelpRun flow

MHzClock Frequency

Working directory

open files

Figure 2.11 The Window in Leonardo Spectrum to do the settings for synthesis.

design that was synthesized. It also generates and displays some timing

information like “Critical Path Timing.”

2.10 TEST BENCHES

Any digital circuit that has been designed and wired goes through a testing process

before being declared as ready for use. Testing involves studying circuit behavior

under simulated conditions for the following:

Check and ensure that all functions are carried out as desired. It is the test for

the static behavior of the circuit. A set of logic input values are applied at

selected points and the logic values at another set of points observed.

Check and ensure that all the functional sequences are carried out as desired.

It is one of the tests for the dynamic behavior of the circuit. It may call for the

28 INTRODUCTION TO VERILOG

generation of specific input sequences with respect to time, applying them to

the circuit and observing selected outputs.

Check for the timing behavior: One tests for the propagation and other types

of delays here. A variety of tests may have to be carried out. It may involve

observation of variations in the signals at selected points, measuring the time

delay between specified events, measuring pulse widths, and so on.

Verilog has the provision for all the above. One sets up a “test bench” in

software and caries out a simulated test. The facilities required to set up test

benches are discussed in detail in Chapters 7 and 8. However, the need to test the

designs in Chapters 4 to 6 warrants a brief introduction to them here; only the

essentials are discussed. Further, the “test benches” up to Chapter 7 are kept

simple and easily understandable.

Simulated testing is a time-based activity. It is usually carried out in

simulated time. With any simulation tool the simulation progresses through equal

simulation time steps. The time step can be 1 fs, 1 ps, 1 ns and so on. In the text

the default value is taken as 1 ns. In some cases it is mentioned explicitly; in other

situations it is implicit, that is, whenever ‘time step’ is mentioned, it implies 1ns of

simulation time. If required, the simulation time step can be altered (see Chapter

11).

Consider the group of statements below reproduced from the test bench of

Figure 4.1:

Initial

Begin

a1 = 0;
 a2 = 0;
 #3 a1 = 1;
 #1 a1 = 0;
 #2 a2 = 1;
 #4 a1 = 1;
 #3 a2 = 0;
 #1 a2 = 1;
end

and g1(b, a1, a2);

initial $monitor ($time, “a1 = %b, a2 = %b, b = %b”’ a1, a2, b);

#100 $finish;

The keyword initial is followed by a sequence of statements between the

keywords begin and end. Usually the initial banner signifies a setting done

on a once or a “once for all” basis. The “# 3” implies a time delay or wait time of

3 time steps in simulation. Thus the sequence implies the following:

At 0 simulation time the logic variables a1 and a2 are assigned the logic level

0.

TEST BENCHES 29

With a delay of 3 ns a1 is reassigned the logic value of 1.

With a further delay of 1 ns – that is, at the 4th ns - a1 is reverted to the logic

level 0.

Similarly at the 6th, 10th, 13th and 14th ns values of simulation time, further

changes are made to a1 and a2.

Note that every time value specified here is an increment in simulation time.

The values of a1 and a2 are not changed beyond the 14th ns. The statement

initial # 100 $finish;

implies that the simulation is to be continued up to the 100th ns of simulation time

and then stopped.

The above constitutes the generation of the test sequence for testing. Such test

signals are applied to the designed circuit through instantiation; the statement

and g1(b, a1, a2);

implies as much. The statement

initial $monitor ($time, “a1 = %b, a2 = %b, b = %b”’ a1, a2, b);

monitors a1, a2, and a3 for changes; whenever any of them changes, all of them

are sampled and the sampled values displayed.

Summarizing testing constitutes three activities:

Generation of the test signals – under the “initial” banner

Application of the test signal to the circuit under test – through instantiation

Observing selected signal values – through the $monitor statement

Many of the test benches for the subsequent examples are also structured in a

similar fashion. Changes are kept to the minimum to ensure focus on the example

concerned. As and when such changes are made, the same is explained.

31

3

LANGUAGE CONSTRUCTS AND

CONVENTIONS IN VERILOG

3.1 INTRODUCTION

The constructs and conventions make up a software language. A clear

understanding and familiarity of these is essential for the mastery of the language.

Verilog has its own constructs and conventions [IEEE, Sutherland]. In many

respects they resemble those of C language [Gottfried]. We discuss the constructs

and conventions essential to the progress of the book. More of these follow in the

ensuing chapters.

Any source file in Verilog (as with any file in any other programming

language) is made up of a number of ASCII characters. The characters are

grouped into sets — referred to as “lexical tokens.” A lexical token in Verilog can

be a single character or a group of characters. Verilog has 7 types of lexical tokens

— operators, keywords, identifiers, white spaces, comments, numbers, and strings.

Operators are introduced in Chapter 6. All the other tokens are discussed here.

Some other aspects of Verilog essential to the progress of the book are also

discussed subsequently.

3.1.1 Case Sensitivity

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,…

etc., are all treated as different entities / quantities in Verilog.

3.2 KEYWORDS

The keywords define the language constructs. A keyword signifies an activity to

be carried out, initiated, or terminated. As such, a programmer cannot use a

keyword for any purpose other than that it is intended for. All keywords in

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

32 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

Verilog are in small letters and require to be used as such (since Verilog is a case-

sensitive language). All keywords appear in the text in New Courier Bold-type

letters.

Examples

module signifies the beginning of a module definition.

endmodule signifies the end of a module definition.

begin signifies the beginning of a block of statements.

end signifies the end of a block of statements.

if signifies a conditional activity to be checked

while signifies a conditional activity to be carried out.

A list of keywords in Verilog with the significance of each is given in Appendix

A.

3.3 IDENTIFIERS

Any program requires blocks of statements, signals, etc., to be identified with an

attached nametag. Such nametags are identifiers. It is good practice for us to use

identifiers, closely related to the significance of variable, signal, block, etc.,

concerned. This eases understanding and debugging of any program.

e.g., clock, enable, gate_1, . . .

There are some restrictions in assigning identifier names. All characters of the

alphabet or an underscore can be used as the first character. Subsequent characters

can be of alphanumeric type, or the underscore (_), or the dollar ($) sign – for

example

name, _name. Name, name1, name_$, . . . all these are allowed as

identifiers

name aa not allowed as an identifier because of the blank (“name” and “aa”

are interpreted as two different identifiers)

$name not allowed as an identifier because of the presence of “$” as the first

character.

1_name not allowed as an identifier, since the numeral “1” is the first

character

@name not allowed as an identifier because of the presence of the character

“@”.

A+b not allowed as an identifier because of the presence of the character “+”.

An alternative format makes it is possible to use any of the printable ASCII

characters in an identifier. Such identifiers are called “escaped identifiers”; they

COMMENTS 33

have to start with the backslash (\) character. The character set between the first

backslash character and the first white space encountered is treated as an identifier.

The backslash itself is not treated as a character of the identifier concerned.

Examples

\b=c
\control-signal
\&logic
\abc // Here the combination “abc” forms the identifier.

It is preferable to use the former type of identifiers and avoid the escaped

identifiers; they may be reserved for use in files which are available as inputs to

the design from other CAD tools.

3.4 WHITE SPACE CHARACTERS

Blanks (\b), tabs (\t), newlines (\n), and formfeed form the white space characters

in Verilog. In any design description the white space characters are included to

improve readability. Functionally, they separate legal tokens. They are introduced

between keywords, keyword and an identifier, between two identifiers, between

identifiers and operator symbols, and so on. White space characters have

significance only when they appear inside strings.

3.5 COMMENTS

It is a healthy practice to comment a design description liberally – as with any

other program. Comments are incorporated in two ways. A single line comment

begins with “//” and ends with a new line – for example

module d_ff (Q, dp, clk); //This is the design description of a D flip-flop.

//Here Q is the output.

// dp is the input and clk is the clock.

One can incorporate multiline comments also without resorting to “//” at every

line. For such multiline comments “/*” signifies the beginning of a comment and

“*/” its end. All lines appearing between these two symbol combinations are

together treated as a single block comment – for example

module d_ff (Q, dp, clk);

34 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

/* This module forms the design description of a d_flip_flop wherein

 Q is the output of the flip-flop ,

 dp is the data input and

 clk the clock input*/

Multiline comments cannot be nested. For example, the following comment is not

valid.

/*The following forms the design description of a D flip-flop /*which can be

modified to form other types of flip-flops*/ with clock and data inputs.*/

A valid alternative can be as follows: -

/*The following forms the design description of a D flip-flop (which can be

modified to form other types of flip-flops) with clock and data inputs.*/

3.6 NUMBERS

Frequently numbers need to be specified in a design description. Logic status of

signal lines, buses, delay values, and numbers to be loaded in registers are

examples. The numbers can be of integer type or real type.

3.6.1 Integer Numbers

Integers can be represented in two ways. In the first case it is a decimal number –

signed or unsigned; an unsigned number is automatically taken as a positive

number. Some examples of valid number representations of this category are

given below:

2

25

253

–253

The following are invalid since nondecimal representations are not permissible.

2a

B8

–2a

–B8

Normally the number is taken as 32 bits wide. Thus all the following numbers are

assigned 32 bits of width:

2

25

NUMBERS 35

253

–2

–25

–253

If a design description has a number specified in the form given here, the circuit

synthesizer program will assign 32 bits of width to it and to all the related circuits.

Hence all such number specifications – despite their simplicity – may be avoided

in design descriptions. Number representation in this form may preferably be

restricted to test benches.

The alternate form of number representation is more specific – though

elaborate. The number can be specified in binary, octal, decimal, or hexadecimal

form. The representation has three tokens with an optional sign preceding it.

Figure 3.1 shows typical number representations with the significance of each field

explained separately.

- 8 'h f 4
This field signifies the value of the number. For binary

numbers the characters 0, 1, x, z can be used to form the

value.

For octal numbers the numerals 0 to 7, x, z can be used to

form the value.

For decimal numbers all the numerals, x, z can be used to

form the value.

For hex numbers all the numerals, a, b, c, d, e, f, x, z can be

used to form the numbers.

This combination - the single quote character followed by b, o,

d or h - specifes the base of the number. The character

signifies binary, octal, decimal or hexadecimal base. If this

field is absent, the number is taken as a dcimal one.

If present, the decimal number in this field signifies the bit

width of the number. If absent the width is assigned a default

value by the compiler.

This field(optional) is for the sign bit. It is allowed only with

the decimal numbers. If absent, the number is taken as

positive. For a number with a negative sign the number is

represented in 2's complement form

Figure 3.1 Representation of a number in Verilog: One can use capital letters instead of

small letters in the last two fields.

36 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

Observations:

The characters used to specify the base number, the sign or the magnitude can

be in either case (Thus A, B, C, D, E, or F can be used in place of a, b, c, d,
e, or f, respectively, to specify the concerned hex digit. X or Z can be used in

place of x or z value, respectively).

The single quote character in the base field has to be immediately followed by

the character representing the base. Intervening white spaces are not allowed.

However, such white spaces can precede the magnitude field.

Negative numbers are represented in 2’s complement form.

The question mark character – “?” – can be used in place of z. The

underscore character can be used anywhere after the first character. It adds to

the readability. It is normally ignored.

If the number size is smaller than the size specified, the size is made up by

padding 0’s to the left. However, if the leftmost bit is a x or z, the same is

padded to the left.

Left truncation and right extension can often be confusing. It is preferable to

specify the numbers fully.

Table 3.1 shows the format of specifications of the integer type numbers along

with illustrative examples.

3.6.2 Real Numbers

Real numbers can be specified in decimal or scientific notation. The decimal

notation has the form

-a.b

where a, b, the negative sign, and the decimal point have the usual significance.

The fields a and b must be present in the number. A number can be specified in

scientific notation as

4.3e2

where 4.3 is the mantissa and 2 the exponent. The decimal equivalent of this

number is 430. Other examples of numbers represented in scientific notation are

–4.3e2, –4.3e–2, and 4.3e–2. The representations are common.

3.7 STRINGS

A string is a sequence of characters enclosed within double quotes. A string must

be contained on a single line; that is, it cannot be carried over to two lines with a

STRINGS 37

Table 3.1 Different ways of number representations in Verilog

Representation Remarks

33

‘d33

Both of these represent decimal numbers of unspecified size –

normally interpreted by Verilog as 32 bitwide, i.e., 0000 0000 0000

0000 0000 0000 0010 0001

9’d439

9’D439

9’D4_39

All these represent 3 digit decimal numbers. D & d both specify

decimal numbers. “_” (underscore) is ignored

9’b1_1011__1x01

9’b11011x01

9’B11011x01

All these represent binary numbers of value 11011x01. B & b

specify binary numbers. “_” is ignored. x signifies the concerned

bit to be of unknown value.

9’o123

9’O123

9’o1x3

9’o12z

All these represent 9-bit octal numbers. The binary equivalents are

001 010 011,

001 010 011, 001 xxx 011, 001 010 zzz respectively. z signifies

the concerned bits to be in the high impedance state.

‘o213 An octal number of unspecified size having octal value 213.

8’ha5

8’HA5

8’hA5

8’ha_5

All these are 8 bit-wide-hex numbers of hex value a5h. The

equivalent binary value is 1010 0101.

11’hb0
A 11 bit number with a hex assignment. Its value is 000 1011 0000.

The number of bits specified is more than that indicated in the value

field. Enough zeros are padded to the left as shown.

9’hza A hex number of 9 bits. Its value is taken as zzzzz 1010.

5’hza A 5-bit hex number. Its value is taken as z 1010.

5’h?a
A 5-bit hex number. Its value is taken as z 1010. ‘?’ is another

representation for ‘z’.

-5’h1a

-3’b101

Negative numbers. Negative numbers are represented in 2’s

complement form.

-4’d7
A 4 bit negative number. Its value in 2’s complement form is 7.

Thus the number is actually – (16 – 7) = –9.

carriage return. Special characters are specified by preceding them with the “\”

character. Verilog treats a string as a sequence of ASCII characters – for example,

“This is a string”

“This string is one \t with a gap in between”

“This is called a \“string\””.

38 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

When a string of ASCII characters as above is an operand in an expression, it

is treated as a binary number. This binary number is formed by replacing each

ASCII character by 8 bits – a 0 bit followed by the 7-bit ASCII equivalent – and

treating the resulting binary sequence as a single binary number. For example, the

statement (with P defined as a 32-bit vector beforehand)

P = “numb”

assigns the binary value

0110 1110 0111 0101 0110 1101 0110 0010

to P (0110 1110, 0111 0101, 0110 1101 and 0110 0010 are the 8-bit equivalents

of the letters n, u, m, and b, respectively).

3.8 LOGIC VALUES

Signal lines, logic values appearing on signal lines, etc., can normally take two

logic levels:

1 signifies the 1 or high or true level

0 signifies the 0 or low or false level.

Two additional levels are also possible – designated as x and z. Here x

represents an unknown or an uninitialized value. This corresponds to the don’t-

care case in logic circuits. z represents / signifies a high impedance state. This is

possible when a signal line is tri-stated or left floating. The following are

noteworthy here:

When a variable in an expression is in the z state, the effect is the same as it

having z value. But when an input to a gate is in the z state (see Chapter 4), it

is equivalent to having the x value.

The MOS switches discussed in Chapter 10 form an exception to the above.

If the input to a MOS switch is in the z state, its output too remains at the z

state.

With a few exceptions all data types in Verilog can take on all the 4 logic

values or levels. The event (see Section 8.11) is an exception to this. It

cannot store any value. The trireg cannot take on the z value (see Chapter

5).

A logic state can have a “strength” associated with it. It is a quantitative

representation of the internal impedance value of the corresponding hardware

circuit; a change in the internal impedance is reflected as a corresponding change

in the strength level. Whenever the logic values from two sources are combined,

there can be a conflict and the resulting contention has to be resolved. The

strength values are discussed below. Details of contention and its resolution are

discussed in Chapter 5.

STRENGTHS 39

3.9 STRENGTHS

The logic levels are also associated with strengths. In many digital circuits,

multiple assignments are often combined to reduce silicon area or to reduce pin-

outs. To facilitate this, one can assign strengths to logic levels. Verilog has eight

strength levels – four of these are of the driving type, three are of capacitive type

and one of the hi-Z type. Details are given in Table 3.2 (see also Section 5.4).

When a signal line is driven simultaneously from two sources of different

strength levels, the stronger of the two prevails. A few illustrative examples are

considered here.

If a signal line a is driven by two sources – b at 1 level with strength

“strong1” and c at level 0 with strength “pull0”– a will take the value 1.

3.2 Details of strengths in Verilog

Strength

name

Strength

level

(signifies

inverse of

source

impedance)

Specification

keyword
Abbreviation Element modeled

Supply1 Su1 Supply

drive
7

Supply0 Su0

Power supply

connection

Strong1 St1
Strong

drive
6

Strong0 St0

Default gate and

assign output

strength

Pull1 Pu1
Pull drive 5

Pull0 Pu0

Gate and assign

output strength

Large1 La1 Large

capacitor
4

Large0 La0

Size of trireg net

capacitor

Weak1 We1
Weak drive 3

Weak0 We0

Gate and assign

output strength

Medium1 Me1 Medium

capacitor
2

Medium0 Me0

Size of trireg net

capacitor

Small1 Sm1 Small

capacitor
1

Small0 Sm0

Size of trireg net

capacitor

Highz1 Hi1 High

impedance
0

Highz0 Hi0

Tri-stated line

40 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

If a signal line a is driven by two sources – b at 1 level with strength

“pull1” and c at level 0 with strength “strong0,” a will take the value 0.

If a signal line a is driven by two sources – b at 1 level with strength

“strong1” and c at level 0 with strength “strong0,” a will take the value

x (indeterminate).

If a signal line a is driven by two sources – b at 1 level with strength

“weak1” and c at level 0 with strength “large0,” a will take the value 0.

(Note that large signifies a capacitive drive on a tri-stated line whereas

weak signifies a gate / assigned output drive with a high source impedance;

despite this, due to the higher strength level, the large signal prevails.)

The significance of strengths is further explained in Chapter 5.

3.10 DATA TYPES

The data handled in Verilog fall into two categories:

(i) Net data type

(ii) Variable data type

The two types differ in the way they are used as well as with regard to their

respective hardware structures. Data type of each variable or signal has to be

declared prior to its use. The same is valid within the concerned block or module.

3.10.1 Nets

A net signifies a connection from one circuit unit to another. Such a net carries the

value of the signal it is connected to and transmits to the circuit blocks connected

to it. If the driving end of a net is left floating, the net goes to the high impedance

state. A net can be specified in different ways.

wire: It represents a simple wire doing an interconnection. Only one output is

connected to a wire and is driven by that.

tri: It represents a simple signal line as a wire. Unlike the wire, a tri can be

driven by more than one signal outputs.

Functionally, wire and tri are identical. Distinct nomenclatures are provided

for the convenience of assigning roles. Other types of nets are discussed in

Chapter 5.

SCALARS AND VECTORS 41

3.10.2 Variable Data Type

A variable is an abstraction for a storage device. It can be declared through the

keyword reg and stores the value of a logic level: 0, 1, x, or z. A net or wire

connected to a reg takes on the value stored in the reg and can be used as input

to other circuit elements. But the output of a circuit cannot be connected to a reg.

The value stored in a reg is changed through a fresh assignment in the program.

time, integer, real, and realtime are the other variable types of data;

these are dealt with later.

3.11 SCALARS AND VECTORS

Entities representing single bits — whether the bit is stored, changed, or

transferred — are called “scalars.” Often multiple lines carry signals in a cluster –

like data bus, address bus, and so on. Similarly, a group of regs stores a value,

which may be assigned, changed, and handled together. The collection here is

treated as a “vector.” Figure 3.2 illustrates the difference between a scalar and a

vector. wr and rd are two scalar nets connecting two circuit blocks circuit1 and

circuit2. b is a 4-bit-wide vector net connecting the same two blocks. b[0], b[1],
b[2], and b[3] are the individual bits of vector b. They are “part vectors.”

A vector reg or net is declared at the outset in a Verilog program and hence

treated as such. The range of a vector is specified by a set of 2 digits (or

expressions evaluating to a digit) with a colon in between the two. The

combination is enclosed within square brackets.

Circuit 1 Circuit 2

wr

rd

b[0]
b[1]

b[2]
b[3]

wr & rd are scalars

part vectors

4-bit-wide vector b

Figure 3.2 Illustration of scalars and vectors.

42 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

Examples:

wire[3:0] a; /* a is a four bit vector of net type; the bits are designated as

a[3], a[2], a[1] and a[0]. */

reg[2:0] b; /* b is a three bit vector of reg type; the bits are designated as

b[2], b[1] and b[0]. */

reg[4:2] c; /* c is a three bit vector of reg type; the bits are designated as

c[4], c[3] and c[2]. */

wire[-2:2] d ; /* d is a 5 bit vector with individual bits designated as d[-2],

d[-1], d[0], d[1] and d[2]. */

Whenever a range is not specified for a net or a reg, the same is treated as a

scalar – a single bit quantity. In the range specification of a vector the most

significant bit and the least significant bit can be assigned specific integer values.

These can also be expressions evaluating to integer constants – positive or

negative.

Normally vectors – nets or regs – are treated as unsigned quantities. They

have to be specifically declared as “signed” if so desired.

Examples

wire signed[4:0] num; // num is a vector in the range -16 to +15.

reg signed [3:0] num_1; // num_1 is a vector in the range -8 to +7.

3.12 PARAMETERS

In some designs, certain parameter values are not committed at the outset.

Proportionality constants, frequency-scaling levels, number of taps in digital

filters, etc., are typical examples. There are also situations where the size of the

design is left open and decided at a later stage. Bus width, LIFO depth, and

memory size are such quantities which may be committed later. All such

constants can be declared as parameters at the outset in a Verilog module, and

values can be assigned to them; for example,

parameter word_size = 16;

parameter word_size = 16, mem_size = 256;

Such parameter assignments are made at compiler time. The parameter values

cannot be changed (normally) at runtime. However, a parameter that has been

assigned a value in a module definition can have its value changed at runtime –

that is, when the module is used at runtime in some other design (i.e., instantiated)

or when it is tested. Such modifications are carried out through a

“defparameter” statement. The parameter assignment done as part of

parameter declaration can have the appropriate constant on the right-hand side of

OPERATORS 43

the assignment statement, as was the case above. The assignment can also have

algebraic expressions on the right hand side. Such expressions can involve

constants and other parameters declared already; for example

Parameter word_size = 16, factor = word_size/2;

3.13 MEMORY

Different types and sizes of memory, register file, stack, etc., can be formed by

extending the vector concept. Thus the declaration

Reg [15:0] memory[511:0];

declares an array called “memory”; it has 512 locations. Each location is 16 bits

wide. The value of any chosen location can be assigned to a selected register or

vice versa; this constitutes memory reading or writing [see Example 8.10]. The

index used to refer a memory location can be a number or an algebraic expression

which reduces to an integral value – positive, zero, or negative. As an example,

consider the assignment statement

B = mem[(p-q)/2];

The simulator first evaluates (p - q)/2 (which should be an integer): Let it reduce

to 3. Then the data stored at mem[3] is assigned to B. Stack pointer, program

counter, index register, etc., can be implemented through the above concept.

Different types of memory addressing like indirect, indexed, etc., can also be

accommodated. Page addressing can be accomplished by a slight adaptation of the

concept.

3.14 OPERATORS

Verilog has a number of operators akin to the C language. These are of three

types:

1. Unary: the unary operator is associated with a single operand. The operator

precedes the operand – for example, ~a.

2. Binary: the binary operator is associated with two operands. The operator

appears between the two operands – for example, a&b.

3. Ternary: the ternary operator is associated with three operands. The two

operators together constitute a ternary operation. The two operators separate

the three operands – for example

a?b:c // Here the operators “?” and “:” together define an operation.

Operators are discussed in detail in Chapter 6.

44 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

3.15 SYSTEM TASKS

During the simulation of any design, a number of activities are to be carried out to

monitor and control simulation. A number of such tasks are provided / available in

Verilog. Some other tasks serve other functions. However, a few of these are

used commonly; these are described here. The “$” symbol identifies a system

task. A task has the format

$<keyword>

3.15.1 $display

When the system encounters this task, the specified items are displayed in the

formats specified and the system advances to a new line. The structure, format,

and rules for these are the same as for the “printf” / “scanf” function in C. Refer to

a standard text in “C” language for the text formatting codes in common usage

[Gottfried].

Examples

$display (“The value of a is : a = , %d”, a);

Execution of this line results in printing the value of a as a decimal number

(specified by “%d”). The string present within the inverted commas specifies this.

Thus if a has the value 3.5, we get the display

The value of a is : a = 3.5.

After printing the above line, the system advances to the next line.

$display; /* This is a display task without any arguments. It advances

output to a new line. */

3.15.2 $monitor

The $monitor task monitors the variables specified whenever any one of those

specified changes. During the running of the program the monitor task is invoked

and the concerned quantities displayed whenever any one of these changes.

Following this, the system advances to the next line. A monitor statement need

appear only once in a simulation program. All the quantities specified in it are

continuously monitored. In contrast, the $display command displays the

quantities concerned only once – that is, when the specific line is encountered

during execution. The format for the $monitor task is identical to that of the

$display task.

EXERCISES 45

Examples

$monitor (“The value of a is : a = , %d”, a);

With the task, whenever the value of a changes during execution of a program, its

new value is printed according to the format specified. Thus if the value of a
changes to 2.4 at any time during execution of the program, we get the following

display on the monitor.

The value of a is: a = 2.4.

3.15.3 Tasks for Control of Simulation

Two system tasks are available for control of simulation:

$finish task, when encountered, exits simulation. Control is reverted to the

Operating System. Normally the simulation time and location are also printed out

by default as part of the exit operation.

$stop task, suspends simulation; if necessary the simulation can be resumed by

user intervention. Thus with the stop task, the simulator is in an interactive mode.

In contrast with $finish, simulation has to be started afresh.

3.16 EXERCISES

1. Run the Verilog program in Figure 3.3. Observe the output.

module fancy2;

integer i,j;

initial repeat(5)

begin

 #1 j=0;

 while(j<=10)

 begin

 j=j+1;

 for(i=0;i<=j;i=i+1) $write(" b");

 $display("*");

 end

#1 while(j>=0)

continued

46 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

continued

 begin

 for(i=0;i<=j;i=i+1) $write(" c");

 $display("*");

 j=j-1;

 end

end

initial #12 $stop;

endmodule

Figure 3.3 A simple Verilog module.

2. In Exercise 3.1 above, delete b and c in the write statement lines. Rerun the

program.

3. Try other combinations of I and j values and repeat the run.

4. Run the Verilog program in Figure 3.4.

5. In the program of Figure 3.4 replace the “always” statement by

“initial” statement and run the program.

6. In the program of Figure 3.4 replace the “a=a+7” statement by “a=a-7”

statement and run the program.

module fancy3;

reg[11:0]a;

always

begin

 #0 $display("See this: ah=%d, ad=%h, ao=%o, ab=%b",a,a,a,a);

 #1 $display("How about this? ah=%0d, ad=%0h, ao=%0o, ab=%0b",a,a,a,a);

 a=a+7;

end

initial

begin

 a=0;

 #10 $stop;

end

endmodule

Figure 3.4 Another simple Verilog module.

47

4

GATE LEVEL MODELING – 1

4.1 INTRODUCTION

Digital designers are normally familiar with all the common logic gates, their

symbols, and their working. Flip-flops are built from the logic gates. All other

functionally complex and more involved circuits can also be built using the basic

gates. All the basic gates are available as “Primitives” in Verilog. Primitives are

generalized modules that already exist in Verilog [IEEE]. They can be instantiated

directly in other modules. Further design description using gate primitives is quite

close to the actual circuits (design description using the switch primitives dealt

with in Chapter 10 are still closer). We describe features of gate level primitives,

ways of working with them, and ways of building more involved circuits with

them [Palnitkar, Lee]. In this process some of the commonly used features of

Verilog are also brought out.

4.2 AND GATE PRIMITIVE

The AND gate primitive in Verilog is instantiated with the following statement:

and g1 (O, I1, I2, . . ., In);

Here ‘and’ is the keyword signifying an AND gate. g1 is the name assigned to

the specific instantiation. O is the gate output; I1, I2, etc., are the gate inputs. The

following are noteworthy:

The AND module has only one output. The first port in the argument list is

the output port.

An AND gate instantiation can take any number of inputs — the upper limit is

compiler-specific.

A name need not be necessarily assigned to the AND gate instantiation; this is

true of all the gate primitives available in Verilog.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

48 GATE LEVEL MODELING – 1

4.2.1 Example 4.1

Figure 4.1 shows the stimulus program for testing the AND gate g1. The output

obtained by stimulating the program is shown in Figure 4.2. Some explanation

regarding the simulation program is in order here.

The module test_and has no port. It instantiates the AND module once.

The test input sequence is specified within the initial block – the

sequence of statements between the begin and end statements together form

this block.

The keyword “initial” signifies the settings done initially — that is, only

once for the whole routine.

The first set of statements within the initial block

a1 = 0;
a2 = 0;

make

a1 = a2 = 0
at zero simulation time.

After 3 time steps, a1 is set to one but a2 remains at 0. The expression “#3”

means “after 3 time steps”. Subsequent changes in a1 and a2 also can be

explained in the same manner.

module test_and;

reg a1, a2;

wire b;
Initial

Begin

a1 = 0;
 a2 = 0;
 #3 a1 = 1;
 #1 a1 = 0;
 #2 a2 = 1;
 #4 a1 = 1;
 #3 a2 = 0;
 #1 a2 = 1;
end

and g1(b, a1, a2);

initial $monitor ($time, “a1 = %b, a2 = %b, b = %b”’ a1, a2, b);

initial #100 $finish;
endmodule

Figure 4.1 A module to instantiate the AND gate primitive and test it.

AND GATE PRIMITIVE 49

0 a1 = 0 a2 = 0 b = 0

3 a1 = 1 a2 = 0 b = 0

4 a1 = 0 a2 = 0 b = 0

6 a1 = 0 a2 = 1 b = 0

10 a1 = 1 a2 = 1 b = 1

13 a1 = 1 a2 = 0 b = 0

14 a1 = 1 a2 = 1 b = 1

Figure 4.2 The output obtained by running the module of Figure 4.1.

The program displays the variable values – that is, the values of o, a1, and a2
whenever any one of these changes. This is evident from the printout on the

monitor, which has been reproduced in Figure 4.2.

A pair of variables a1 and a2 are declared in the program, and the values

stored in them are given as inputs to the AND gate instantiation.

Any variable not declared in the module is by default taken as a net of wire

type; it is also taken as a scalar. The same is true of all modules in Verilog.

The term $time in the $monitor statement signifies the running time of

the program. Here it causes the value of time at the instant of capturing the

data for display, to be displayed.

The statement

#100 $finish;

signifies that the program will stop simulation and exit the operating system at

the end of 100 time steps.

4.2.2 Truth Table of AND Gate Primitive

The truth table for a two-input AND gate is shown in Table 4.1. It can be directly

extended to AND gate instantiations with multiple inputs. The following

observations are in order here:

Table 4.1 Truth table of AND gate primitive

Input 1

0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

In
p

u
t

2

z 0 x x x

50 GATE LEVEL MODELING – 1

If any one of the inputs to the AND gate instantiation is in the 0 state, its

output is also in the 0 state. It is irrespective of whether the other inputs are at

the 0, 1, x or z state.

The output is at 1 state if and only if every one of the inputs is at 1 state.

For all other cases the output is at the x state.

Note that the output is never at the z state – the high impedance state. This is

true of all other gate primitives as well.

4.3 MODULE STRUCTURE

Figure 4.1 shows a typical module. In a general case a module can be more

elaborate. A lot of flexibility is available in the definition of the body of the

module. However, a few rules need to be followed:

The first statement of a module starts with the keyword module; it may be

followed by the name of the module and the port list if any (see Section 2.8).

All the variables in the ports-list are to be identified as inputs, outputs,

or inouts. The corresponding declarations have the form shown below:

Input a1, a2;

Output b1, b2;

Inout c1, c2;

The port-type declarations here follow the module declaration mentioned

above.

The ports and the other variables used within the body of the module are to be

identified as nets or registers with specific types in each case. The respective

declaration statements follow the port-type declaration statements.

Examples:

wire a1, a2, c;

reg b1, b2;

The type declaration must necessarily precede the first use of any variable or

signal in the module.

The executable body of the module follows the declaration indicated above.

The last statement in any module definition is the keyword “endmodule”.

Comments can appear anywhere in the module definition.

ILLUSTRATIVE EXAMPLES 51

4.4 OTHER GATE PRIMITIVES

All other basic gates are also available as primitives in Verilog. Details of the

facilities and instantiations in each case are given in Table 4.2. The following

points are noteworthy here:

In all cases of instantiations, one need not necessarily assign a name to the

instantiation. It need be done only when felt necessary – say for clarity of

circuit description.

In all the cases the output port(s) is (are) declared first and the input port(s) is

(are) declared subsequently.

The buffer and the inverter have only one input each. They can have any

number of outputs; the upper limit is compiler-specific. All other gates have

one output each but can have any number of inputs; the upper limit is again

compiler-specific.

4.4.1 Truth Table

Extending the concepts of Section 4.2.2, one can form the truth tables of all other

gate primitives. The basic features of each are given in Table 4.3. The truth tables

themselves are given in Appendix B.

4.5 ILLUSTRATIVE EXAMPLES

The examples considered here illustrate the use of gate primitives in designs.

Further, they bring out how one can build fairly large designs by judiciously

combining smaller modules in a repeated fashion [Bignel, Sedra].

Table 4.2 Basic gate primitives in Verilog with details

Gate Mode of instantiation Output port(s) Input port(s)

AND and ga (o, i1, i2, . . . i8); o i1, i2, . .

OR or gr (o, i1, i2, . . . i8); o i1, i2, . .

NAND nand gna (o, i1, i2, . . . i8); o i1, i2, . .

NOR nor gnr (o, i1, i2, . . . i8); o i1, i2, . .

XOR xor gxr (o, i1, i2, . . . i8); o i1, i2, . .

XNOR xnor gxn (o, i1, i2, . . . i8); o i1, i2, . .

BUF buf gb (o1, o2, …. i); o1, o2, o3, . . i

NOT not gn (o1, o2, o3, . . . i); o1, o2, o3, . . i

52 GATE LEVEL MODELING – 1

Table 4.3 Rules for deciding the output values of gate primitives for different input

combinations

Type of gate 0 output state 1 output state x output state

AND
Any one of the

inputs is zero

All the inputs are at one

NAND
All the inputs are at

one

Any one of the inputs is

zero

OR
All the inputs are at

zero

Any one of the inputs is

one

NOR
Any one of the

inputs is one

All the inputs are at

zero

All other cases

XOR

XNOR

If every one of the inputs is definite at zero or

one, the output is zero or one as decided by

the XOR or XNOR function

If any one of the inputs is

at x or z state, the output is

at x state

BUF
If the only input is at

0 state

If the only input is at 1

state

NOT
If the only input is at

1 state

If the only input is at 0

state

All other cases of inputs

4.5.1 Example 4.2

The commonly used A-O-I gate is shown in Figure 4.3 for a simple case. The

module and the test bench for the same are given in Figure 4.4. The circuit has

been realized here by instantiating the AND and NOR gate primitives. The names

of signals and gates used in the instantiations in the module of Figure 4.4 remain

the same as those in the circuit of Figure 4.3. The module aoi_gate in the figure

has input and output ports since it describes a circuit with signal inputs and an

output. The module aoi_st is a stimulus module. It generates inputs to the

aoi_gate module and gets its output. It has no input or output ports.

a1

o

o2

o1

b2

b1

a2

g3

g2

g1

Figure 4.3 A typical A-O-I gate circuit.

ILLUSTRATIVE EXAMPLES 53

/*module for the aoi-gate of figure 4.3 instantiating
the gate primitives - fig4.4*/
module aoi_gate(o,a1,a2,b1,b2);
input a1,a2,b1,b2;// a1,a2,b1,b2 form the input
//ports of the module
output o;//o is the single output port of the module
wire o1,o2;//o1 and o2 are intermediate signals
//within the module
and g1(o1,a1,a2); //The AND gate primitive has two
and g2(o2,b1,b2);// instantiations with assigned
//names g1 & g2.
nor g3(o,o1,o2);//The nor gate has one instantiation
//with assigned name g3.
endmodule

//Test-bench for the aoi_gate above
module aoi_st;
reg a1,a2,b1,b2;
//specific values will be assigned to a1,a2,b1,
// and b2 and these connected
//to input ports of the gate insatntiations;
//hence these variables are declared as reg
wire o;
initial
begin
 a1 = 0;
 a2 = 0;
 b1 = 0;
 b2 = 0;

#3 a1 = 1;
#3 a2 = 1;
#3 b1 = 1;
#3 b2 = 0;
#3 a1 = 1;
#3 a2 = 0;
#3 b1 = 0;

end
initial #100 $stop;//the simulation ends after
//running for 100 tu's.
initial $monitor($time , " o = %b , a1 = %b ,
 a2 = %b , b1 = %b ,b2 = %b ",o,a1,a2,b1,b2);
aoi_gate gg(o,a1,a2,b1,b2);
endmodule

Figure 4.4 Module for the AOI gate of Figure 4.3 and a test bench for the same.

54 GATE LEVEL MODELING – 1

The A-O-I gate module has three instantiations – two of these being AND gates

and the third a NOR gate; this conforms to the circuit of A_O_I gate in Figure 4.3.

Within the aoi_gate module, all signals are of type net. The aoi_ gate module in

Figure 4.4 is instantiated once in the module aoi_st for testing. Any such

instantiation of a user-defined module in another module has to be assigned a

name. (As mentioned earlier, this is not mandatory with the instantiation of gate

primitives available in Verilog.) The instantiation is given the name gg here.

Note that all the inputs to the instantiation of aoi_gate in the test bench are fed

through regs.

The aoi_gate and aoi_st are compiled and run. Different combinations of

values are assigned to a1, a2, b1, and b2 in the test bench at regular intervals of 3

time steps. At all such time steps at least one of the signals included in the

monitor statement changes. Hence all the signal values are displayed on the

monitor at three time step intervals. The results of running the test bench are

reproduced in Figure 4.5, which confirms this.

The module aoi_gate has been synthesized and the synthesized circuit shown

in Figure 4.6; the figure does not warrant any detailed explanation.

Both the modules can do with some elegant simplification. First consider the

stimulus module aoi_st in Figure 4.4. All the four inputs can be clubbed together

and treated as a “vector” input. Often this may be possible to be identified with a

four-bit-wide bus in a system. It makes the vector representation all the more

meaningful. With this, the variables together can be declared as a single vector.

The value taken by the vector can be defined with relevant time delays. To

accommodate such a change, the AOI module of Figure 4.4 is recast in Figure 4.7.

The compactness achieved here is carried over to the instantiation of the module

for its test bench aoi_st2, which is also shown in the figure.

The AOI gate itself (aoigate2 in Figure 4.7) has been made compact on two

counts: All the four inputs have been clubbed together and treated as a four-bit

vector. Further, the two and gate instantiations are clubbed together into one

statement. Note the format of the statement – a comma separates the two

instantiations, and as usual a semicolon signifies the end of the statement. In any

set of instantiations, all similar instantiations in a module can be combined in this

manner. The module aoigate2 has an input/output port since it describes a circuit

with signal inputs and outputs. aoi_st2 is a stimulus module. It generates inputs

 # 0 o = 1 , a1 = 0 , a2 = 0 , b1 = 0 ,b2 = 0
 # 3 o = 1 , a1 = 1 , a2 = 0 , b1 = 0 ,b2 = 0
 # 6 o = 0 , a1 = 1 , a2 = 1 , b1 = 0 ,b2 = 0
 # 9 o = 0 , a1 = 1 , a2 = 1 , b1 = 1 ,b2 = 0
 # 18 o = 1 , a1 = 1 , a2 = 0 , b1 = 1 ,b2 = 0
 # 21 o = 1 , a1 = 1 , a2 = 0 , b1 = 0 ,b2 = 0

Figure 4.5 Results of running the aoi_st test bench of Figure 4.3.

ILLUSTRATIVE EXAMPLES 55

Figure 4.6 Synthesized version of the module aoi_gate of Figure 4.4.

to the module from within the stimulus module and gets its output. It has no input

or output port. In a more general case one may have a number of modules defined

at different levels, which are repeatedly instantiated in bigger modules. The

stimulus module may be at the apex. It may carry out the stimulus activity by

generating the inputs to the other ports in the hierarchy and receiving their outputs.

module aoi_gate2(o,a);
input [3:0]a;//A is a vector of 4 bits width
output o;// output o is a scalar
wire o1,o2;//these are intermediate signals
and (o1,a[0],a[1]),(o2,a[2],a[3]);
nor (o,o1,o2);/*The nor gate has one instantiation
with assigned name g3.*/
endmodule

module aoi_st2;
reg[3:0] aa;
aoi_gate2 gg(o,aa);
initial
 begin
 aa = 4'b000;//a being a vector, all its
 #3 aa = 4'b0001;//bit components are
 #3 aa = 4'b0010;//assigned values at one go.
 #3 aa = 4'b0100;//Similarly their changes are
 #3 aa = 4'b1000;//combined in the assignments
 #3 aa = 4'b1100;
 #3 aa = 4'b0110;
 #3 aa = 4'b0011;
 end
initial
$monitor($time , " aa = %b , o = %b " , aa,o);
initial #24 $stop;
endmodule

Figure 4.7 Another realization of the A-I-O gate with the input declared as a vector; the test

bench for the module is also shown in the figure.

56 GATE LEVEL MODELING – 1

The stimulus module need not necessarily have a port; aoi_st in Figure 4.4 and

aoi_st2 in Figure 4.7 are typical examples. The results of running the test bench

aoi_st2 of Figure 4.7 are shown in Figure 4.8.

To facilitate involved design descriptions, some additional flexibility is

available in Verilog.

Signals at the ports can be identified by a hierarchical name. Such addressing

may become useful when displaying them in the stimulus module.

Signal instantiations illustrated above specify inputs and outputs in the same

sequence as was done in the definition. The procedure is simple and

acceptable in situations with only a few numbers of inputs and outputs. But in

modules with a comparatively large number of inputs and outputs, sticking to

the sequence and keeping track of it becomes strenuous. In such situations the

instantiation can be done by identifying the inputs and outputs on a one-to-one

basis [see Section 2.8]. Thus the instantiation of the aoi_gate2 in the test

bench of Figure 4.7 can be described alternately as

aoigate2 gg (.o(o), .a[1](aa[1]), .a[2](aa[2]), .a[3](aa[3]), .a[4](aa[4]));

Here one need not stick to the same order of assignment of the ports as in the

module definition. Thus the instantiation entered as

aoigate2 gg (.a[1](aa[1]), .o(o),.a[2](aa[2]), .a[4](aa[4]), a[3](aa[3]));

is equally valid.

4.5.2 Example 4.3: 4-to-16 Decoder

Decoder design using gates can be described in various ways. Here we define a 2-

to-4 decoder module and instantiate it repeatedly and judiciously to realize a 4-to-

16 decoder. The procedure is not necessarily the best or most elegant.

0 aa = 0000 , o = 1
3 aa = 0001 , o = 1
6 aa = 0010 , o = 1
9 aa = 0100 , o = 1
12 aa = 1000 , o = 1
15 aa = 1100 , o = 0
18 aa = 0110 , o = 1
21 aa = 0011 , o = 0

Figure 4.8 Results of running the aoi_st2 test bench of Figure 4.7.

ILLUSTRATIVE EXAMPLES 57

Figure 4.9(c) shows the formation of the 4-to-16 decoder in terms of two

numbers of 3-to-8 decoders. The 3-to-8 decoders have an “Enable” input each

(designated ‘en’ – one being of the active high and the other of the active low

type); these are connected to the most significant bit of the 4-bit input to form the

4-to-16 decoder. The 3-to-8 decoder can again be formed in terms of two 2-to-4

decoders in the same manner as shown in Figure 4.9(b). The 2-to-4 decoder block

used here is shown in Figure 4.9(a). The logic of building a complex circuit unit

in terms of repeated use of smaller and smaller circuit units followed here is used

in the design description as well. Figure 4.10 shows the design description of a 2-

to-4 decoder module and a test bench for the same. The decoder module (dec2_4)

accepts a 2-bit-wide vector input b and decodes it into a 4-bit-wide vector output

a. It has an additional “Enable” input designated “en”; the outputs are enabled

only if en = 1. The input en has been introduced to facilitate expansion of the

decoder capacity by repeated instantiation as explained above. The test bench for

the decoder is more illustrative than exhaustive; that is, it does not test the module

for all possible input values. Results of the simulation run are shown in Figure

4.11.

(a)

(c)(b)

2
-t

o
-4

d
ec

o
d

er

ab

En

a

a

b

b

q

En

2
-t

o
-4

d
ec

o
d

er
2

-t
o

-4
d

ec
o

d
er

3-to-8 decoder

p

3
-t

o
-8

d
ec

o
d

er
3

-t
o

-8
d

ec
o

d
er

4-to-16 decoder

Figure 4.9 Formation of 4-to-16 decoder circuit in terms of smaller decoders: (a) 2-to-4

decoder, (b) 3-to- 8 decoder in terms of two 2-to-4 decoders, and (c) 4-to-16 decoder in

terms of two 3-to-8 decoders.

58 GATE LEVEL MODELING – 1

module dec2_4 (a,b,en);
output [3:0] a;
input [1:0]b; input en;
wire [1:0]bb;
not(bb[1],b[1]),(bb[0],b[0]);
and(a[0],en, bb[1],bb[0]),(a[1],en, bb[1],b[0]),
(a[2],en, b[1],bb[0]),(a[3],en, b[1],b[0]);
endmodule
//test bench
module tst_dec2_4();
wire [3:0]a;
reg[1:0] b; reg en;
dec2_4 dec(a,b,en);
initial
begin
 {b,en} =3'b000;
#2{b,en} =3'b001;
#2{b,en} =3'b011;
#2{b,en} =3'b101;
#2{b,en} =3'b111;
end
initial
$monitor ($time , "output a = %b, input b = %b ",
a, b);
endmodule

Figure 4.10 Design description of a 2-to-4 decoder circuit and its test bench.

Figure 4.12 shows a 3-to-8 decoder module formed by repeated instantiation of the

2-to-4 decoder of Figure 4.10. The eight AND gate instantiations ensure that the

outputs are enabled only when enn — a separate “Enable” signal — goes active.

Following the same logic, the module for the 4-to-16 decoder is described in

Figure 4.13. A test bench to test the module through all the possible input states is

also included in the figure. Figure 4.14 shows the results of running the test-

bench.

 //output
 //# 0 output a = 0000, input b = 00
 //# 2 output a = 0001, input b = 00
 //# 4 output a = 0010, input b = 01
 //# 6 output a = 0100, input b = 10
 //# 8 output a = 1000, input b = 11

Figure 4.11 Results of running the test bench of Figure 4.10.

ILLUSTRATIVE EXAMPLES 59

module dec3_8(pp,q,enn);
output[7:0]pp;
input[2:0]q;
input enn;
wire qq;
wire[7:0]p;
not(qq,q[2]);
dec2_4 g1(.a(p[3:0]),.b(q[1:0]),.en(qq));
dec2_4 g2(.a(p[7:4]),.b(q[1:0]),.en(q[2]));
and g30(pp[0],p[0],enn);
and g31(pp[1],p[1],enn);
and g32(pp[2],p[2],enn);
and g33(pp[3],p[3],enn);
and g34(pp[4],p[4],enn);
and g35(pp[5],p[5],enn);
and g36(pp[6],p[6],enn);
and g37(pp[7],p[7],enn);
endmodule

Figure 4.12 A 3-to-8 decoder module formed by repeated instantiation of the 2-to-4

decoder module in Figure 4.10.

module dec4_16(m,n);
output[15:0]m;
input[3:0]n;
wire nn;
//wire en;
not(nn,n[3]);
dec3_8 g3(.pp(m[7:0]),.q(n[2:0]),.enn(nn));
dec3_8 g4(.pp(m[15:8]),.q(n[2:0]),.enn(n[3]));
endmodule

//test-bench
module dec4_16_stimulus;
wire[15:0]m;
//wire l,m,n;
reg[3:0]n;
dec4_16 gg(m,n);
initial

continued

60 GATE LEVEL MODELING – 1

continued

begin
 n=4'b0000;#2n=4'b0000;#2n=4'b0001;
#2n=4'b0010;#2n=4'b0011;#2n=4'b0100;
#2n=4'b0101;#2n=4'b0110;#2n=4'b0111;
#2n=4'b1000;#2n=4'b1001;#2n=4'b1010;
#2n=4'b1011;#2n=4'b1100;#2n=4'b1101;
#2n=4'b1110;#2n=4'b1111;#2n=4'b1111;
end
initial $monitor($time," m = %b ,n = %b , gg.g3.qq = %b
, gg.g4.g1.bb = %b " , m,n,gg.g3.qq,gg.g4.g1.bb);
//gg.g3.qq displays the enable line of dec3_8 called
g3-g1
//gg.g4.g1.bb displays the bb wire in dec2_4
initial #40 $stop ;
endmodule

Figure 4.13 A 4-to-16 decoder module formed by repeated instantiation of the 3-to-8

decoder module of Figure 4.12. A test bench for the same is also shown.

//output
//# 0 m = 0000000000000001 ,n = 0000 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 11
//# 4 m = 0000000000000010 ,n = 0001 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 10
//# 6 m = 0000000000000100 ,n = 0010 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 01
//# 8 m = 0000000000001000 ,n = 0011 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 00
//# 10 m = 0000000000010000 ,n = 0100 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 11
//# 12 m = 0000000000100000 ,n = 0101 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 10
//# 14 m = 0000000001000000 ,n = 0110 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 01
//# 16 m = 0000000010000000 ,n = 0111 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 00
//# 18 m = 0000000100000000 ,n = 1000 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 11
//# 20 m = 0000001000000000 ,n = 1001 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 10
//# 22 m = 0000010000000000 ,n = 1010 ,

continued

ILLUSTRATIVE EXAMPLES 61

continued

gg.g3.qq = 1 , gg.g4.g1.bb = 01
//# 24 m = 0000100000000000 ,n = 1011 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 00
//# 26 m = 0001000000000000 ,n = 1100 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 11
//# 28 m = 0010000000000000 ,n = 1101 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 10
//# 30 m = 0100000000000000 ,n = 1110 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 01
//# 32 m = 1000000000000000 ,n = 1111 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 00

Figure 4.14 Results of running the test bench of Figure 4.13 for the 4-to-16 decoder.

Observations:–

The nested tree of modules with the inputs and outputs in each case are shown

in Figure 4.15.

dec4_16_stimulus

dec4_16 gg

dec3_8 g3

dec2_4 g1 dec2_4 g2

q [1: 0]

b b

p[3:0]

qq

Ena

q[3]

p[7:4]

En a

dec3_8 g4

dec2_4 g1 dec2_4 g2

q [1: 0]

b b

p[3:0]

qq

Ena

q[3]

p[7:4]

En a

q q

n[3:0]

En En

nn n[4]

p

m[15:8]m[7:0]

p

m n

p q

Figure 4.15 Block diagram representation of the module instantiations and signal

assignments for the stimulus module of Figure 4.10.

62 GATE LEVEL MODELING – 1

Two signals within the two nested modules are monitored in

dec4_16_stimulus. Formation of their hierarchical addresses is also shown in

Figure 4.15. (Hierarchical addressing is addressed in detail in Chapter 11.)

The module dec3_8 is instantiated twice in the module dec4_16. Here the

port declarations are done by declaring the port names on a one-to one basis.

The order has not been maintained as in the defining module.

4.5.2.1 Decoder Synthesis
The synthesized circuit of the 2-to-4 decoder module of Figure 4.10 (dec2_4) is

shown in Figure 4.16. The AND gate cells available in the library are all of the

two-input type; hence six such cells (designated as ix5, ix7, ix11, ix13, ix15, and

ix19) are utilized to realize the four numbers of three-input AND gates instantiated

in the design module. The NOT gates are realized through two NOT gate cells in

the library (designated as ix1 and ix3). The wider lines in the figure signify bus-

type interconnections. The synthesized circuit of the 3-to-8 decoder module of

Figure 4.12 (dec3_8) is shown in Figure 4.17. The two instantiations of the

dec2_4 module (g1 and g2) are shown as black boxes. Similarly, Figure 4.18

shows the synthesized circuit of the 4-to-16 decoder module of Figure 4.13

(dec4_16). The two instantiations of the dec3_8 module (g3 and g4) appear as

black boxes inside. Figure 4.19 shows the complete hierarchy of instantiations in

the synthesized circuit. In the figure boxes g3 and g4 represent instantiations of

the 3-to-8 decoders used in the module. Each of these has two numbers of the 2-

to-4 decoders – designated as g1 and g2; these are shown enclosed inside boxes.

Figure 4. 16 The synthesized circuit of the 2-to-4 decoder of Figure 4.10.

ILLUSTRATIVE EXAMPLES 63

Figure 4.17 The synthesized circuit of the 3-to- 8 decoder of Figure 4.12.

Figure 4.18 The synthesized circuit of the 4-to-16 decoder of Figure 4.13.

64 GATE LEVEL MODELING – 1

Figure 4.19 Four-to-sixteen decoder – hierarchy of instantiations.

4.6 TRI-STATE GATES

Four types of tri-state buffers are available in Verilog as primitives. Their outputs

can be turned ON or OFF by a control signal. The direct buffer is instantiated as

Bufif1 nn (out, in, control);

The symbol of the buffer is shown in Figure 4.20. We have

 out as the single output variable

 in as the single input variable and

 control as the single control signal variable.

When

control = 1,

out = in.

TRI-STATE GATES 65

outin

control

Figure 4.20 A tri-state buffer.

When

control = 0,

out is cut off from the input and tri-stated. The output, input and control signals

should appear in the instantiation in the same order as above. Details of bufif1 as

well as the other tri-state type primitives are shown in Table 4.4. In all the cases

shown in Table 4.4, out is the output, in is the input, and control, the control

variable.

Table 4.4 Instantiation and functional details of tri-state buffer primitives

Typical instantiation Functional representation Functional description

bufif1 (out, in,

control);

outin

control

Out = in if control = 1; else

out = z

bufif0 (out, in,

control);

outin

control

Out = in if control = 0; else

out = z

notif1 (out, in,

control);

outin

control

Out = complement of in
 if control = 1; else out = z

notif0 (out, in,

control);

outin

control

Out = complement of in
 if control = 0; else out = z

66 GATE LEVEL MODELING – 1

The truth tables of the tri-state buffers are given in Appendix B. The following

observations are common to all the tri-state buffer primitives:

If the control signal has a value that corresponds to the buffer being on, two

possibilities exist:

The output has the same value as the input if the input is 0 or 1.

The output is at x otherwise (i.e., if the input is x or z).

If the control signal has a value that corresponds to the control signal being

off, the output is at z state irrespective of the value of the input.

If the control signal is at x or z, three possibilities arise:

If the input is at x or z, the output is at x.

If the input is at 0 state, the output is L for bufif1 and bufif0. It is at

H for notif1 and notif0.

If the input is at 1 state, the output is H for bufif1 and bufif0. It is at

L for notif1 and notif0.

Note that H corresponds to 1 or z state while L corresponds to 0 or z state.

4.7 ARRAY OF INSTANCES OF PRIMITIVES

The primitives available in Verilog can also be instantiated as arrays. A judicious

use of such array instantiations often leads to compact design descriptions. A

typical array instantiation has the form

and gate [7 : 4] (a, b, c);

where a, b, and c are to be 4 bit vectors. The above instantiation is equivalent to

combining the following 4 instantiations:

and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1],

c[1]), gate [4] (a[0], b[0], c[0]);

The assignment of different bits of input vectors to respective gates is implicit in

the basic declaration itself. A more general instantiation of array type has the form

and gate[mm : nn](a, b, c);

where mm and nn can be expressions involving previously defined parameters,

integers and algebra with them. The range for the gate is 1+ (mm-nn); mm and nn

do not have restrictions of sign; either can be larger than the other.

ARRAY OF INSTANCES OF PRIMITIVES 67

4.7.1 Example 4.4 A Byte Comparator

A circuit to compare two variables each of one byte is given in Figure 4.21. The

circuit outputs a flag d; d is 1 if the two bytes are equal; else it is 0. The output is

activated only if the enable signal en = 1. If en = 0, the circuit output is tri-stated.

The module description is given in Figure 4.22 along with a test-bench. The

simulated output is in Figure 4.23.

Observations:

In all array-type instantiations, the array sizes are to be matched.

The order of assignments to outputs, inputs, etc., in the individual gates will

be decided by the order of the bits. Thus the array instantiation

or gg[3:1] (a[3:1], b[4:2], c);

is equivalent to the combination of instantiations

or gg[3] (a[3], b[4], c[2]), gg[2] (a[2], b[3], c[1]), gg[1] (a[1], b[2], c[0]);

If the vector sizes in the port list do not match the array size specified,

assignments will be done starting from the right; that is, the rightmost

instantiation will be assigned the rightmost inputs and outputs and the

following instantiations will be made assignments in the order specified.

However, it is desirable to avoid such ill-matched instantiations.

a[7]

b[6]

a[6]

a[0]

b[7]

b[0]

g1[7]

g1[6]

g1[0]

ddd

en

Figure 4.21 A byte comparator.

68 GATE LEVEL MODELING – 1

In the general case the array size is specified in terms of two constant

expressions. These can involve constants, previously defined parameters and

algebraic operators: Such an instantiation can have a form as

and gate [offset*2+size-1: offset*2] (a, b, c);

where ‘offset’ and ‘size’ are parameters whose values should have been

assigned earlier (operators are discussed in detail in Chapter 6).

module comp(d,a,b,en);
input en;
input[7:0]a,b;
output d;
wire [7:0]c;
wire dd;
xor g1[7:0](c,b,a);
or(dd,c);
notif1(d,dd,en);
endmodule

module comp_tb;
reg[7:0]a,b;
reg en;
comp gg(d,a,b,en);
initial

begin
a = 8'h00;
b = 8'h00;
en = 1'b0;
end

always
#2 en = 1'b1;
always
begin
 #2 a = a+1'b1;
 #2 b = b+2'd2;
end
initial $monitor($time," en = %b , a = %b ,b = %b ,d =
%b ",en,a,b,d);
initial #30 $stop;
endmodule

Figure 4.22 Module of an 8-bit comparator and its test bench.

ADDITIONAL EXAMPLES 69

 # 0 en = 0, a = 00000000, b = 00000000, d = z
 # 2 en = 1, a = 00000001, b = 00000000, d = 0
 # 4 en = 1, a = 00000001, b = 00000010, d = 0
 # 6 en = 1, a = 00000010, b = 00000010, d = 1
 # 8 en = 1, a = 00000010, b = 00000100, d = 1
 #10 en = 1, a = 00000011, b = 00000100, d = 0
 #12 en = 1, a = 00000011, b = 00000110, d = 0
 #14 en = 1, a = 00000100, b = 00000110, d = 1
 #16 en = 1, a = 00000100, b = 00001000, d = 1
 #18 en = 1, a = 00000101, b = 00001000, d = 0
 #20 en = 1, a = 00000101, b = 00001010, d = 0
 #22 en = 1, a = 00000110, b = 00001010, d = 1
 #24 en = 1, a = 00000110, b = 00001100, d = 1
 #26 en = 1, a = 00000111, b = 00001100, d = 0
 #28 en = 1, a = 00000111, b = 00001110, d = 0

Figure 4.23 Results of the simulation run of the test bench in Figure 4.22.

4.8 ADDITIONAL EXAMPLES

A set of representative examples is discussed here with the following aims:–

Bring out the flexibility associated with the use of primitives and their

instantiations.

Illustrate the use of different features of Verilog discussed in the chapter.

Focus attention on the fact that any combinational circuit can be designed at

the gate level.

Details of the examples considered are summarized in Table 4.5

Table 4.5 Summary of the examples considered in Section 4.8

Figure numbers
Circuit

function Module &

Test-bench

Simulation

results

Synthesized

circuit

Remarks

Half-adder 4.24 4.25 4.26

Full-adder 4.27 4.28
4.29 &

4.30

Instantiates the half-adder twice as

ha1 and ha2 in Figure 4.27

2-to-1 Mux 4.37 4.38 4.39 Realized with tri-state buffers

4.31 4.32 4.33 Simple & direct

4.34 4.35 4.36
The above type with an additional

tri-state output facility
4-to-1 Mux

4.40 4.41 4.42 Realized with tri-state buffers

70 GATE LEVEL MODELING – 1

module ha(s,ca,a,b);
input a,b;
output s,ca;
xor(s,a,b);
and(ca,a,b);
endmodule

//test-bench
module tstha();
reg a,b;
wire s,ca;
ha hh(s,ca,a,b);
initial
begin
a=0;b=0;
end
always
begin
#2 a=1;b=0;
#2 a=0;b=1;
#2 a=1;b=1;
#2 a=0;b=0;
end
initial $monitor($time , " a = %b , b = %b ,out carry
= %b , outsum = %b " ,a,b,ca,s);
initial #24 $stop;
endmodule

Figure 4.24 Design module and a test bench for a half-adder.

 output
 # 0 a = 0 , b = 0 ,out carry = 0 , outsum = 0
 # 2 a = 1 , b = 0 ,out carry = 0 , outsum = 1
 # 4 a = 0 , b = 1 ,out carry = 0 , outsum = 1
 # 6 a = 1 , b = 1 ,out carry = 1 , outsum = 0
 # 8 a = 0 , b = 0 ,out carry = 0 , outsum = 0
 # 10 a = 1 , b = 0 ,out carry = 0 , outsum = 1
 # 12 a = 0 , b = 1 ,out carry = 0 , outsum = 1
 # 14 a = 1 , b = 1 ,out carry = 1 , outsum = 0
 # 16 a = 0 , b = 0 ,out carry = 0 , outsum = 0
 # 18 a = 1 , b = 0 ,out carry = 0 , outsum = 1
 # 20 a = 0 , b = 1 ,out carry = 0 , outsum = 1
 # 22 a = 1 , b = 1 ,out carry = 1 , outsum = 0

Figure 4.25 Results of running the test bench of the half-adder module in Figure 4.24.

ADDITIONAL EXAMPLES 71

Figure 4.26 Synthesized output of the half-adder module of Figure 4.24.

module fa(sum,cout,a,b,cin);
input a,b,cin;
output sum,cout;
wire s,c1,c2;
ha ha1(s,c1,a,b), ha2(sum,c2,s,cin);
or(cout,c2,c1);
endmodule

//test-bench
module tst_fa();
reg a,b,cin;
fa ff(sum,cout,a,b,cin);
initial
begin
a =0;b=0;cin=0;
end
always

begin
#2 a=1;b=1;cin=0;#2 a=1;b=0;cin=1;
#2 a=1;b=1;cin=1;#2 a=1;b=0;cin=0;
#2 a=0;b=0;cin=0;#2 a=0;b=1;cin=0;
#2 a=0;b=0;cin=1;#2 a=0;b=1;cin=1;
#2 a=1;b=0;cin=0;#2 a=1;b=1;cin=0;
#2 a=0;b=1;cin=0;#2 a=1;b=1;cin=1;
end

initial $monitor($time ," a = %b, b = %b, cin = %b,
outsum = %b, outcar = %b ", a,b,cin,sum,cout);
initial #30 $stop ;
endmodule

Figure 4.27 Design module and a test bench for a full-adder.

72 GATE LEVEL MODELING – 1

 //output
 #0 a = 0, b = 0, cin = 0, outsum = 0, outcar = 0
 #2 a = 1, b = 1, cin = 0, outsum = 0, outcar = 1
 #4 a = 1, b = 0, cin = 1, outsum = 0, outcar = 1
 #6 a = 1, b = 1, cin = 1, outsum = 1, outcar = 1
 #8 a = 1, b = 0, cin = 0, outsum = 1, outcar = 0
 #10 a = 0, b = 0, cin = 0, outsum = 0, outcar = 0
 #12 a = 0, b = 1, cin = 0, outsum = 1, outcar = 0
 #14 a = 0, b = 0, cin = 1, outsum = 1, outcar = 0
 #16 a = 0, b = 1, cin = 1, outsum = 0, outcar = 1
 #18 a = 1, b = 0, cin = 0, outsum = 1, outcar = 0
 #20 a = 1, b = 1, cin = 0, outsum = 0, outcar = 1
 #22 a = 0, b = 1, cin = 0, outsum = 1, outcar = 0
 #24 a = 1, b = 1, cin = 1, outsum = 1, outcar = 1
 #26 a = 1, b = 1, cin = 0, outsum = 0, outcar = 1
 #28 a = 1, b = 0, cin = 1, outsum = 0, outcar = 1

Figure 4.28 Results of running the test bench of the full-adder module in Figure 4.27.

Figure 4.29 Synthesized output of the full-adder module of Figure 4.27.

Figure 4.30 Synthesized circuit hierarchy of the full-adder module in Figure 4.27.

ADDITIONAL EXAMPLES 73

module mux4_1(y,i,s);
input [3:0] i;
input [1:0] s;
output y;
wire [1:0] ss;
wire [3:0]yy;
not (ss[0],s[0]),(ss[1],s[1]);
and (yy[0],i[0],ss[0],ss[1]);
and (yy[1],i[1],s[0],ss[1]);
and (yy[2],i[2],ss[0],s[1]);
and (yy[3],i[3],s[0],s[1]);
or (y,yy[3],yy[2],yy[1],yy[0]);
endmodule

//test-bench
module tst_mux4_1();
reg [3:0]i;
reg [1:0] s;
mux4_1 mm(y,i,s);
initial

begin
#2{i,s} = 6'b 0000_00;
#2{i,s} = 6'b 0001_00;
#2{i,s} = 6'b 0010_01;
#2{i,s} = 6'b 0100_10;
#2{i,s} = 6'b 1000_11;
#2{i,s} = 6'b 0001_00;
end

initial
$monitor($time," input s = %b,y = %b" ,s,y);
endmodule

Figure 4.31 Design module and a test bench for a 4-to-1 mux module.

 //output
 //# 0 input s = xx ,y = x
 //# 2 input s = 00 ,y = 0
 //# 4 input s = 00 ,y = 1
 //# 6 input s = 01 ,y = 1
 //# 8 input s = 10 ,y = 1
 //# 10 input s = 11 ,y = 1
 //# 12 input s = 00 ,y = 1

Figure 4.32 Results of running the test bench of the 4-to- mux module in Figure 4.31.

74 GATE LEVEL MODELING – 1

Figure 4.33 Synthesized output of the 4-to-1 Mux module of Figure 4.31.

module trimux4_1(o,e,i,s);
input e;
input [1:0]s;
input [3:0]i;
output o;
tri o;
wire y,y1,y2,y3,y4;
wire [1:0]ss;
not(ss[0],s[0]),(ss[1],s[1]);
and g1(y1,ss[0],ss[1],i[0]);
and g2(y2,ss[1],s[0],i[1]);
and g3(y3,ss[0],s[1],i[2]);
and g4(y4,s[1],s[0],i[3]);
or(y,y3,y2,y1,y2);
bufif1 buf2(o,y,e);
endmodule

//TESTBENCH
module tst_trimux4_1();
reg [1:0]s;
reg [3:0]i;
reg e;
wire o;
trimux4_1 tmx4_1(o,e,i,s);
initial
begin
e =0;i =2'b00;
end
always

begin
#6 e=0;s=2'b00;i=4'b0001;
#6 e=1;s=2'b01;i=4'b0010;

continued

ADDITIONAL EXAMPLES 75

continued

#6 e=1;s=2'b10;i=4'b0100;
#6 e=1;s=2'b10;i=4'b1000;
end

initial $monitor($time ," input e = %b , s= %b , i = %b
, output o = %b " ,e,s,i,o);
initial #48 $stop;
endmodule

Figure 4.34 Design module and a test bench for a 4-to-1 mux module with tri-state output.

 output
 # 0 input e = 0 , s= xx , i = 0000 , output o = z
 # 6 input e = 0 , s= 00 , i = 0001 , output o = z
 #12 input e = 1 , s= 01 , i = 0010 , output o = 1
 #18 input e = 1 , s= 10 , i = 0100 , output o = 1
 #24 input e = 1 , s= 10 , i = 1000 , output o = 0
 #30 input e = 0 , s= 00 , i = 0001 , output o = z
 #36 input e = 1 , s= 01 , i = 0010 , output o = 1
 #42 input e = 1 , s= 10 , i = 0100 , output o = 1

Figure 4.35 Results of running the test bench of the 4-to-1 mux module in Figure 4.34.

Figure 4.36 Synthesized output of the 4-to-1 mux module of Figure 4.34

module ttrimux2_1(out,e,i,s);
input[1:0]i;
input e;
input s;
output out;
wire o;
bufif0 g1(o,i[0],s);
bufif1 g2(o,i[1],s);

continued

76 GATE LEVEL MODELING – 1

continued

bufif1 g3(out,o,e);
endmodule

//testbench
module ttst_ttrimux2_1();
reg e;
reg [1:0]i;
reg s;
ttrimux2_1 mm(out,e,i,s);
initial
begin
e =0; i = 2'b 00;end
always

begin
#4 e =0;{i,s} = 3'b 01_0;
#4 e =1;{i,s} = 3'b 01_0;
#4 e =1;{i,s} = 3'b 10_1;
#4 e =1;{i,s} = 3'b 00_1;
#4 e =1;{i,s} = 3'b 10_1;
#4 e =1;{i,s} = 3'b 01_0;
#4 e =1;{i,s} = 3'b 00_0;
#4 e =1;{i,s} = 3'b 11_0;
end

initial $monitor($time ," enable e = %b ,
s= %b , input i = %b ,output out = %b ",e ,s,i,out);
initial #48 $stop;
endmodule

Figure 4.37 Design module and a test bench for a 2-to-1 mux module formed with tri-state

buffers.

output
0 enable e = 0, s= x, input i = 00,output out = z
4 enable e = 0, s= 0, input i = 01,output out = z
8 enable e = 1, s= 0, input i = 01,output out = 1
#12 enable e = 1, s= 1, input i = 10,output out = 1
#16 enable e = 1, s= 1, input i = 00,output out = 0
#20 enable e = 1, s= 1, input i = 10,output out = 1
#24 enable e = 1, s= 0, input i = 01,output out = 1
#28 enable e = 1, s= 0, input i = 00,output out = 0
#32 enable e = 1, s= 0, input i = 11,output out = 1
#36 enable e = 0, s= 0, input i = 01,output out = z
#40 enable e = 1, s= 0, input i = 01,output out = 1
#44 enable e = 1, s= 1, input i = 10,output out = 1

Figure 4.38 Results of running the test bench of the 2-to-1 mux module in Figure 4.37.

ADDITIONAL EXAMPLES 77

Figure 4.39 Synthesized output of the 2-to-1 mux module of Figure 4.37.

module ttrimux4_1(out,e,i,s);
input[3:0]i;
input e;
input[1:0]s;
output out;
tri o;
tri [1:0]o1;
bufif0 g1(o1[0],i[0],s[0]);
bufif1 g2(o1[0],i[1],s[0]);
bufif0 g3(o1[1],i[2],s[0]);
bufif1 g4(o1[1],i[3],s[0]);
bufif0 g5(o,o1[0],s[1]);
bufif1 g6(o,o1[1],s[1]);
bufif1 g7(out,o,e);
endmodule

//testbench
module ttst_ttrimux4_1();
reg e;
reg [3:0]i;
reg [1:0]s;
ttrimux4_1 mm(out,e,i,s);
initial

continued

78 GATE LEVEL MODELING – 1

continued

begin
 e = 0;
 i = 4'b 0000;
end
always

begin
#4 e =0;{i,s} = 6'b 0001_00;
#4 e =1;{i,s} = 6'b 0001_00;
#4 e =1;{i,s} = 6'b 0010_01;
#4 e =1;{i,s} = 6'b 0000_01;
#4 e =1;{i,s} = 6'b 0100_10;
#4 e =1;{i,s} = 6'b 0101_10;
#4 e =1;{i,s} = 6'b 1000_11;
#4 e =1;{i,s} = 6'b 0000_11;
end

initial $monitor($time ," enable e = %b , s= %b , input
i = %b ,output out = %b ",e ,s,i,out);
initial #48 $stop;
endmodule

Figure 4.40 Design module and a test bench for a 4-to-1 mux module formed with tri-state

buffers.

output

0 enable e =0,s=xx, input i =0000, output out = z
4 enable e =0,s=00, input i =0001, output out = z
8 enable e =1, s=00,input i =0001 ,output out = 1
#12 enable e =1, s=01,input i =0010 ,output out = 1
#16 enable e =1, s=01,input i =0000 ,output out = 0

#20 enable e =1, s=10,input i =0100 ,output out = 0
#24 enable e =1, s=10,input i =0101 ,output out = 1
#28 enable e =1, s=11,input i =1000 ,output out = 1
#32 enable e =1, s=11,input i =0000 ,output out = 0

#36 enable e =0, s=00,input i =0001 ,output out = z
#40 enable e =1, s=00,input i =0001 ,output out = 1

#44 enable e =1, s=01,input i =0010 ,output out = 1

Figure 4.41 Results of running the test bench of the 4-to-1 mux module in Figure 4.40.

EXERCISES 79

Figure 4.42 Synthesized output of the 4-to-1 mux module of Figure 4.40.

4.9 EXERCISES

1. Modify the test bench of Figure 4.1 and test the functionality of each of the

basic gate primitives namely, OR, NOR, NAND, EXOR, EXNOR, NOT,

and BUF.

For all the Exercises below prepare test benches and run the same.

2. Draw the half-adder circuit in terms of EX-OR gates and AND gate. Prepare

a half-adder module in terms of EX-OR and AND gate primitive.

3. Prepare a full-adder module using half-adder module and OR gate Primitive.

4. Prepare a 4-bit adder module in terms of full-adder and half-adder modules.

Treat the two 4-bit numbers as vectors for all input combination.

5. Prepare a module to generate a look-ahead-carry bit for the above problem.

6. Prepare modules for addition of 16 bit words and 32 bit words.

7. Prepare a module for conversion of an 8-bit number into its respective

BCDs.

8. Prepare a module to add 2 BCDs

9. Prepare a module for the conversion of a pair of BCDs into the

corresponding byte.

10. Prepare a module to generate Excess-3 code type of 4-bit output from a

BCD.

11. Prepare a module to generate a BCD from an Excess-3 code digit.

12. Prepare an adder module to add Excess-3 coded digits.

80 GATE LEVEL MODELING – 1

13. Prepare a module to convert a set of 8 bits in gray code into an equivalent

binary number.

14. Prepare an adder module to convert an 8-bit binary number into gray code.

15. Prepare a half-subtractor module and use it to form a 4-bit subtractor

module.

16. Prepare a module to generate the 1's complement of a 4-bit number.

17. Prepare a module to generate 2's complement of a 4-bit number.

18. A set of 5-bit numbers is available as vectors – b [4:0]; b[4] is the sign bit. b

[3:0] represent the number in 1's complement form. Prepare

a) a module to add two such numbers

b) a module to subtract one such number from the other

19. Repeat the above problem when the numbers are in 2's complement form.

20. Prepare a module to multiplex two input bits into one output bit.

21. Prepare a module to demultiplex one bit into 2 bits.

22. Use the 2 to 4 decoder module and prepare

a) a 4 to 1 multiplexer module

b) a 1 to 4 demultiplexer module

23. A is an 8-bit vector. Prepare a module to form another 8-bit vector B with

its bits forming the mirror image of A.

24. A 16-bit barcode driver output is available. Generate the corresponding 4

bit output from these (Priority Encoder)

25. Prepare a module to generate 16-bit barcode driver outputs from a 4-bit

binary number.

26. Prepare a module to generate 7-segment driver outputs from a 4-bit number.

27. Two 4-bit binary numbers a and b are available. Prepare a comparator

module. The comparator module will generate 2 output bits. One bit is 0 if a

> b and 1 if a < b. The second bit is 1 if a = b and 0 otherwise.

28. Prepare a 2-bit ALU module and its test bench. Let the module inputs – A

and B – be 2-bit wide. D is the 2-bit output. Ci is the carry input and Co is

the carry output. F is the function select vector. If F = 1, D = A + B; if F =

2, D = A + B + Ci; if F = 3, D =A - B; if F = 4, D = A – B - Ci; if F = 5, D

= A OR B; if F = 6, D = A AND B; if F = 7, D = A XOR B.

29. Prepare a module for addition of bytes, instantiating the nibble adder of

Exercise 4.4 repeatedly. Use the look-ahead-carry output of Exercise 4.5 to

generate the carry bit from bit position 3 to bit position 4.

30. Use arrays of instances and redo the 4-to-16 decoder module of Figure 4.13.

81

5

GATE LEVEL MODELING – 2

5.1 INTRODUCTION

Design of combinational circuits was discussed in detail in the last chapter. Flip-

flops too can be designed in a similar manner - that is, in terms of gate primitives.

The same can be extended to registers, register files, memory, and so on. These

can be combined with combinational circuits to form designs at the MSI level.

Design of different types of flip-flops is discussed here through a series of

examples. Subsequently, constructs available to account for different types of

propagation delays are discussed. Constructs to represent source and load

impedances and their use along with propagation delays are dealt with

subsequently [IEEE].

5.2 DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES

The basic RS latch can be designed using gate primitives. Two instantiations of

NAND or NOR gates suffice here. More involved flip-flops, registers, etc., can be

built around these. Some of the level triggered versions of such flip-flops are

taken up for design. Subsequently, the edge-triggered flip-flop of the 7474 type is

developed in a skeletal form. More generalized versions are left as exercises.

Example 5.1 A Simple Latch

Figure 5.1 shows the design description of a simple latch formed with two NAND

gates. A test bench for the same is shown in Figure 5.2 along with the results of

the simulation run for 20 time steps. The test-bench has a block within a begin-

end construct which reassigns values to rb and sb at two successive time step

intervals. The whole sequence described within the block lasts for 10 ns.

Defining the block within the always construct repeats the above assignment

sequence cyclically until the simulation stops. The latch has been synthesized, and

the synthesized circuit is shown in Figure 5.3.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

82 GATE LEVEL MODELING – 2

module sbrbff(sb,rb,q,qb);

input sb,rb;
output q,qb;

nand(q,sb,qb);

nand(qb,rb,q);

endmodule

Figure 5.1 A module to instantiate the AND gate primitive and test it.

module tstsbrbff; //test-bench
reg sb,rb;
wire q,qb;
sbrbff ff(sb,rb,q,qb);
initial
begin

sb =1'b1;
rb =1'b0;

end
always
begin

#2 sb =1'b1;rb =1'b1;
#2 sb =1'b0;rb =1'b1;
#2 sb =1'b1;rb =1'b1;
#2 sb =1'b1;rb =1'b0;
#2 sb =1'b1;rb =1'b1;

end
initial $monitor($time, " sb = %b, rb = %b,
q = %b, qb = %b",sb,rb,q,qb);
initial #20 $stop;
endmodule

Simulation results

0 sb = 1 , rb = 0 , q = 0 , qb = 1
2 sb = 1 , rb = 1 , q = 0 , qb = 1
4 sb = 0 , rb = 1 , q = 1 , qb = 0
6 sb = 1 , rb = 1 , q = 1 , qb = 0
8 sb = 1 , rb = 0 , q = 0 , qb = 1
10 sb = 1 , rb = 1 , q = 0 , qb = 1
14 sb = 0 , rb = 1 , q = 1 , qb = 0
16 sb = 1 , rb = 1 , q = 1 , qb = 0
18 sb = 1 , rb = 0 , q = 0 , qb = 1

Figure 5.2 A test bench for the flip-flop of Figure 5.1 and results of running the test bench.

DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES 83

Figure 5.3 Synthesized circuit of the flip-flop module of Figure 5.1.

Example 5.2 An RS Flip-Flop

The design module of an RS flip-flop along with a test bench for the same is

shown in Figure 5.4. The module is a slight modification of the flip-flop of

Figure 5.1. The simulation results are shown in Figure 5.5. The synthesized

circuit is shown in Figure 5.6. One can easily relate the difference between this

circuit and that of Figure 5.3 to the corresponding difference between the

respective design modules.

module srff(s,r,q,qb);
input s,r;
output q,qb;
wire ss,rr;
not(ss,s),(rr,r);
nand(q,ss,qb);
nand(qb,rr,q);
endmodule

module tstsrff; //test-bench
reg s,r;
wire q,qb;
srff ff(s,r,q,qb);
initial

continued

84 GATE LEVEL MODELING – 2

continued

begin
s =1'b1;
r =1'b0;

end
always
begin

#2 s =1'b0;r =1'b0;
#2 s =1'b0;r =1'b1;
#2 s =1'b0;r =1'b0;
#2 s =1'b1;r =1'b0;
#2 s =1'b0;r =1'b0;

end
initial $monitor($time, " s = %b, r = %b, q = %b, qb =
%b ",s,r,q,qb);
initial #20 $stop;
endmodule

Figure 5.4 Module of an RS flip-flop with NAND gates and a test bench for the same.

0 s = 1 , r = 0 , q = 1 , qb = 0
2 s = 0 , r = 0 , q = 1 , qb = 0
4 s = 0 , r = 1 , q = 0 , qb = 1
6 s = 0 , r = 0 , q = 0 , qb = 1
8 s = 1 , r = 0 , q = 1 , qb = 0
10 s = 0 , r = 0 , q = 1 , qb = 0
14 s = 0 , r = 1 , q = 0 , qb = 1
16 s = 0 , r = 0 , q = 0 , qb = 1
18 s = 1 , r = 0 , q = 1 , qb = 0

Figure 5.5 Results of running the test bench for the flip-flop of Figure 5.4.

Figure 5.6 Synthesized circuit of the flip-flop module of Figure 5.4.

DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES 85

Example 5.3 A Clocked RS Flip-Flop

The module in Figure 5.7 is for a clocked RS flip-flop. It is the RS flip-flop of

Figure 5.4 with the clock signal gating the R and S inputs. A test bench for the

flip-flop is also shown in the figure. The clock waveform in the test bench is a

square wave with a period of 4 ns [see Example 7.5 for details]. The simulation

results are shown in Figure 5.8. Figure 5.9 shows the synthesized circuit of the

flip-flop.

module srffcplev(cp,s,r,q,qb);
input cp,s,r;
output q,qb;
wire ss,rr;
nand(ss,s,cp),(rr,r,cp),(q,ss,qb),(qb,rr,q);
endmodule

module srffcplev_tst;// test-bench
reg cp,s,r;
wire q,qb;
srffcplev ff(cp,s,r,q,qb);
initial
begin

cp=1'b0;
s =1'b1;
r =1'b0;

end
always #2cp=~cp;
always
begin

#4 s =1'b0;r =1'b0;
#4 s =1'b0;r =1'b1;
#4 s =1'b0;r =1'b0;
#4 s =1'b1;r =1'b0;
#4 s =1'b0;r =1'b0;

end
initial $monitor($time,"cp = %b ,s = %b , r = %b , q =
%b , qb = %b " ,cp,s,r,q,qb);
initial #20 $stop;
endmodule

Figure 5.7 Module of a clocked RS flip-flop with NAND gates and a test bench for the

same.

86 GATE LEVEL MODELING – 2

0 cp = 0, s = 1, r = 0, q = x, qb = x
2 cp = 1, s = 1, r = 0, q = 1, qb = 0
4 cp = 0, s = 0, r = 0, q = 1, qb = 0
6 cp = 1, s = 0, r = 0, q = 1, qb = 0
8 cp = 0, s = 0, r = 1, q = 1, qb = 0
10 cp = 1, s = 0, r = 1, q = 0, qb = 1
12 cp = 0, s = 0, r = 0, q = 0, qb = 1
14 cp = 1, s = 0, r = 0, q = 0, qb = 1
16 cp = 0, s = 1, r = 0, q = 0, qb = 1
18 cp = 1, s = 1, r = 0, q = 1, qb = 0

Figure 5.8 Results of running the test bench for the flip-flop of Figure 5.7.

Figure 5.9 Synthesized circuit of the flip-flop module of Figure 5.7.

Example 5.4 A D-Latch

The design description of a D latch is given in Figure 5.10. It has one instantiation

of the basic flip-flop of Figure 5.1. A test bench for the latch is also included in

the figure. The simulation results are shown in Figure .5.11. Two versions of the

synthesized circuit are shown in Figure 5.12 and Figure 5.13, respectively. The

basic latch [sbrbff] — which was instantiated in the module of Figure 5.10 — is

shown as a black box in Figure 5.12. The internals of the latch are shown in

Figure 5.13, which brings out the hierarchy clearly.

module dlatch(en,d,q,qb);
input d,en;
output q,qb;
wire dd;
wire s,r;
not n1(dd,d);
nand (sb,d,en);
nand g2(rb,dd,en);

continued

DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES 87

continued

sbrbff ff(sb,rb,q,qb);//Instantiation of the sbrbff
endmodule

module tstdlatch; //test-bench
reg d,en;
wire q,qb;
dlatch ff(en,d,q,qb);
initial
begin

d = 1'b0;
en = 1'b0;

end
always #4 en =~en;
always #8 d=~d;
initial $monitor($time," en = %b , d = %b , q = %b , qb
= %b " , en,d,q,qb);
initial #40 $stop;
endmodule

Figure 5.10 Module of a D latch and a test bench for the same.

0 en = 0, d = 0, q = x, qb = x
4 en = 1, d = 0, q = 0, qb = 1
8 en = 0, d = 1, q = 0, qb = 1
12 en = 1, d = 1, q = 1, qb = 0
16 en = 0, d = 0, q = 1, qb = 0
20 en = 1, d = 0, q = 0, qb = 1
24 en = 0, d = 1, q = 0, qb = 1
28 en = 1, d = 1, q = 1, qb = 0
32 en = 0, d = 0, q = 1, qb = 0

36 en = 1, d = 0, q = 0, qb = 1

Figure 5.11 Results of running the test bench for the D latch of Figure 5.10.

Figure 5.12 Synthesized circuit of the D latch module of Figure 5.10.

88 GATE LEVEL MODELING – 2

Figure 5.13 Synthesized circuit of the D latch module of Figure 5.10 showing hierarchy.

Example 5.5 An Edge-Triggered Flip-Flop

Figure 5.14 shows the circuit of an edge-triggered flip-flop. It is a simplified

version of the 7474 IC. The circuit is a combination of three latches – designated

as FF1, FF2, and FF3 in the figure. FF3 is similar to the latch considered in

Example 5.1. FF1 and FF2 are minor modifications of FF3. The design modules

for FF1 and FF2 are given in Figure 5.15. All three latches are instantiated to form

the edge-triggered flip-flop. A test bench for the flip-flop is also included in the

figure. With a square waveform for the clock – cp – the waveform for the d input

is chosen to bring out the edge-triggered nature of operation of the flip-flop. The

output obtained by running the test bench is shown in Figure 5.16; the respective

waveforms are shown in Figure 5.17. One can see that the output changes only at

the positive edges of the clock, and it assumes the value of the input at that instant

of time.

FF3

FF1

FF2

cp

d

q

qb

Figure 5.14 Circuit of a skeletal edge-triggered flip-flop.

DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES 89

module dffgatnew1(cp,d,q,qb);
input d,cp;
output q,qb;
wire sb,rb;
wire s,r;
sbrbffdff ff1(rb,cp,s);
sbrbff1 ff2(s,d,cp,r,rb);
sbrbff ff3(s,r,q,qb);
endmodule

module tst_dffgatnew1; //test-bench
reg d,cp;
wire q,qb;
dffgatnew1 ff(cp,d,q,qb);
initial
begin

d =1'b0;cp =1'b0;
#2 cp =1'b1;#2 cp =1'b0;#2 cp =1'b1;#2 cp =1'b0;
#2 cp =1'b1;#2 cp =1'b0;#2 cp =1'b1;#2 cp =1'b0;

end
initial
begin

#3 d=1'b1;#2d=1'b1;#2d=1'b0;#3d=1'b0;#3d=1'b1;
end
initial $monitor($time," cp = %b , d = %b , q = %b , qb
= %b " , cp,d,q,qb);
initial #40 $stop;
endmodule

module sbrbffdff(sb,rb,qb);
input sb,rb;
output qb;
wire q;
nand(q,sb,qb);
nand(qb,rb,q);
endmodule

module sbrbff1(sb,rb,cp,q,qb); //test-bench
input sb,rb,cp;
output q,qb;
nand(q,sb,cp,qb);
nand(qb,rb,q);
endmodule

Figure 5.15 Module of a positive edge-triggered flip-flop and its test bench.

90 GATE LEVEL MODELING – 2

0 cp = 0 , d = 0 , q = x , qb = x
2 cp = 1 , d = 0 , q = 0 , qb = 1
3 cp = 1 , d = 1 , q = 0 , qb = 1
4 cp = 0 , d = 1 , q = 0 , qb = 1
6 cp = 1 , d = 1 , q = 1 , qb = 0
7 cp = 1 , d = 0 , q = 1 , qb = 0
8 cp = 0 , d = 0 , q = 1 , qb = 0
10 cp = 1 , d = 0 , q = 0 , qb = 1
12 cp = 0 , d = 0 , q = 0 , qb = 1
13 cp = 0 , d = 1 , q = 0 , qb = 1
14 cp = 1 , d = 1 , q = 1 , qb = 0
16 cp = 0 , d = 1 , q = 1 , qb = 0

Figure 5.16 Results of running the test bench for the flip-flop of Figure 5.15.

Figure 5.17 Clock (cp), data input (d), and output waveforms for the edge-triggered flip-

flop with the test bench in Figure 5.15.

Synthesized circuits of the latches FF1 (sbrbffdff) and FF2 (sbrbff1) are

shown in Figure 5.18 and Figure 5.19, respectively. The synthesized circuit for the

overall flip-flop is shown in Figure 5.20. FF1, FF2, and FF3 are represented as

boxes there; only their interconnections are shown. The comprehensive circuit in

terms of the elementary gates is not shown.

Figure 5.18 Synthesized circuit of the flip-flop sbrbffdff of Figure 5.15.

DELAYS 91

Figure 5.19 Synthesized circuit of the flip-flop sbrbff1 of Figure 5.15.

The flip-flop of Figure 5.14 can be made comprehensive with slight

modifications. It can be replicated and with suitable additions, expanded

substantially into register files and full-fledged memory [see the Exercises at the

end of the chapter].

5.3 DELAYS

Verilog has the facility to account for different types of propagation delays of

circuit elements. Any connection can cause a delay due to the distributed nature of

its resistance and capacitance. Due to the manufacturing tolerances, these can vary

over a range in any given circuit [Bignel, Sedra]. Similar delays are present in

gates too. These manifest as propagation delays in the 0 to 1 transitions and 1 to 0

transitions from input to the output. Such propagation delays can differ for the two

types of transitions. A variety of such delays can be accommodated in Verilog.

Sometimes manufacturers adjust input and output impedances of circuit elements

to specific levels and exploit them to reduce interface hardware. These too can be

accommodated in Verilog design descriptions [Ciletti, Palnitkar].

Figure 5.20 Synthesized circuit of the flip-flop dffgatnew1 in Figure 5.15.

92 GATE LEVEL MODELING – 2

5.3.1 Net Delay

One of the simplest delays is that of a direct connection – a net. It can be part of

the declaration statement

wire #2 nn; // nn is declared as a net with a propagation delay of 2 time steps

Here nn is declared as a net with an associated propagation delay of 2 time

steps. The delay is the same for the positive as well as the negative transitions.

The same is illustrated in Figure 5.21(a), which connects two circuit blocks

through a net nn with a delay of 2 time steps associated with it. The module in

Figure 5.22 is a simple realization of the same. A test bench for the module is also

shown in the figure. The simulation results are shown in Figure 5.21(b), which

bring out the effect of the net delay clearly.

Similar delays can be assigned to other types of nets as well. Whenever a

variable or a signal is defined as a net and no delay is specified for it, the

associated delay is taken as zero. This is true of instantiations of modules as well.

The impedance connected as well as the type of loading can differ for the two

transitions. The propagation delay too can differ accordingly. Two such delays

can be specified as follows:

Wire # (2, 1) nm;

Here nm is declared as a net with two distinct propagation delays; the positive

(0 to 1) transition has a delay of 2 time steps associated with it. The negative

2 2

x y

Net nn

Common ground line

x

y

0 5 10
Time steps

Circuit 1 Circuit 2
(a)

(b)

Figure 5.21 A net connecting two circuit blocks and the delay through it: (a) Connection

diagram (b) Typical signal waveforms at the input and output ends of the net.

DELAYS 93

module netdelay(x,y);
input x;
output y;
wire #2 nn;
not (nn,x); //circuit1 in Figure 5.21
buf y = x; //circuit2 in Figure 5.21
endmodule

module tst_netdelay ; //test-bench
reg x;
wire y;
netdelay nd(x,y);
initial
begin

 x =1'b0;
#6 x =~x;

end
initial #20 $stop;
endmodule

Figure 5.22 A module to illustrate net delay and a test bench for the same.

(1 to 0) transition has a delay of 1 time step. The delays are explained in Figure

5.23. The module of Figure 5.22 has been modified and shown in Figure 5.24; the

propagation delays are different for rise and fall here.

(a)

(b)

0 5 10
Time steps

x y

Net nm

Common ground line

Circuit 1 Circuit 2

2 1

x

y

Figure 5.23 A net connecting two circuit blocks and the delays through it: (a) Connection

diagram (b) Typical signal waveforms at the input and output ends of the net.

94 GATE LEVEL MODELING – 2

module netdelay1(x,y);
input x;
output y;
wire #(2,1) nn;
not (nn,x);
y=nn;
endmodule

module tst_netdelay1; //test-bench
reg x;
wire y;
netdelay1 nd(x,y);
initial
begin

 x =1'b0;
#6 x =~x;

end
initial #20 $stop;
endmodule

Figure 5.24 A module to demonstrate different delays for rise and fall times on a net.

5.3.2 Gate Delay

Gates too can have delays associated with them. These can be specified as part of

the instantiation itself.

and #3 g (a, b, c);

The above represents an AND gate description with a uniform delay of 3 ns

for all transitions from input to output. A more detailed description can be as

follows:

and #(2, 1) (a, b, c);

With the above statement the positive (0 to 1) transition at the output has a

delay of 2 time steps while the negative (1 to 0) transition has a delay of 1 time

step. Figure 5.25 shows a module to illustrate the delays associated with gate

primitives. A test bench for the same is also shown in the figure. The results of

running the test bench are shown in Figure 5.27. The AND gate instantiation in

Figure 5.25 has different delays for the output transitions; respective waveforms

are shown in Figure 5.26.

DELAYS 95

module gade(a,a1,b,c,b1,c1);
input b,c,b1,c1;
output a,a1;
or #3gg1(a1,c1,b1);
and #(2,1)gg2(a,c,b);
endmodule

module tst_gade();//test-bench
reg b,c,b1,c1;
wire c,c1;
gade ggde(a,a1,b,c,b1,c1);
initial
begin
b =1'b0;c =1'b0;b1 =1'b0;c1=1'b0;
end
always
begin

#5 b =1'b0;c =1'b0;b1 =1'b1;c1=1'b1;
#5 b =1'b1;c =1'b1;b1 =1'b0;c1=1'b0;
#5 b =1'b1;c =1'b0;b1 =1'b1;c1=1'b0;
#5 b =1'b0;c =1'b1;b1 =1'b0;c1=1'b1;
#5 b =1'b1;c =1'b1;b1 =1'b1;c1=1'b1;
#5 b =1'b1;c =1'b1;b1 =1'b1;c1=1'b1;

end
initial $monitor($time , " b= %b , c = %b , b1 = %b
,c1 = %b , a = %b ,a1 = %b" ,b,c,b1,c1,a,a1);
initial #30 $stop;
endmodule

Figure 5.25 Module to demonstrate the delays with gates.

(a)

b

c

a

Figure 5.26 AND gate instantiation with different delays for the positive and negative

transitions and associated waveforms: (a) Gate instantiated.

96 GATE LEVEL MODELING – 2

(b)

a

c

b

time steps

0 1284 16

2 ts 1 ts

2 ts 1 ts

Figure 5.26 (cont’d) (b) associated waveforms (time step has been abbreviated to “ts” in

the diagram).

In a more detailed design description, delays can be associated with nets as

well as gates. Consider the design description shown in Figure 5.28(a). It has a

total of 8 different time delay values specified. All these are hypothetical and

different from each other. It is done intentionally to bring out the effect of each of

them on the concerned gates and signals. The circuit for this design description is

shown in Figure 5.28(b). Typical waveforms of input signals as well as other

signals are shown in Figure 5.29, to illustrate the different delays in the design

description. Figures 5.29(a) and 5.29(b) illustrate how changes in one of the inputs

– b1 – affect the other signals; the signals and gates affected are shown

0 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = x ,a1 = x
1 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = x ,a1 = 0
3 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 0
5 b= 0, c = 0 , b1 = 1 ,b1 = 1 , a = 0 ,a1 = 0
7 b= 0, c = 0 , b1 = 1 ,c1 = 1 , a = 0 ,a1 = 1
10 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 1
11 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 0
13 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 1 ,a1 = 0
15 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 1 ,a1 = 0
17 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 1 ,c1 = 1
18 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 0 ,c1 = 1
20 b= 0, c = 1 , b1 = 0 ,c1 = 1 , a = 0 ,a1 = 1
25 b= 1, c = 1 , b1 = 1 ,c1 = 1 , a = 0 ,a1 = 1
28 b= 1, c = 1 , b1 = 1 ,c1 = 1 , a = 1 ,a1 = 1

Figure 5.27 Results of running the test bench of above module in Figure 5.25.

DELAYS 97

highlighted in Figure 5.29(a). Throughout this period, input c1 is taken as at 1

state while inputs b2 and c2 remain at 0 state. The propagation delays of signals

at point P and Q and that for the signal a are shown in Figure 5.29(b). These

conform to the delays specified in the design segment of Figure 5.28(a).

Subsequently, input c1 goes down to 0 state and input b1 remains at 0 state itself.

Only signal b2 changes. The affected signals and gates are shown highlighted in

Figure 5.29(c). The waveforms of signals affected and the associated propagation

designs are shown in Figure 5.29(d). These too conform to the program segment

of Figure 5.28(a).

module gates(b1,b2,c1,c2,a);
input b1,b2,c1,c2;
wire #(2,1)a1,a2;
output a;
and #(3,4)g1(a1,b1,c1);
and #(5,6)g2(a2,b2,c2);
or #(8,7)g3(a,a1,a2);
endmodule

module tst_gates;//test-bench
reg b1,b2,c1,c2;
gates gg(b1,b2,c1,c2,a);
initial
begin
 b1=1'b0;c1=1'b0;b2=1'b0;c2=1'b0;
end
initial #100 $stop;

always
begin

#2b1=1'b0;c1=1'b0;b2=1'b1;c2=1'b1;
#2b1=1'b1;c1=1'b1;b2=1'b0;c2=1'b0;
#2b1=1'b0;c1=1'b1;b2=1'b0;c2=1'b0;
#2b1=1'b0;c1=1'b0;b2=1'b1;c2=1'b0;
#2b1=1'b1;c1=1'b0;b2=1'b1;c2=1'b1;
#2b1=1'b1;c1=1'b1;b2=1'b0;c2=1'b0;
#2b1=1'b1;c1=1'b1;b2=1'b1;c2=1'b0;
#2b1=1'b0;c1=1'b0;b2=1'b1;c2=1'b1;

end
initial $monitor($time," b1= %b , c1 = %b ,b2 = %b , c2
= %b , a = %b ",b1,c1,b2,c2,a);
endmodule

Figure 5.28(a) A design having eight different time delay values.

98 GATE LEVEL MODELING – 2

g1

g2

g3

b2 a2

a1
c1

b1

a

c2

P

Q

R

S

Figure 5.28(b) The circuit for the module considered in Figure 5.28(a).

(b)

(a)

g2

g3

b2

c1

b1

a

c2

P

Q

b1

Point P

Point Q

a

Time steps

0 302010

3 ts

2 ts

8 ts

4 ts

1 ts

7 ts

g1

Figure 5.29 Illustration of signal delays in the design description segment in Figure 5.28:

(a) The circuit portion active during changes to signal b1. (b) Signal waveforms following

changes to signal b1 (time step has been abbreviated as ts in the diagram).

DELAYS 99

(a)

(c)

g1

g2

g3

b2

c1

b1

a

c2

R

S

40 706050

tu's

(d)

b2

Point R

Point S

a

5 ts

2 ts

8 ts

6 ts

7 ts

1 ts

Figure 5.29 (cont'd) (c) The circuit portion active during changes to signal b2. (d) Signal

waveforms following changes to signal b2 (time step has been abbreviated as ts in tbe

diagrams).

5.3.3 Delays with Tri-state Gates

For tri-state gates the delays associated with the control signals can be different

from those of the input as well as the output. The instantiation inclusive of this is

shown in Figure 5.30 for a tri-state buffer of the bufif1 type. Three time delay

values are specified:

1. The first number represents the delay associated with the positive (0 to 1)

transition of the output.

2. The second number represents the delay associated with the negative (1 to 0)

transition of the output.

3. The third number represents the delay for the output to go to the hi-Z state as

the control signal changes from 1 to 0 (i.e., ON to OFF command).

100 GATE LEVEL MODELING – 2

Delay for the 0 to 1 transition of ao

Delay for the 1 to 0 transition of ao

Delay for the output to go to the

hi-z state as c changes from 1 to 0

@ (1, 2, 3) b1(ao, ai, c);bufif1

Figure 5.30 Delays associated with a typical tri-state gate.

Delays for the other tri-state buffers – namely bufif0, notif1 and

notif0 – may be specified in a similar manner.

The turn-off time — 2 time steps here — represents the time for which the

charge will be stored in the output line after the control line turns off. Values of

delay time and storage time can be specified in this manner for all the types of tri-

state type gates. The following are noteworthy here:

Delays and storage times can be specified on the gate primitives and the nets

but not on regs.

All three time values are separately specified in the most versatile case.

If only two time-values are specified, these are interpreted by Verilog as the

rise (0 to 1) and fall (1 to 0) time, respectively. The turn-off time (delay) is

taken as the smaller of these two.

If only one time value is specified, it is taken as the rise time, the fall time,

and the turn-off time.

If no time value is specified, the rise and fall times at the output are taken as

zero. The turn-off is taken as instantaneous.

Normally the delay time of any IC varies over a range for ICs from different

production batches (as well as in any one batch). It is customary for manufacturers

to specify delays and their range in the following manner:

Max delay: The maximum value of the delay in a batch; that is, the delay

encountered in practice is guaranteed to be less than this in the worst case.

Min. delay: Minimum value of delay in a batch; that is, the specified signal is

guaranteed to be available only after a minimum of time specified.

Typ. delay: Typical or representative value of the delay.

Each of the delays in a gate primitive or for a net can be specified in terms of

these three values. For example

and #(2:3:4) g1(a0, a1, a2);

can instantiate an AND gate with the following time delay specifications:

DELAYS 101

The 0 to 1 rise time and the 1 to 0 fall time are equal.

The minimum value of either is 2 time steps. Typical value is 3 time steps

and the maximum value is 4 time steps.

Note that the colon that separates the numbers signifies that the timings

specified are the minimum, typical, and maximum values. At the time of

simulation, one can specify the simulation to be carried out with any of these

three delay values. If the same is not specified, the simulation is carried out

with the typical delay value.

The group of minimum, typical, and maximum delay values for the

propagation delays can be specified separately for any gate primitive. Thus an

AND gate primitive can be specified as

and #(1:2:3, 2:4:6) g2(b0, b1, b2);

Here for the 0 to 1 transition of the output (rise time) the gate has a minimum

delay value of 1 ns, a typical value of 2 ns, and a maximum value of 3 ns.

Similarly, for the 1 to 0 transition (fall time) the gate has a minimum delay value

of 2 ns, a typical delay value of 4 ns, and a maximum delay value of 6 ns. Such

delay specifications can be associated with nets as well as tri-state type gates also.

Examples

wire #(1:2:3) a; /* The net a has a propagation delay whose minimum, typical

and maximum values are 1 ns, 2 ns, and 3 ns, respectively*/

bufif1 #(1:2:3, 2:4:6, 3:6:9) g3 (a0, b0, c0);

/* The different delay values for the buffer are as follows:

The output rise time (0 to 1 transition) has a minimum value of 1 ns, a typical

value of 2 ns and a maximum value of 3 ns.

The output fall time (1 to 0 transition) has a minimum value of 2 ns, a typical

value of 4 ns and a maximum value of 6 ns.

The output turn-off time (1 to 0) has a minimum value of 3 ns, a typical value

of 6 ns, and a maximum value of 9 ns. */

A typical design can have a number of circuit blocks like gates, flip-flops,

etc., with associated interconnections. The individual nets and gates may have

their own separate delays. The following general observations are in order

regarding the overall delays through the circuit:

A normal design can have many gates and nets in its signal paths. The delay

through any path for a signal depends on the path and the type of transitions at

each stage.

102 GATE LEVEL MODELING – 2

The cumulative delay for a signal in a path puts an upper limit on the

maximum operating frequency vis-à-vis the signal.

A signal may go through multiple paths in a design to arrive at one gate. It is

necessary to match the delays within specified tolerances for reliable

operation of the device.

In larger designs, one has to identify the longest signal path (critical path).

This puts an upper limit on the operating frequency apart from causing mal-

operation in a worst-case scenario. One of the practices in design is to re-

route selected signals or redo selected design segments to reduce critical path

delays.

5.3.4 General Definitions for Delays

Specific numerical values have been used for all the delays in the examples so far.

However, Verilog LRM allows constant expressions to be used for any of the

delay values. The expressions used may involve simple algebra in terms of

integers and known quantities (but not variables).

5.4 STRENGTHS AND CONTENTION RESOLUTION

In practical situations, outputs of logic gates and signals on nets in a circuit have

associated source impedances. When the outputs of two gates are joined together,

the signal level is decided by the relative magnitudes of the source impedances.

Sometimes a disparity between the impedances is intentionally introduced to

minimize circuit hardware. Effects of such differences in the impedances are

indirectly introduced in design descriptions by assigning “strengths” to specific

signals (see also Section 3.9). Signal strength declarations are of two types – those

associated with outputs of gate primitives and those with nets.

5.4.1 Strengths of Gate Primitives

Gate output strengths can be specified separately. Table 5.1 gives the names

associated with strengths, respective abbreviations, and their order by weight.

These hold good for logic 1 state as well as the 0 state.

Table 5.1 Strength levels associated with outputs of gate primitives

Name supply strong pull weak High impedance

su1 st1 pu1 we1 HiZ1
Abbreviations

su0 st0 pu0 we0 HiZ0

Strength Strongest Weakest

STRENGTHS AND CONTENTION RESOLUTION 103

Strength of 0 state in the outputStrength of 1 state in the output

(supply1, pull0)buf (o, i);

Figure 5.31 Format for specifying strengths in the instantiation of a gate primitive.

The strengths associated with the output of a gate primitive can be specified

separately for the two logic levels. The format for the same is shown in

Figure 5.31 for a specific case; the format remains the same for all types of gate

primitives.

5.4.2 Strength Contention in Gate Primitives

When two signals of opposite polarity and differing strengths drive a line, the

output status is decided by the stronger signal. However, if the signals are of equal

strength, the output is indeterminate. Different contention possibilities arise here.

The variety is brought out through examples.

Example 5.6 Strength Contention

Consider the module in Figure 5.32. The logic levels taken by the signal o for

different combinations of inputs to the two buffers g1 and g2 are shown in

Table 5.2. Contentions of signals with other combinations of levels can be

resolved in the same manner.

Table 5.2 Outputs for different inputs for the example of Figure 5.32

Logic value

of input i1

Logic value

of input i2

Logic value

of output o
Remarks

0 0 0 No contention

0 1 1
Contention; the stronger

signal – i2 – prevails

1 0 1
Contention; the stronger

signal – i1 – prevails

1 1 1 No contention

104 GATE LEVEL MODELING – 2

module contres(o,i1,i2);
input i1,i2;
output o;
buf(supply1,pull0)g1(o,i1), g2(o,i2);//note that the
endmodule// same net is driven by both the gates.

module tst_contres; //TEST BENCH
reg i1,i2;
contres cc(o,i1,i2);
initial
begin
 i1 =0;
 i2 =0;
end //no contention
always
begin

#4 i1 =0; i2 = 1;// contention; the stronger
#4 i1 =1; i2 = 0;// signal prevails.
#4 i1 =1; i2 = 1;//no contention.

end
initial $monitor($time,"i1=%b,i2=%b,o=%b",i1,i2,o);
initial #40$stop;
endmodule

output

0 i1 = 0 , i2 = 0 , o = 0
4 i1 = 0 , i2 = 1 , o = 1
8 i1 = 1 , i2 = 0 , o = 1
12 i1 = 1 , i2 = 1 , o = 1
16 i1 = 0 , i2 = 1 , o = 1
20 i1 = 1 , i2 = 0 , o = 1
24 i1 = 1 , i2 = 1 , o = 1
28 i1 = 0 , i2 = 1 , o = 1
32 i1 = 1 , i2 = 0 , o = 1
36 i1 = 1 , i2 = 1 , o = 1
40 i1 = 0 , i2 = 1 , o = 1

Figure 5.32 A module to illustrate strength contention; the test bench and simulation results

are also shown in the figure.

The outputs for the four input combinations are given in the table. Whenever there

is a contention, the logic value of the output is decided by the stronger signal. In

fact the design description here realizes an OR gate at the output side without

additional hardware. It does not lead to any ambiguity.

STRENGTHS AND CONTENTION RESOLUTION 105

Consider the Example in Figure 5.33, which is a slightly modified version of

that in Figure 5.32. The output logic values for different input combinations are

given in Table 5.3. The gate outputs are decided by following the same logic as in

the last case. However, in one case — when both gates “drag” the output with

equal strength in opposite directions — the output logic level is indeterminate —

that is, x.

module contres1(o,i1,i2);
input i1,i2;
output o;
buf(strong1 ,pull0)g1(o,i1); buf(pull1,pull0)g2(o,i2);
endmodule

module tst_contres1; //TEST BENCH
reg i1,i2;
contres1 cc(o,i1,i2);
initial
begin
i1 =0;i2 =0;end //no contention
always
begin
#4 i1 = 0; i2 = 1; //contention between pull0 due to
//i1 and pull1 due to i2; output is x
#4 i1 =1; i2 =0; //contention; output is 1 since
//strong1 of i1 prevails.
#4 i1 =1 ;i2 = 1; //no contention.
end
initial $monitor($time ," i1 = %b , i2 = %b ,o = %b "
,i1,i2,o);
initial #40 $stop;
endmodule

output

0 i1 = 0, i2= 0 ,o = 0
4 i1 = 0, i2= 1 ,o = x
8 i1 = 1, i2= 0 ,o = 1
12 i1 = 1, i2= 1 ,o = 1
16 i1 = 0, i2= 1 ,o = x
20 i1 = 1, i2= 0 ,o = 1
24 i1 = 1, i2= 1 ,o = 1
28 i1 = 0, i2= 1 ,o = x
32 i1 = 1, i2= 0 ,o = 1
36 i1 = 1, i2= 1 ,o = 1

Figure 5.33 Illustration of strength contention resulting in x-type output; the test bench and

simulation results are also shown in the figure.

106 GATE LEVEL MODELING – 2

Table 5.3 Outputs for different inputs in the example of Figure 5.33

Logic value

of input i1

Logic value

of input i2

Logic value

of output o
Remarks

0 0 0 No contention

0 1 x
Contention; both signals being of equal

strength, the output is indeterminate

1 0 1
Contention; the stronger signal i1 prevails

and forces the output to logic state 1

1 1 1 No contention

5.4.3 Net Charges

Whenever a net is driven by a signal, it takes the logic value of the signal. When

the signal source is tri-stated, the net too gets tri-stated. In practice the net can

have a capacitor associated with it, which can store the signal level even after the

signal source dries up (i.e., tri-stated). To account for this situation, a charge

storage capacity is associated with the net. Such nets are declared with the

keyword trireg. By virtue of the inherent capacitance associated with them,

trireg nets can never be in the high impedance state – that is, they can assume 0, 1,

or x value only. A trireg net can be in one of two possible states only:

Driven state: When driven by a source or multiple sources, the net assumes

the strength of the source. It can be any of the strengths specified in Table 5.1

except the high impedance value.

Capacitive state: When the driven source (sources) is (are) tri-stated, the net

retains the last value it was in – by virtue of the capacitance associated with it.

The value can be 0, 1 or x (but not the high impedance value).

When in the capacitive state, a net can have a storage strength associated with

it. Three such storage strengths are possible – namely large, medium, and

small. Their details are shown in Table 5.4. When a storage strength is not

specified, it is assigned the default value – medium. For a trireg net one

cannot assign storage strength capacity separately for the 0 and the 1 states.

A trireg net can be driven with possibilities of contention from two or

more sources; such cases are considered in Chapter 10.

Table 5.4 Capacitive storage strengths on nets

Name large medium small

Strength Strongest Weakest

STRENGTHS AND CONTENTION RESOLUTION 107

Example 5.7 Net Storage

Consider the design in Figure 5.34. As long as the signal control = 1, the signal

out follows the signal in. When control goes to 0, out is disconnected from the

input and it '‘floats.'’ It retains the last value due to the capacitance storage

capacity. The storage strength is medium, signifying a medium value of

capacitance.

module charge(out,in,control);
output out;
trireg(medium)out;
input in,control;
bufif1 g1(out,in,control);
endmodule

module tst_charge; //TESTBENCH
reg in, control;
charge c1(out,in,control);
initial

begin
in =0;control =0;//when control=0 output is x
#2 control =0;in =0;
#2 control =1;in =0;
#2 control =1;in =1;
#2 control =0;in =0; // output is retained at
end // the last value

initial $monitor($time ," in= %b ,control = %b , out=
%b " ,in,control,out);
initial #40$stop;
endmodule

output

0 in = 0 , control = x , out=x
2 in = 0 , control = 0 , out=x
4 in = 0 , control = 1 , out=0
6 in = 1 , control = 1 , out=1
8 in = 0 , control = 0 , out=1

Figure 5.34 Illustration of net storage; the test bench and simulation results are also shown

in the figure.

108 GATE LEVEL MODELING – 2

5.4.4 Contention Between Net and Gate Primitive Outputs

In case of a contention between a signal output from a gate and the charge on a

net, the contention is decided by the relative strengths of the signals on each.

Table 5.5 combines all the strengths – those of the gate outputs as well as those of

tri-stated nets and – lists them in the order of their relative strengths. The

abbreviations associated with the strengths are not repeated here.

5.4.5 Net Types and Port Assignments

All input ports of modules have to accept inputs from outside when instantiated

and respond to changes in them. Hence they have to be of net type. Note that

input ports cannot be of reg type since their values cannot be changed from

outside. The output ports of instantiated modules can be of net or reg types.

Inout ports have to function as input or output ports; hence they too have to be

of net types.

The port assignments in an instantiation can be to scalars, vectors, part

vectors, or concatenated vectors. However, their sizes should match those of the

ports in the module definitions. Further, the type restrictions mentioned above

have to be complied with.

In many situations the net types in the module definition and its instantiation

may differ in the case of input and inout ports. In such cases the resulting net

type can be of only one type. Either the net type declared in the module definition

or that in the instantiation (external type) dominates. The choice is decided by a

specific protocol in the LRM. Table 5.6 gives details. As can be seen from the

table, whenever the two net types lead to a logical clash, the external data type

prevails (identified by an asterisk in the table).

Table 5.5 Signal strength names and their relative weights

Signal strength name Strength level

Supply (drive) Strongest 7

Strong (drive) 6

Pull (drive) 5

Large (capacitance) 4

Weak (drive) 3

Medium (capacitance) 2

Small (capacitance) Weakest 1

High impedance 0

NET TYPES 109

Table 5.6 Net assignments with port connections

External net

Internal net Wire &

tri

Wand &

triand

Wor &

trior
Trireg Tri0 Tri1 Su0 Su1

Wire & tri E E E E E E E E

Wand & triand I E * * * * E E

Wor & trior I I E * * * E E

Trireg I I * E E E E E

Tri0 I I * I E * E E

Tri1 I I * I * E E E

Su0 I I I I I I E *

Su1 I I I I I I * E

Notes “E” signifies that the external net prevails, and “I” that the internal net prevails.

 “*” signifies a logical clash; the external net prevails.

5.5 NET TYPES

wire is possibly the simplest type of net declaration. trireg considered in the

last section is another. A variety of other net types are possible. Most of them are

provided for specific types of contention resolution.

5.5.1 wand and wor Types of Nets

Strengths on nets can be decided in ways other than a direct declaration also.

These offer additional flexibility to the circuit designer. Consider the example of

Figure 5.33 for which the input–output values are shown in Table 5.3. For the

signal input combination i1 = 0 and i2 = 1, signal o is indeterminate. However, it

may be made specific in two alternate ways: ‘wand’ and wor are two types of net

declarations for such contention resolution. wand is a wire declaration, which

resolves to AND logic in case of contention. wor is a wire declaration, which

resolves to OR logic in case of a contention. Use of wand and wor nets is

illustrated here through two simple examples crafted for the purpose.

Example 5.8 Illustration of wand type net

Figure 5.35 shows a design module where the outputs of two buffers drive the

same net; the net has been declared to be a wand type, and any contention with the

110 GATE LEVEL MODELING – 2

possibility of indeterminate output is resolved according to AND logic. A test

bench and simulation results are also shown in the figure. The input and output

logic values and the nature of contention resolutions wherever it occurs are listed

out in Table 5.7 also. Contention can be seen to be resolved in two possible ways:

1. When i1 = 1 and i2 = 0, the stronger signal i1 at the 1 level prevails and

o = 1. The contention is resolved according to the strengths.

2. When i1 = 0 and i2 = 1, both signals being equally strong, the value of o

is decided according to AND logic.

The synthesized version of the circuit is shown in Figure 5.36; the circuit translates

into an AND gate which is erroneous (this is not consistent with the desired input–

output relationship shown in Table 5.7).

module wand1(i1,i2,o);
input i1,i2;
output o;
wand o;
buf(strong1,pull0)g1(o,i1);
buf(pull1,pull0)g2(o,i2);
endmodule

module tst_wand1; //testbench
reg i1,i2;
wand1 ww(i1,i2,o);
initial
begin
 i1=0;i2=0;//o =0; no contention
 #2i1=0;i2=1;//o =0; contention resolved

//according to wand declaration
 #2i1 =1;i2 =0;//out=1; contention resolved by

//stronger signal
 #2i1 =1;i2=1;//out =1; no contention.
end
initial $monitor($time,"i1=%b,i2=%b,o=%b",i1,i2,o);
endmodule

output

0i1=0,i2=0,o=0
2i1=0,i2=1,o=0
4i1=1,i2=0,o=1
6i1=1,i2=1,o=1

Figure 5.35 A design module to illustrate use of the wand-type net; a test bench and the

results of simulation are also shown.

NET TYPES 111

Table 5.7 Output values for different inputs of the design in Figure 5.35

Logic

value of i1
Logic

value of i2
Logic

value of o
Remarks

0 0 0 No contention

0 1 0
Contention resolved according to wand

declaration

1 0 1 Contention resolved by the stronger signal

1 1 1 No contention

Example 5.9 Illustration of wor-type net

Consider the design segment in Figure 5.35 with o being declared as a wor type of

net instead of a wand type. The corresponding design module is shown in

Figure 5.37. A test bench and simulation results are also shown in the figure. The

outputs for all possible combinations of inputs are given in Table 5.8. Contention

can be seen to be resolved in two possible ways:

1. When i1 = 1 and i2 = 0, the stronger signal i1 at the 1 level prevails and

o = 1. The contention is resolved according to the strengths.

2. When i1 = 0 and i2 = 1, both signals being equally strong, the value of o

is decided according to OR logic.

The synthesized version of the circuit is shown in Figure 5.38; the circuit

translates into an OR gate; this is consistent with the desired input–output

relationship shown in Table 5.8.

Figure 5.36 Synthesized version of the module with the wand-type net in Figure 5.35

above.

112 GATE LEVEL MODELING – 2

module wor1(i1,i2,o);
input i1,i2;
output o;
wor o;
buf(strong1,pull0)g1(o,i1);
buf(pull1,pull0)g2(o,i2);
endmodule

module tst_wor1;//testbench
reg i1,i2;
wor1 ww(i1,i2,o);
initial
begin
 i1=0;i2=0;//out =0 no contention
#2 i1=0;i2=1;//out =1 contention resolved according
//to wor declaration
#2 i1 =1;i2 =0;//out=1 contention resolved by
//stronger signal
#2 i1 =1;i2=1;//out =1 no contention.
end
initial $monitor($time,"i1=%b,i2=%b,o=%b",i1,i2,o);
endmodule

Output

0 i1=0, i2=0, o=0
2 i1=0, i2=1, o=1
4 i1=1, i2=0, o=1
6 i1=1, i2=1, o=1

Figure 5.37 A design module to illustrate use of the wor-type net; a test bench and the

results of simulation are also shown.

Table 5.8 Output values for different inputs of the design in Figure 5.37

Logic

value of i1
Logic

value of i2
Logic

value of o
Remarks

0 0 0 No contention

0 1 1 Contention resolved according to wor

declaration

1 0 1 Contention resolved by the stronger signal

1 1 1 No contention

NET TYPES 113

Figure 5.38 Synthesized version of the module with the wor-type net in Figure 5.37.

One can see that wand and wor are keywords to implement wired-or type logic.

Observations:

Many synthesizers do not support wired-or logic. wand and wor may be

used to advantage when supported by the synthesizer.

The net triand is functionally identical to the net wireand. Similarly, the

net trior is functionally identical to the net wireor.

All synthesizers support wire. Triand, trior, tri0, and tri1

(discussed below) may not be supported by some.

5.5.2 Tri

The keyword tri has a function identical to that of wire. When a net is driven

by more than one tri-state gate, it is declared as tri rather than as wire. The

distinction is for better clarity. Similarly, Triand and trior are the

counterparts of wand and wor, respectively.

Example 5.10 Illustration of tri-type net

Consider the design segment in Figure 5.39. Here the signal on net out is

controlled by the control signal En. If En = 1, signal a is steered to the net out
and the output of gate g2 is tri-stated. On the other hand, if En = 0, signal b is

steered to the net out and the gate g1 is tri-stated. If the buffers are controlled by

independent Enable signals, the output is resolved according to the respective

strengths.

. . .

tri out;

wire a, b, En;

bufif1 g1(out, a, En);

bufif0 g2(out, b, En);

. . .

Figure 5.39 A segment of a design to illustrate tri type of net.

114 GATE LEVEL MODELING – 2

5.5.3 Tri0 and tri1

If the output of a tri-state buffer is to be pulled up to the 1 state when tri-stated, it

is declared as net tri1. Similarly, it is declared as tri0 if it is to be pulled

down to 0 state when tri-stated. Tri0 and tri1 provide respective default

outputs and avoid any following circuit having a tri-stated input. In turn, it may

manifest as an added load at the concerned gate output. The example in Figure

5.40, which shows a design segment, illustrates an application. Table 5.9 lists the

output values of signals considered in the design segment of Figure 5.40.

Referring to the figure (and the table), one can see that when En = 0, all three

buffers g0, g1, and g2 are off. Net o3, being a wire is tri-stated and is in z state.

However, net o1, being of tri0 type, is pulled down to 0 state irrespective of the

input value. Net 02, being of tri1 type, is pulled up to 1 state. When En = 1, all

three buffers are ON and the respective outputs follow the input. Thus though g0,

g1, and g2 are functionally identical, they behave differently due to the difference

in the type of the respective output nets.

Reset, Chip Enable and similar signals can be pulled up or down as required

with tri0 or tri1; this signifies the normal status –that is, the chip is disabled or

the reset is disabled. As and when the chip is to be enabled, the same is done by

enabling the buffer for the required period. Similarly, the reset can be activated

for a specified period to reset the chip; subsequently, the reset can be deactivated

to restore normal operation of the chip.

. . .

tri0 o1;

tri1 o2;

wire o3;

bufif1 g0 (o1, I, En), g3 (o2, I, En);

buif1 g1(o3, I, En);

. . .

Figure 5.40 A segment of a design to illustrate tri0 and tri1 types of net.

Table 5.9 Output values for different inputs of the segment in Figure 5.40

Logic value of

I

Logic value of

En

Logic value of

o1

Logic value of

o2

Logic value of

o3

0 0 0 1 Z

0 1 0 0 0

1 0 0 1 Z

1 1 1 1 1

DESIGN OF BASIC CIRCUITS 115

5.5.4 supply0 and supply1

supply0 and supply1 are the keywords signifying the high- and low-side

supplies. Nets to be connected to the Vcc supply are declared as supply1, and

those to be grounded are declared as supply0. Their use is illustrated in Chapter

10.

5.5.5 Ambiguous Strengths

Certain x or z type of input port values of gate primitives can lead to outputs of

apparently ambiguous strengths. A number of such situations can arise. Such

cases are brought out and illustrated in the LRM. Nevertheless, such ambiguous

situations may be avoided in practice.

5.5.6 Combining Delays & Strengths

So far we have discussed incorporation of strengths in net declarations and

instantiations of primitives. Incorporation of a variety of delays and specifying

tolerances on them were dealt with in the previous sections. One can combine

delays and strengths in net declarations as well as in instantiation of gate

primitives. The formats for the same are illustrated below

Wire (drive_strength_1, drive_strength_0) # (delay_0_1, delay_1_0,

turn_off_delay) signal1, signal2;

Gate_type (drive_strength_1, drive_strength_0) # (delay_0_1, delay_1_0,
turn_off_delay) instance_1(signal1, signal2);

For each of the delays above, one can also specify the minimum, typical, and

maximum values. Such values can be specified in terms of constant expressions

also. All these have been dealt with separately in detail earlier. Hence combining

them and illustrating through examples is not done again here.

5.6 DESIGN OF BASIC CIRCUITS

Elementary gates are the basic building blocks of all digital circuits – whether

combinational, sequential, or involved versions combining both. Conversely, any

digital circuit can be split up into constituent elementary gates. The variety of

examples of combinational circuits considered in the last chapter, and the

sequential circuit examples at the beginning of this chapter are testimony to this.

Any digital circuit however involved it may be, can be realized in terms of gate

primitives. The step-by-step procedure to be adopted may be summarized as

follows:

116 GATE LEVEL MODELING – 2

1. Draw the circuit in terms of the gates.

2. Name gates and signals.

3. Using the same nomenclature as above, do the design description.

4. As the functional blocks like encoder, decoder, half-adder, full-adder, etc., get

more and more involved, treat each as a building block with corresponding

inputs and outputs.

5. Make more involved circuits in terms of the building blocks – as far as

possible. Each block within another block manifests as an instantiation of one

module within another.

Example 5.11 ALU

We consider the design of an ALU as an example of a relatively complex design.

The ALU considered carries out four functions:

Addition of two 4-bit numbers.

Complementing all the bits of a 4-bit vector.

Bit-by-bit AND operation on two nibbles.

Bit-by-bit XOR operation on two nibbles.

A set of 2 mode select bits selects the function to be carried out from amongst

the above four. The design has been evolved in a step-by-step manner. Figure

5.41 shows a 4-bit adder module and a test-bench for it. The simulation results are

given in Figure 5.42. The adder module is built up by repeated instantiation of the

full-adder module considered in Section 4.8. The synthesized version of the adder

is shown in Figure 5.43. The full-adder module instantiations appear here as black

boxes with respective inputs and outputs.

module add4g(sum,carry,a,b,cin);
input[3:0]a,b;
input cin;
output[3:0]sum;
output carry;
wire [2:0]cc;
fa a0(sum[0],cc[0],a[0],b[0],cin);
fa a1(sum[1],cc[1],a[1],b[1],cc[0]);
fa a2(sum[2],cc[2],a[2],b[2],cc[1]);
fa a3(sum[3],carry,a[3],b[3],cc[2]);
endmodule

module tstadd4g; //Test bench
reg[3:0]a,b;
reg cin;
wire[3:0]sum;

continued

DESIGN OF BASIC CIRCUITS 117

continued

wire carry;
add4g gg(sum,carry,a,b,cin);
initial
begin
 a =4'h0;b=4'h0;cin=0;
end
always
begin

#2 a=4'h0;b=4'h0;cin=1'b0;
#2 a=4'h1;b=4'h0;cin=1'b1;
#2 a=4'h1;b=4'h0;cin=1'b1;
#2 a=4'h5;b=4'h3;cin=1'b0;
#2 a=4'h7;b=4'h0;cin=1'b1;
#2 a=4'h8;b=4'h9;cin=1'b1;
#2 a=4'h0;b=4'h0;cin=1'b0;
#2 a=4'hb;b=4'h7;cin=1'b0;
#2 a=4'h0;b=4'h0;cin=1'b0;
#2 a=4'hf;b=4'hf;cin=1'b0;
#2 a=4'hf;b=4'hf;cin=1'b1;

end
initial $monitor($time," a = %b, b = %b, cin = %b,
outsum = %b, outcar = %b ", a, b, cin, sum, carry);
initial #30 $stop ;
endmodule

Figure 5.41 A 4-bit adder module and its test bench

output

0 a =0000,b =0000,cin = 0,outsum =0000,outcar =0
2 a =0001,b =0000,cin = 0,outsum =0001,outcar =0
4 a =0001,b =0000,cin = 1,outsum =0010,outcar =0
6 a =0001,b =0001,cin = 1,outsum =0011,outcar =0
8 a =0101,b =0011,cin = 0,outsum =1000,outcar =0
#10 a =0111,b =0110,cin = 1,outsum =1110,outcar =0
#12 a =1000,b =1001,cin = 1,outsum =0010,outcar =1
#14 a =1010,b =0001,cin = 1,outsum =1100,outcar =0
#16 a =1011,b =0111,cin = 0,outsum =0010,outcar =1
#18 a =1000,b =1000,cin = 0,outsum =0000,outcar =1
#20 a =1111,b =1111,cin = 0,outsum =1110,outcar =1
#22 a =1111,b =1111,cin = 1,outsum =1111,outcar =1
#24 a =0001,b =0000,cin = 0,outsum =0001,outcar =0
#26 a =0001,b =0000,cin = 1,outsum =0010,outcar =0
#28 a =0001,b =0001,cin = 1,outsum =0011,outcar =0

Figure 5.42 Simulation results of running the test bench in Figure 5.41.

118 GATE LEVEL MODELING – 2

Figure 5.43 Synthesized circuit of the adder module of Figure 5.41.

Figure 5.44 shows a module to AND two nibbles. It is done through direct

instantiation of AND gate primitives for two inputs. The corresponding

synthesized circuit is shown in Figure 5.45.

module andg4(c,a,b);
input[3:0]a,b;

output[3:0]c;
and(c[0],a[0],b[0]);
and(c[1],a[1],b[1]);
and(c[2],a[2],b[2]);
and(c[3],a[3],b[3]);
endmodule

Figure 5.44 A 4-bit adder module.

DESIGN OF BASIC CIRCUITS 119

Figure 5.45 Synthesized circuit of the AND module of Figure 5.44 andg4.

The module in Figure 5.46 carries out the bit-wise XOR operation on 2 nibbles.

Its synthesized circuit is shown in Figure 5.47. Similarly, the module in Figure

5.48 complements 2 nibbles in a bit-wise manner. The corresponding synthesized

circuit is shown in Figure 5.49.

module xorg(c,a,b);
input[3:0]a,b;
//input cen;
output[3:0]c;
wire [3:0]cc;
xor x0(c[0],a[0],b[0]);
xor x1(c[1],a[1],b[1]);
xor x2(c[2],a[2],b[2]);
xor x3(c[3],a[3],b[3]);
endmodule

Figure 5.46 A 4-bit XOR module.

120 GATE LEVEL MODELING – 2

Figure 5.47 Synthesized circuit of the XOR module of Figure 5.46.

module compl(c,a);
input[3:0]a;
output[3:0]c;
not(c[0],a[0]);
not(c[1],a[1]);
not(c[2],a[2]);
not(c[3],a[3]);
endmodule

Figure 5.48 A module to complement a 4-bit vector.

Figure 5.49 Synthesized circuit of the module in Figure 5.48.

DESIGN OF BASIC CIRCUITS 121

module dec2_4 (a,b,en);
output [3:0] a;
input [1:0]b;
input en;
wire [1:0]bb;
not(bb[1],b[1]),(bb[0],b[0]);
and(a[0],en,bb[1],bb[0]),(a[1],en,bb[1],b[0]),
(a[2],en,b[1],bb[0]),(a[3],en,b[1],b[0]);
endmodule

Figure 5.50 A 2-to-4 decoder module.

A 2-bit binary number with its 4 distinct states can be used to select any one

of the 4 desired functions; it calls for the use of a 2-to-4 decoder. Such a module is

shown in Figure 5.50, and its synthesized circuit is shown in Figure 5.51.

As explained above, the decoder outputs can be used to select anyone of the 4

functional outputs and steer it to the final output; a 4-to-1 mux serves this purpose.

The mux module is shown in Figure 5.52; its synthesized circuit is in Figure 5.53.

The overall ALU module is shown in Figure 5.54. It instantiates all the above

modules. Depending on the mode specified, one of the four functions is selected

by the 2-to-4 decoder; its output is multiplexed on to the output by the 4-to-1 mux.

The ALU module here has been synthesized and shown in Figure 5.55. Each

functional block instantiated in Figure 5.54 appears here as a corresponding

distinct black box.

More functions can be added, if desired, to make the ALU more

comprehensive. The ALU size can be increased to 16 or 32 bits by repeated

instantiation (after some minor modifications) of the 4-bit module in a more

comprehensive module.

Figure 5.51 Synthesized circuit of the decoder module of Figure 5.50.

122 GATE LEVEL MODELING – 2

module mux4_1alu(y,i,e);
input [3:0] i;
input e;
output [3:0]y;
bufif1 g1(y[3],i[3],e);
bufif1 g2(y[2],i[2],e);
bufif1 g3(y[1],i[1],e);
bufif1 g4(y[0],i[0],e);
endmodule

Figure 5.52 A 4-to-1 mux module.

Figure 5.53 Synthesized circuit of the mux module of Figure 5.52.

module alu_4g(a,b,c,carry,cin,cen,s);
input [3:0]a,b;
input[1:0]s;
input cen,cin;
output [3:0]c;
output carry;
wire [3:0] data0,data1,data2,data3,e;
wire carry1 ;
dec2_4 m5(e,s,cen);
add4g m1(data0,carry1,a,b,cin);

continued

DESIGN OF BASIC CIRCUITS 123

continued

compl m2(data1,a);
xorg m3(data2,a,b);
andg4 m4(data3,a,b);
bufif1 g5(carry,carry1,cen);
mux4_1alu m6(c,data0,e[0]);
mux4_1alu m7(c,data1,e[1]);
mux4_1alu m8(c,data2,e[2]);
mux4_1alu m9(c,data3,e[3]);
endmodule

Figure 5.54 A 4-bit ALU module.

Figure 5.55 Synthesized circuit of the ALU module of Figure 5.54.

124 GATE LEVEL MODELING – 2

5.7 EXERCISES

In each of the cases below, prepare the test bench and test the design

 1. Realize each of the flip-flops below using NOR gates.

RS flip-flop; D-latch; Clocked RS flip-flop; Edge-triggered D flip-flop;

Master-slave flip-flop.

 2. Figure 5.56 shows the circuit of a flip-flop. Prepare the design module and

test it. Explain why it does not work.

 3. Modify the flip-flop in Figure 5.56 above with 2 ns delay for sb. Test the

flip-flop with different waveforms for d and clk; in each case ensure that the

clock does not remain high continuously for more than 1 ns. Explain the

need for this restriction.

 4. Figure 5.57 shows the basic memory cell built around a d-latch. One can

write data into it or read data from it.

 a. When rd/wrb input is low, the flip-flop is in write mode; data are an input

line; data on data line are written into the latch, when clk is given a

positive pulse.

 b. When rd/wrb input is high, the flip-flop is in read mode; data stored in the

latch are made available on the data line.

 Build a module around the d-latch to realize the memory cell.

 5. Expand the above to form a byte-wide memory cell.

Q

clk

K

J

Qb

rb

sb

Figure 5.56 A conventional JK flip-flop.

EXERCISES 125

d-latch of Figure 5.13

d

en

clk

q

qb

data

rd/wrb

wren

rden

Figure 5.57 A d-latch with necessary additional circuitry to form a memory cell.

 6. Replicating the memory element above, one can form a memory. Consider

a memory of 16 locations addressed by a 4-bit-wide address bus. The

memory will have a 4-to-16 address decoder. It will have an rd/wrb input

for reading from it and writing data into it. The decoded address can be used

to gate the rden and wren inputs to the respective tri-state buffers. Prepare

the design module for the memory.

 7. Consider the 4-to-1 mux module in Figure 4.31 and its synthesized circuit in

Figure 4.33. Identify the signal paths in which maximum number of gates is

involved. What is the number of gates in the path here?

Identify the signal paths in which the number of gates involved is a

minimum. What is the number of gates here and which are these?

 8. For each of the gate primitives in Exercise 7 above, take the minimum,

typical, and maximum delays to be 1 ns, 2 ns and 3 ns respectively. With

the typical delay values, estimate the minimum and maximum delays of

transmission. Verify by simulation. Repeat the exercise with minimum and

minimum delay values.

 9. In Exercise 8 above, assign the minimum delay values for the shortest paths

and maximum for the longest paths. Using these, estimate the minimum and

maximum time delays for the mux (see also the pin-to-pin delay

specifications in Chapter 11).

 10. Identify the ALU functions in the 8085 processor. Design an ALU module

to carry out these.

 11. Identify the ALU functions in the 8088 processor. Design an ALU module

to carry out these (ignore the instructions for multiplication and division).

 12. a[1:0] and b[1:0] are two 2-bit numbers. Their product – designated as

m[3:0] – is in general a 4-bit number; it is formed as follows:

Form m[0] by AND operation on a[0] and b[0].

126 GATE LEVEL MODELING – 2

Through a half-adder add the bits a[1]&b[0] and a[0]&b[1]. The sum bit is

m[1]. Let the carry bt be c.

Through a half-adder add the bits a[1]&b[1] and c obtained above. The sum

bit is m[2] and the carry bit m[3].

Design a 2-bit multiplier following the above steps and test it for all possible

input value combinations.

 13. Let abcd and efgh be two 4-bit numbers where a, b,…., g, h represent the

respective bit values. The 4-bit numbers are multiplied as follows:

Form the four 4-bit numbers 00cd, 00gh, ab00, and ef00.

Form the following four intermediate products using 2-bit multipliers:

 00cd with 00gh

 00cd with ef00

 ab00 with 00gh

 ab00 with ef00

Add all the above four intermediate products to get the final 7-bit result.

Design a 4-bit multiplier module following the above steps. Instiantiate 2-

bit multiplier module, half- and full-adder modules, etc., wherever

necessary.

 14. Following steps analogous to the above, design an 8-bit multiplier.

 15. Write down the Boolean logic expressions for all the product bits of a 4-bit

multiplier; using these, design an 8-bit multiplier.

127

6

MODELING AT DATA FLOW LEVEL

6.1 INTRODUCTION

Gate level design description makes use of the gate primitives available in Verilog.

These are repeatedly and judiciously instantiated to achieve the full design

description. Digital designers familiar with the basic logic gates and SSI / MSI

circuits can describe the desired target circuit in terms of them on paper and

proceed with the design description based on them. This was the approach

followed in the last two chapters; it is practical for comparatively smaller designs –

say those involving tens of gates. One can define modules in terms of primitives

involving tens of gates and instantiate them in macro-modules. This increases the

complexity of designs that can be handled by one order. Beyond that the gate

level design description becomes too complicated to be practical.

Data flow level description of a digital circuit is at a higher level. It makes the

circuit description more compact as compared to design through gate primitives.

We have a number of operands and operations representing the simulations

directly or indirectly. The operations are carried out on the operand(s) in singles

or in combinations [IEEE]. The results are assigned to nets. The operand-

operation-assignments representing data flow are carried out repeatedly to

complete the design description [Thomas & Morby]. Further, these can be

combined judiciously with the gate instantiations wherever necessary. With such

combinations, design description of a comprehensive nature can be

accommodated.

6.2 CONTINUOUS ASSIGNMENT STRUCTURES

A simple two input AND gate in data flow format has the form

assign c = a && b;

Here

“assign” is the keyword carrying out the assignment operation. This type

of assignment is called a continuous assignment.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

128 MODELING AT DATA FLOW LEVEL

 a and b are operands – typically single-bit logic variables.

 “&&” is a logic operator. It does the bit-wise AND operation on the two

operands a and b.

“=” is an assignment activity carried out.

 c is a net representing the signal which is the result of the assignment.

In general, an operand can be of any one of the following types:

A constant number [including real].

Net of a scalar or vector type including part of a vector.

Register variable of a scalar or vector type including part of a vector.

Memory element.

A call to a function that returns any of the above. The function itself can be a

user-defined or of a system type [see Chapter 9].

There are other types of operators as well [see Section 6.5]. All types of

combinational circuits can be modeled using continuous assignments. One need

not necessarily resort to instantiation of gate primitives.

An AND gate module which uses the above assignment is shown in

Figure 6.1. The test bench for the same is shown in Figure 6.2, and the waveforms

of nets a, b, and c obtained with the simulation are shown in Figure 6.3. [The

simulation software used has the facility to capture the waveforms of selected

signals in the “run” phase; this has been invoked to get the waveforms in

Figure 6.3. No separate $monitor command is included in the test bench of

Figure 6.2. The same approach has been adopted with many of the test benches

elsewhere in the book.]

Multiple assignments can be carried out through a direct extension of the

structure adopted in the above case. Consider the AOI gate in Figure 6.4. A few

patterns of the assignments for the circuit are given in Figure 6.5 to Figure 6.7.

module andgdf(c,a,b);
output c;
input a,b;
wire c;
assign c = a&&b;
endmodule

Figure 6.1 A module with an AND gate at the data flow level.

module tst_andgdf; //TESTBENCH
reg a,b;
wire c;
initial
begin

continued

CONTINUOUS ASSIGNMENT STRUCTURES 129

continued

 a = 1'b0;
 b = 1'b0;
 #4 a = 1'b1;
 #4 b = 1'b1;
 #4 a = 1'b0;
 #4 b = 1'b0;
 #4 a = 1'b1;
end
andgdf g1(c,a,b);
initial #20 $stop;
endmodule

Figure 6.2 A test bench for the module in Figure 6.1.

ns

c

0 10 20

a

b

Figure 6.3 Waveforms of nets a, b, and c obtained with the simulation of the module in

Figure 6.1 with the test bench in Figure 6.2.

c

a

b

f

e

d

gg1

Figure 6.4 An A-O-I gate circuit.

130 MODELING AT DATA FLOW LEVEL

assign e = a&&b, f = c&&d, g1 = e|f, g = ~g1;

Figure 6.5 A data flow level assignment statement to realize the A-O-I gate in Figure 6.4.

assign e = a & b, f = c & d;

assign g1 = e|f, g = ~g1;

Figure 6.6 Another set of data flow level assignment statements to realize the A-O-I gate in

Figure 6.4.

assign e = a & b;

assign f = c & d;

assign g1 = e ! f;

assign g = ~g1;

Figure 6.7 Yet another set of data flow level assignment statements to realize the A-O-I

gate in Figure 6.4.

Observations:

The semicolon terminates an assignment statement. Commas separate

different assignments in an assignment statement.

“|” is the bit-wise OR operator and “~” the bit-wise negation operator in

Verilog.

All the quantities in the left-hand side of a continuous assignment have to be

of net type. Thus e, f, g, and g1 have to be declared as nets.

All the operations in an assignment are evaluated whenever any of the

operands in the assignment changes value. Further, all the assignments are

carried out concurrently. Hence the order of the assignments or the statements

is immaterial.

The right-hand sides of assignment statements can be nets, regs, or function

calls. Here a, b, c, and d can be nets or regs. All other variables have to be

nets.

The module for the A-O-I gate of Figure 6.4 is given in Figure 6.8 – it is formed

around the assignment statement of Figure 6.5. The same can be tested through a

test bench.

CONTINUOUS ASSIGNMENT STRUCTURES 131

6.2.1 Combining Assignment and Net Declarations

The assignment statement can be combined with the net declaration itself making

the assignment implicit in the net declaration itself. Thus the two statements

wire c;

assign c = a & b;

can be combined as

wire c = a & b;

The above simplification cannot be carried over to multiple declarations. With this

proviso, the module of Figure 6.8 can be modified as shown in Figure 6.9. In the

modules of Figures 6.8 and 6.9, a, b, c, and d are declared as input and g as

output. As was explained in Section 4.2, these would be taken as nets if there

are no separate declarations concerning their types. However, the intermediate

quantities – e, f, and g1– should be declared as wire. Synthesized version of the

A-O-I circuit is shown in Figure 6.10.

module aoi2(g,a,b,c,d);
output g;
input a,b,c,d;
wire e,f,g1,g;
assign e = a && b,f = c && d, g1 = e||f, g=~g1;
endmodule

Figure 6.8 A compact description of the AOI module at the data flow level.

module aoi3(g,a,b,c,d);
output g;
input a,b,c,d;
wire g;
wire e = a && b;
wire f = c && d;
wire g1 = e||f;
assign g = ~g1;
endmodule

Figure 6.9 Alternate design module to realize the A-O-I gate in Figure 6.4.

132 MODELING AT DATA FLOW LEVEL

Figure 6.10 Synthesized circuit of the A-O-I gate module of Figure 6.9.

6.2.2 Continuous Assignments and Strengths

A net to which a continuous assignment is being made can be assigned strengths

for its logic levels. The procedure is akin to the strength allocation to the outputs

of primitives. The AOI gate of Figure 6.9 is modified with strength allocations to

the output and is shown in Figure 6.11. The assignment to g can be combined with

the wire declaration into a single statement as

wire (pull1, strong0)g = ~g1;

As mentioned earlier, one can have only one assignment in the statement here.

In a bigger design, g in Figure 6.11 can be assigned to other expressions or

primitives also. Any resulting contention in the output values will be resolved on

the lines discussed in Chapter 4.

module aoi4 (g, a, b, c, d);

output g;

input a, b, c, d;

wire g;

wire e = a &&b;

wire f = c & &d;

wire g1 = e || f;

assign (pull1, strong0)g = ~g1;
endmodule

Figure 6.11 The module of Figure 6.9 modified with strength allocation to the output.

DELAYS AND CONTINUOUS ASSIGNMENTS 133

6.3 DELAYS AND CONTINUOUS ASSIGNMENTS

Delays can be incorporated at the data flow level in different ways [Ciletti].

Consider the combination of statements in Figure 6.12. The assignment takes

effect with a time delay of 2 time steps. If a or b changes in value, the program

waits for 2 time steps, computes the value of c based on the values of a and b at

the time of computation, and assigns it to c. In the interim period, a or b may

change further, but c changes and takes the new value only 2 time steps after the

change in a or b initiates it. Typical waveforms for a, b, and c are shown in

Figure 6.13. Note that the changes in a and b of duration less than 2 time steps are

ignored vis-à-vis assignment to the net c. The following may be noted with

respect to the waveforms:

 a changes at 0 ns, 2 ns, 5 ns, 8 ns, 9 ns, 12 ns and 13 ns; b changes at 0 ns, 2

ns, 6 ns, 8 ns and 13 ns. All these trigger changes to c.

In every case change to c comes into effect with a time delay of 2 time steps –

that is, at the 2nd, 4th, 7th, 8th, 10th, 11th, 14th and 15th ns, respectively.

Whenever c changes, its new value is decided by the values of a and b at that

instant of time. In effect, c changes at 2nd, 4th and 7th ns only.

wire c, a, b;

assign #2 c = a & b;

Figure 6.12 Illustration of combining delays with assignments.

c

a

b

0 5 10 15

ns

Figure 6.13 Waveforms of signals a, b, and c for the design segment of Figure 6.12.

134 MODELING AT DATA FLOW LEVEL

The program segment in Figure 6.14 also gives the same output as shown in

Figure 6.13. If the time delay is in the net and not in the assignment proper, its

effect is not any different. Consider the program segment in Figure 6.15. Here the

changes in the values of d are computed immediately following those in a and b.

The assignment takes effect immediately. The delay in the net c causes a delay of

2 time steps in the assignment to c. Such a delay is not present for d. Typical

waveforms for the program segment are shown in Figure 6.16. Note the

following:

 a changes at 2 ns, 5 ns, 8 ns, 9 ns, 12 ns and 13 ns; b changes at 2 ns, 6 ns, 8

ns and 13 ns. All these trigger changes to c and d also.

In every case, change to c comes into effect with a time delay of 2 time steps

– that is, in effect, c changes at 2nd, 4th and 7th ns only.

Whenever c changes, its new value is decided by the values of a and b at that

instant of time.

In every case, changes to d come into effect immediately.

wire a, b;

wire #2 c = a & b;

Figure 6.14 Alternate description for the program segment of Figure 6.10.

wire a, b, d;

wire #2 c;

assign c = a & b;

assign d = a & b;

Figure 6.15 Illustration of combining delays with assignments.

ns

0 5 10 15

a

b

c

d

Figure 6.16 Waveforms of Signals a, b, c, and d for the design segment of Figure 6.15.

ASSIGNMENT TO VECTORS 135

6.4 ASSIGNMENT TO VECTORS

The continuous assignments are equally applicable to vectors. A single statement

can describe operations involving vectors wherever possible. This is illustrated in

the adder module in Figure 6.17, which adds two 8-bit numbers. Here it is

assumed that the sum is also of 8 bits. However to account for the possibility of a

carry bit being generated in the course of the addition process, it is desirable to

increase the vector size of c by one bit.

6.4.1 Concatenation of Vectors

One can concatenate vectors, scalars, and part vectors to form other vectors. The

concatenated vector is enclosed within braces. Commas separate the components

–scalars, vectors, and part vectors. If a and b are 8- and 4-bit wide vectors,

respectively and c is a scalar

{a, b, c}

stands for a concatenated vector of 13 bits width. The vector components are

formed in the order shown – c is the least significant bit and a[7] the most

significant bit and the other bits are in between in the order specified. The

concatenation can be with selected segments of vectors also. For example,

{a(7:4), b(2:0)}

represents a 7-bit vector formed by combining the 4 most significant bits of vector

a with the 3 least significant bits of vector b. The size of each operand within the

braces has to be specified fully to form the concatenated vector. Hence unsized

constant numbers cannot be used as operands here.

Example 6.1 Eight-Bit Adder

Figure 6.18 shows the design description of an 8-bit adder, where the output vector

is formed directly by concatenation. The adder takes a carry input and gives out a

carry output. The adder module here can form the “seed” adder block in a multi-

byte adder chain.

module add_8(a,b,c);
input[7:0]a,b;
output[7:0]c;
assign c = a + b ;
endmodule

Figure 6.17 An adder module at data flow level where the nets are vectors.

136 MODELING AT DATA FLOW LEVEL

module add_8_c(c,cco,a,b,cci);
input[7:0]a,b;
output[7:0]c;
input cci;
output cco;
assign {cco,c} = (a + b + cci);
endmodule

Figure 6.18 A complete 8-bit adder module at data flow level.

When it is necessary to replicate vectors, scalars, etc., to form other vectors,

the same can be arrived at in a compact manner using the repetition multiplier

again through concatenation. Thus,

{2{p}}

represents the concatenated vector

{p, p}

and

{2{p}, q}

represents the concatenated vector

{p, p, q}.

The two statements

assign GND=supply0;

p={8{GND}};

together ground the 8 bits of the vector p.

Concatenation operation can be nested to form bigger vectors when

component combinations are repeated. For example,

{a, 3 {2{b , c}, d}}

is equivalent to the vector

{a, b, c, b, c, d, b, c, b, c, d, b, c, b, c, d }

6.5 OPERATORS

A set of operators is available in Verilog. The operator symbols are similar to

those in C language [Gottfried]. With these operators we can carry out specified

operations on the operands and assign the results to a net or a vector set of nets as

the case may be. A few such operands have already been used in the examples so

far. We discuss here the different operators, their types, and the operations carried

out by each. Subsequently the use of operators is illustrated through a set of

examples.

OPERATORS 137

6.5.1 Unary Operators

Unary operators do an operation on a single operand and assign the result to the

specified net. The unary operators in Verilog are given in Table 6.1. All unary

operators get precedence over binary and ternary operators. The operators “+” and

“–“ preceding an integer or a real number change its sign. These are also unary

operators, though not separately listed in Table 6.1.

6.5.2 Binary Operators

Most operators available are of the binary type. A binary operator takes on two

operands; the operator comes in between the two operands in the assignment. The

binary operators are grouped into type categories and discussed separately. The

following are to be noted:

The arithmetic operators treat both the operands as numbers and return the

result as a number.

All net and reg operand values are treated as unsigned numbers.

Real and integer operands may be signed quantities.

If either of the operand values has a zero value, the entire result has a zero

value (?).

The result of any arithmetic operation — with the “+” or “–” or with any of

the other arithmetic operators discussed later — will have an x value if any of the

operand bits has an x or a z value.

6.5.2.1 Arithmetic Operators
The arithmetic operators of the binary type are given in Table 6.2. The modulus

operand is similar to that in C language – It provides the remainder of the division

Table 6.1 Unary operators and their symbols

Operator type Symbol Remarks

Logical negation ! Only for scalars

Bit-wise negation ~

Reduction AND &

Reduction NAND ~&

Reduction OR |

Reduction NOR ~|

Reduction XOR ^

Reduction XNOR ~^ or ^~

For scalars and vectors

For vectors – yields a single bit output

138 MODELING AT DATA FLOW LEVEL

Table 6.2 Arithmetic operators and their symbols

Operand type Symbol Remarks

Multiplication *

Division / The result is x if the denominator is zero

Modulus %

Addition +

Subtraction –

of two numbers. The module in Figure 6.17 is an example of the illustration of the

use of the arithmetic binary operator “+” (for addition). Other arithmetic operators

are also used in a similar manner.

Observations:

In integer division the fractional part of the result is truncated and ignored.

If any bit of an operand is x or z in an arithmetic operation, the result takes

the x value.

If the first operand of a modulus operator is negative, the result is also a

negative number.

Depending on the type of definition of a number, a modulus operation can lead to

different results. Typical examples are given in Table 6.3.

6.5.2.2 Logical Operators
There are two logical operators involving two operands. The operands concerned

can be variables or expressions involving variables. In both cases the result of the

operation is a single bit of value 1 (true) or 0 (false). If a bit in one of the operands

is x or z, the result of evaluation of the expression has an x value. The operator

details are shown in Table 6.4. The modules in Figure 6.8 and Figure 6.9 are

examples of the illustration of the use of logical binary operators.

6.5.2.3 Relational Operators
There are four relational operators; their details are shown in Table 6.5. A

relational operator treats both the operands as binary numbers and compares them.

The result is a 1 (true) bit or a 0 (false) bit. If a bit in either operand is x or z, the

result has x (unknown) value. The operands can be variables or expressions

involving variables. Operands of net or reg type are treated as unsigned numbers.

Real and integers can be positive or negative (i.e., signed) numbers.

OPERATORS 139

Table 6.3 Typical modulus operations and their results

Expressions involving

modulus operator

Result of the

operation
Remarks

15 % 5 0

14 % 5 4

Results are obvious

4’hf % 5 0

4’he % 5 4

The numbers 4’hf and 4’he are in hex format

with decimal values of 15 and 14, respectively.

But the denominator 5 is in decimal form.

6’o15 % 5 3 6’o15 is an octal number with a decimal value

of 13.

–4 % 3 –1

4 % –3 Illegal form

Table 6.4 Binary logical operators and their symbols

Operator type Symbol Possible output value

AND &&

OR ||
Single-bit output

Table 6.5 Relational operators and their symbols

Operator type Symbol Possible output value

Greater than >

Less than <

Greater than or equal to >=

Less than or equal to <=

Single-bit output

6.5.2.4 Equality Operators
The equality operator makes a bit-by-bit comparison of the two operands and

produces a result bit. The result bit is a 1 (true) if the operand condition is

satisfied; otherwise it is 0 (false). The operands can be variables or expressions

involving variables. If the operands are of unequal length, the shorter one is zero

filled to match the larger operand. The operators in this category are only of two

types – those to test the equality and those to test inequality. The four operators in

this category are given in Table 6.6.

6.5.2.5 Bit-wise Logical Operators
The operator does a specified bit-by-bit operation on the two operands and

produces a set of result bits. The result is (bit-wise) as wide as the wider operand.

140 MODELING AT DATA FLOW LEVEL

Table 6.6 Equality operators and their symbols

Operand

symbol
Description of operand

Possible

logical value

of result

== (The symbol comprises two consecutive equal signs.) If the

two operands are equal bit by bit, the result is 1 (true); else the

result is 0 (false). If either operand has a x or z bit, the result is

x.

0, 1, or x

!= (The symbol comprises of an exclamation mark followed by an

equal sign.) A bit-by-bit comparison of the two operands is

made. The result is a 1 if there is a mismatch for at least one bit

position.

0, 1, or x

=== (The symbol comprises of three consecutive equal signs.) The

operand bits can be 0, 1, x, or z. If the two operands match

on a bit by bit basis, the result is a 1 (true) bit; else it is 0 (false).

Note that the result is never x here.

0 or 1

!== (The symbol comprises an exclamation mark followed by 2

consecutive equal signs). The operand bits can be 0, 1, x, or z.

If the two operands do not match on a bit by bit basis, the result

is a 1 (true) bit; else it is 0 (false). Note that the result is never

x here.

0 or 1

If the width of one of the operands is less than that of the other, it is bit-extended

by filling zero bits and the widths are matched. Subsequently, the specified

operation is carried out. If one of the operands has an x or z bit in it, the

corresponding result bit is x. Either operand can be a single variable or an

expression involving variables. Table 6.7 gives the four operators of this category.

6.5.2.6 Operator Truth Table
The truth tables for different types of bit-wise operators are given in Table 6.8.

Note that an z input is treated as an x value (Compare these with their counterparts

for respective gate primitives in Chapter 4.)

Table 6.7 Bit-wise logical operators and their symbols

Operator type Symbol Possible result

AND &

OR |

XOR ^

XNOR ~^ or ^~

0, 1, or x

OPERATORS 141

Table 6.8 Truth tables for bit-wise operators

6.5.2.7 Shift Operators
Table 6.9 shows the two operators of this category. The << operator executes left

shift operation, while the >> operator executes the right shift operation. In either

case the operand specified on the left is shifted by the number of bits specified on

the right. The shifting is done irrespective of whether the bits are 0, 1, x, or z.

The bits shifted out are lost. The vacated positions created as a result of the

shifting are filled with zeroes. If the right operand is x or z, the result has an x

value. If the right operand is negative, the left operand remains unchanged.

6.5.3 Ternary Operator

Verilog has only one ternary operator – the conditional operator. It checks a

condition and does a branching. It is a versatile and powerful operator. It

enhances the potential of design description substantially (as can be seen through

the examples below). The general form is

A?b:c

The conditional operation is made up of two operators – “?” and “:” – and three

operands. The two operands separate the three operators in the order shown. The

operational sequence of the operation is as follows:

AND

Input 2

0 1 X

0 0 0 0

1 1 0 XIn
p

u
t

1

X 0 X X

OR

Input 2

0 1 X

0 0 1 X

1 1 1 1 In
p

u
t

1

X X 1 X

XOR

Input 2

0 1 X

1 1 0 X

In
p

u
t

1

X X X X

XNOR

Input 2

0 1 X

0 1 1 X

In
p

u
t

1

X X X X

Negation

Input 0 1 X

Output 1 0 X

142 MODELING AT DATA FLOW LEVEL

Table 6.9 Shift-type operators and their symbols

Operand
Typical

usage
Operation

>> A >> b The set of bits representing A are shifted right repeatedly b times.

<< A<< b The set of bits representing A are shifted left repeatedly b times.

“A” is evaluated first.

If A is true, b is evaluated.

If A is false, c is evaluated.

If A evaluates to an ambiguous result, both b and c are evaluated. Then they are

combined on a bit-by-bit basis to form the resultant bit stream. The result bit can

have the following three possible values:

0 if the corresponding bits of b and c are 0.

1 if the corresponding bits of b and c are 1.

X otherwise.

As an example, consider the assignment statement

assign y = w ? x : z;

where w, x, y and z are binary bits. If the bit w is true (1), y is assigned the value

of x: otherwise – that is, if w is false (0) – y is assigned the value of z. The

assignment statement here multiplexes x and z onto y; w is the control signal here.

Consider the assignment

assign flag = (adr1 == adr2)?1’b1 : 1’b0;

Here adr1 and adr2 are two multibit vectors representing two addresses. If the

two are identical, the flag bit is set to zero; else it is reset.

assgn zero_flag = (|byte)? 0:1;

All the bits of the byte are ORed together here. The zero_flag is set if the result is

zero.

assign c = s ? a: b; //The net c is connected to a if s=1; else it is connected to

b

The statement realizes a 2 to 1 mux. b and c have to be scalars or vectors of the

same width. The assignment can be expanded to realize larger muxes.

The conditional operator can be nested [see Figure 6.19]. Nesting gives rise

to a variety of uses of the operator. As an example, consider the formation of an

ALU. ALU can be defined in a compact manner using the ternary operator.

assign d = (f==add)?(a+b): ((f==subtract)?(a-b): ((f==compl)?~a: ~b));

OPERATORS 143

Innermost

conditional

operation

Outer conditional operation

Outermost conditional operation

 o = (s == 2'b00) ? I0 : ((s == 2'b01) ? I1 :assign

((s == 2'b10) ? I2 : I3));

Figure 6.19 Illustration of nested conditional operations.

In the example here, f is taken as a control word. If it is equal to the number add,

d is to be equal to the sum of a and b. If f is equal to the number subtract, d is to

be equal to the difference between a and b. If it is equal to the number compl, d is

to be the complement of a. Otherwise (i.e., f = 3) d is taken as the complement of

b. As another example consider a mux; the assignment statement in Figure 6.18

represents a 4-to-1 mux formed with a nested set of ternary operators. The

construct in the figure can be judiciously used to form muxes of larger sizes.

Example 6.2 ALU

Figure 6.20 shows an ALU module. It is built around a single executable

statement present as a continuous assignment. A test bench for the ALU is also

shown in the figure. The synthesized circuit is shown in Figure 6.21. Results of

running the test bench are shown in Figure 6.22. Some of the combinational

circuit operations required are realized inside the “modgen” blocks of the FPGA

used. The nature of the ALU description in the module decides the translation into

circuit. Contrast this with the ALU considered at the gate level of design in

Section 5.7 where each functional block is instantiated separately and the selected

set of outputs steered to the final output. Each such instantiated module translates

into a separate circuit block. Their outputs are mux’ed into the final output vector.

There is a one-to-one correspondence between the elements of the design

description and their respective realizations.

module alu_df1 (d, co, a, b, f,cci);

//a SIMPLE ALU FOR ILLUSTRATION PURPOSES

output [3:0] d;

output co;

wire[3:0]d;

continued

144 MODELING AT DATA FLOW LEVEL

continued

wire co;

input cci;

input [3 : 0] a, b;

input [1 : 0] f;//f is a two-bit function select input;

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b)

 :((f==2'b10)? {1'bz,a^b}:{1'bz,~a}));

/*co is the carry bit in case of addition;it is the
borrow bit in case of subtraction. In the other two
cases, co is not required. Hence it is assigned z
value.*/

endmodule

module tst_aludf1; //test-bench

reg [3:0]a,b;

reg[1:0] f;

reg cci;

wire[3:0]d;

wire co;

alu_df1 aa(d,co,a,b,f,cci);

initial

begin

cci= 1'b0;

f = 2'b00;

a = 4'b0;

b = 4'h0;

end

always

begin

#2 cci = 1'b0;f = 2'b00;a = 4'h1;b = 4'h0;

#2 cci = 1'b1;f = 2'b00;a = 4'h8;b = 4'hf;

#2 cci = 1'b1;f = 2'b01;a = 4'h2;b = 4'h1;

#2 cci = 1'b0;f = 2'b01;a = 4'h3;b = 4'h7;

#2 cci = 1'b1;f = 2'b10;a = 4'h3;b = 4'h3;

#2 cci = 1'b1;f = 2'b11;a = 4'hf;b = 4'hc;

end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,

f = %b ,d =%b ,co= %b ",cci ,a,b,f,d,co);

initial #30 $stop;

endmodule

Figure 6.20 A 4-bit 4-function ALU and a test bench for the same.

OPERATORS 145

Figure 6.21 Synthesized circuit of the ALU in Example 6.18.

output listing

0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0
2 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0
4 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1
6 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0
8 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1
#10 cci = 1 , a= 0011 ,b = 0011 ,f = 10 ,d =0000 ,co= z
#12 cci = 1 , a= 1111 ,b = 1100 ,f = 11 ,d =0000 ,co= z
#14 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0
#16 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1
#18 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0
#20 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1
#22 cci = 1 , a= 0011 ,b = 0011 ,f = 10 ,d =0000 ,co= z
#24 cci = 1 , a= 1111 ,b = 1100 ,f = 11 ,d =0000 ,co= z
#26 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0
#28 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1

Figure 6.22 Results of running the test bench for the ALU module in Figure 6.20.

146 MODELING AT DATA FLOW LEVEL

Example 6.3 Four-to-One Mux

Figure 6.23 shows a 4-to-1 mux module realized through repeated similar

assignments. It multiplexes one out of four 4-bit-wide buses to the output side.

The assignments are done through 4-bit-wide switches. (The mux can be built up

in other ways too; for example, it can be built around the compact assignment

statement in Figure 6.20.) The synthesized version of the mux is shown in

Figure 6.24; it is essentially the vector counterpart of the 4-to-1 mux of

Figure 4.40.

module mux_df1(ao, a1, a2, a3, a4, f, en);
//f is a 2 bit selector input & en is an enable input
output [3:0] ao;
input[3:0] a1, a2, a3, a4;
input en;
input [1:0]f;
trireg [3:0]aa0;
parameter d=4'hz;
assign aa0=(f==2'b00)?a1:d;
assign aa0=(f==2'b01)?a2:d;
assign aa0=(f==2'b10)?a3:d;
assign aa0=(f==2'b11)?a4:d;
assign ao =(en)?aa0:d;
endmodule

Figure 6.23 A 4 to 1 vector multiplexor module at the data flow level.

Figure 6.24 Synthesized circuit of the mux in Figure 6.21.

OPERATORS 147

Example 6.4 BCD Adder

A BCD adder can be formed through a compact assignment using a ternary

operator. The assignment statement has the form

assign {co, sumd} = (sumb<=4’b1001)?{1’b0,sumb} : (sumb + 4’b0110;

The adder module using the above assignment and a test-bench for the same are

shown in Figure 6.25. The synthesized version of the circuit is shown in Figure

6.26. The results of running the test bench are given in Figure 6.27.

module bcd(co,sumd,a,b);
input [3:0]a,b;
output [3:0]sumd;
output co;
wire [3:0]sumb;
assign sumb = a + b;
assign{co,sumd}=(sumb<=4'b1001)?{1'b0,sumb}:(sumb+4'b01
10);
endmodule

module tst_bcd;//Test bench
reg [3:0]a,b;
wire co;
wire [3:0]sumd;
bcd bcc(co,sumd,a,b);
initial

begin
 a = 4'h0 ; b = 4'h0;
#2 a = 4'h1 ; b = 4'h0;
#2 a = 4'h2 ; b = 4'h1;
#2 a = 4'h4 ; b = 4'h5;
#2 a = 4'h6 ; b = 4'h6;
#2 a = 4'hd ; b = 4'h1;
#2 a = 4'hf ; b = 4'h0;
end

initial $monitor($time,"a = %b, b = %b, co = %b, sumd =
%b",a,b,co,sumd);
initial #16 $stop;
endmodule

Figure 6.25 A BCD adder module at the data flow level.

148 MODELING AT DATA FLOW LEVEL

Figure 6.26 Synthesized circuit of the BCD adder.

0 a = 0000 , b = 0000 , co = 0 , sumd = 0000
2 a = 0001 , b = 0000 , co = 0 , sumd = 0001
4 a = 0010 , b = 0001 , co = 0 , sumd = 0011
6 a = 0100 , b = 0101 , co = 0 , sumd = 1001
8 a = 0110 , b = 0110 , co = 1 , sumd = 0010
#10 a = 1101 , b = 0001 , co = 1 , sumd = 0100
#12 a = 1111 , b = 0000 , co = 1 , sumd = 0101

Figure 6.27 Results of running the test bench for the BCD adder in Figure 6.24.

6.5.4 Operator Priority

A clear understanding of the operator precedence makes room for a compact

design description. But it may lead to ambiguity and to inadvertent errors.

Whenever one is not sure of the operator priorities, it is better to resort to the use

of parentheses and ensure clarity and accuracy of expressions. Further, some

synthesizers may not interpret the operator precedence properly. These too call for

the apt use of parentheses.

The operators are arranged in tabular form and shown in Table 6.10. The

table brings out the order of precedence. The order of precedence decides the

priority for sequence of execution and circuit realization in any assignment

statement. The following form the basic rules for the same:

OPERATORS 149

Table 6.10 Operator precedence details

Unary

operators
! & ~& | ~| ^ ~^ + –

Highest

precedence

* ? /

+ -

<< >>

< <= > >=

== != === !==

& ^ ~^

|

&&

Binary

operator

||

Ternary

operators
? :

Lowest

precedence

Unary operators have the highest priority and execute first.

Subsequently the binary operators execute. Amongst these the algebraic

operators have the highest precedence. Amongst the algebraic operators *, /

and % have precedence over + and – operators.

Subsequent precedence amongst the binary operators is as shown in the table.

Conditional operator has the lowest precedence and hence is executed last.

In any expression, operators associate from left to right. Ternary operator is

the only exception to this; it associates from right to left.

6.5.4.1 Examples

P = Q – R + S;

Here R is subtracted from Q and then S is added to the result. However, operator

precedence does not cause any ambiguity or change the result here.

P = Q – R / S;

In the above case the “divide” operator “/” has precedence over the “subtract”

operator “–”. Hence R will be divided by S, and the result will be subtracted from

Q. If division of (Q – R) is desired, the expression has to be recast as

P = (Q – R) / S;

In a lengthier expression such as

P = a1 – a2 / a3 + a4 * a5;

150 MODELING AT DATA FLOW LEVEL

the operation is equivalent to

P = a1 – (a2 / a3) + (a4 * a5);

Use of parentheses adds to clarity especially in operations involving more than two

operators. The operation

P > Q – R

is the same as

P > (Q – R)

since the relational operator “>” has a lower precedence than the algebraic

operator “–”. Similarly, the expression

P + Q <= R

is the same as

(P + Q) <= R.

6.5.5 Bit Widths of Expressions

When expressions are evaluated or continuous assignments are made, the bit width

of the result is decided by different factors. Three cases arise here:

The operators decide the bit width of the result; logical operators like ‘&&’

and “||” are examples.

Widths of all operands are specified and they are consistent in all the

expressions used. Bit-wise logic with all the operands having the same width

are examples of this.

Widths of all operands are not specified or do not match. The result of

expression evaluation and assignments can lead to ambiguity here. However,

the rules to resolve these lead mostly to a natural solution.

Bit widths of results of evaluating expressions are given in Table 6.11 for various

cases.

6.6 ADDITIONAL EXAMPLES

The use of operands and their combinations are illustrated through a set of two

examples here. They also illustrate how data flow level statements can be

combined with instantiation of primitives in defining the modules. The results of

running the test-benches are shown as waveforms of selected signals. $monitor

or $display commands are not inserted in the test benches.

ADDITIONAL EXAMPLES 151

Table 6.11 Bit widths of expressions: A, B and C represent operands in the table; opr

represents an operator

Expression Bit width

Integer, unsized constant number Compiler-specific

Sized constant number Decided by the specified size

Opr A where opr is an unary operator

out of +, - or ~

Same as that of A

Opr A where opr is an unary operator

of Table 6.1

A opr B where opr is a logical operator

of Table 6.4, a relational operator of

Table 6.5 or an equality operator of

Table 6.6

1

A opr B where opr is an algebraic

operator from Table 6.2 or a bit-wise

logical operator from Table 6.7.

Width of A or B, whichever is higher

A opr B where opr is a shift operator

from Table 6.8

Same as that of A

C ? A : B Width of A or B, whichever is higher

{A, . . , B} The sum of the bit widths of all the operands

{N*{A, . . . , B}} N times the sum of the bit widths of all the

operands

Example 6.5 Bus Switcher

Figure 6.28 shows the module of a 4-bit bus switcher. A is a 4-bit input bus that is

switched on to a selected 4-bit bus. The selection is done by a 2-bit select vector

and carried out through a set of simple ternary operator-based assignments. The

synthesized circuit of the switcher is shown in Figure 6.29. It decodes the 2-bit

select vector into 4 lines that form the control lines for switching. The switching is

done through a 4 4 tri-state buffer bank. The bus switcher can be easily scaled

up to form switches of 8- or 16-bit widths.

module demux_df1(a1, a2, a3, a4, a, f);
//A 1 to 4 demux module at data flow level:
output[3:0]a1, a2, a3, a4; // output vectors
input[3:0]a; //a 4 bit input vector
input[1:0]f; //f is the select vector
parameter d = 4'hz;

continued

152 MODELING AT DATA FLOW LEVEL

continued

assign a1=(f==2'b00)?a:d;
assign a2=(f==2'b01)?a:d;
assign a3=(f==2'b10)?a:d;
assign a4=(f==2'b11)?a:d;
endmodule

Figure 6.28 A 4-bit switcher module at the data flow level.

Figure 6.29 Synthesized circuit of the 4-bit switcher.

Example 6.6 Ring Counter

A ring counter is built here in a step-by-step manner. Firstly the simple latch of

Example 5.1 has been modified to form another latch shown in Figure 6.30. It has

two sets of inputs – sb, rb; and d, db – in place of the single set of sb and rb in

Example 5.1. The synthesized circuit is shown in Figure 6.31. The basic cell in the

design library being a 2-input AND gate, the NAND function is realized with 2

AND gates followed by a NOT gate. With the additional set of inputs here – d and

db – set and reset operations can be carried out independently of the data input.

module srff7474(sb, d, rb, db, q, qb);
input sb, rb, d, db;
output q, qb;
nand(q, sb, d ,qb);
nand(qb, rb, db, q);
endmodule

Figure 6.30 A basic latch module.

ADDITIONAL EXAMPLES 153

Figure 6.31 Synthesized circuit of the basic latch in Figure 6.30.

A positive edge-triggered flip-flop of the 7474 type is formed by repeated

instantiation of the latch in the module of Figure 6.30. Such a flip-flop module is

shown in Figure 6.32; it is an enhanced version of the edge-triggered flip-flop in

Example 5.5 and in Figure 5.20. The synthesized circuit is shown in Figure 6.33.

The srff7474 instantiations are represented there as black boxes.

Figure 6.34 shows a module, which has 4 instantiations of the above edge-

triggered flip-flop. This cluster of 4 flip-flops can form the “seed module” of a

wide variety of sequential circuits. Figure 6.35 shows the corresponding

synthesized circuit.

module dff7474new(cp,d,sd,rd,q,qb);
input d,cp,sd,rd;
output q,qb;
wire sdd,rdd;
not(sdd,sd);
not (rdd,rd);
wire n1,n2,n1b,n2b;
 srff7474 ff1(sdd,n2b,rdd,cp,n1,n1b);
 srff7474 ff2(n1b,cp,rdd,d,n2,n2b);
 srff7474 ff3(sdd,n1b,rdd,n2,q,qb);
endmodule

Figure 6.32 An edge-triggered flip-flop built with the latch in Figure 6.30 and a test bench

for the same.

154 MODELING AT DATA FLOW LEVEL

Figure 6.33 Synthesized circuit of the edge-triggered flip-flop in Figure 6.32.

The 4 flip-flops in Figure 6.34 and Figure 6.35 have been connected to form a

simple 4-bit ring counter in Figure 6.36. Cen is the overall enabling signal for the

ring counter connection. The connection is defined through a set of direct

continuous assignments. A test-bench for the ring counter is also included in

Figure 6.36. Initially the binary number 1000 is loaded into the set of the 4 flip-

flops. Subsequently the flip-flops are connected in a ring counter fashion by

enabling Cen. At every positive edge of the clock the data in the ring counter is

shifted right by one bit and it circulates. Waveforms of the 4 flip-flops of the ring

counter obtained when running the test bench are shown in Figure 6.37. The

synthesized circuit of the ring counter is shown in Figure 6.38.

module unishrg(clk,d,sd,rd,q,qb);
input clk;
input[3:0]d,sd,rd;
output[3:0]q,qb;
dff7474new ff1(clk,d[0],sd[0],rd[0],q[0],qb[0]);
dff7474new ff2(clk,d[1],sd[1],rd[1],q[1],qb[1]);
dff7474new ff3(clk,d[2],sd[2],rd[2],q[2],qb[2]);
dff7474new ff4(clk,d[3],sd[3],rd[3],q[3],qb[3]);
endmodule

Figure 6.34 A module for a general set of 4 edge-triggered flip-flops.

ADDITIONAL EXAMPLES 155

Figure 6.35 Synthesized circuit of the module for a general set of 4 edge-triggered flip-

flops in Figure 6.34.

module rng_ctr(cen,clk,sd,rd,q,qb);
input clk,cen;
input[3:0]sd,rd;
output [3:0]q,qb;
wire [3:0]d;
unishrg uu(clk,d,sd,rd,q,qb);
assign d[1]=(cen)? q[0]:1'b0;
assign d[2]=(cen)? q[1]:1'b0;
assign d[3]=(cen)? q[2]:1'b0;
assign d[0]=(cen)? q[3]:1'b0;
endmodule

module tst_rng_ctr;//test-bench
reg clk,cen;
reg[3:0]sd,rd;
wire [3:0]q,qb;
rng_ctr rsh(cen,clk,sd,rd,q,qb);
initial
begin

 clk=0;sd=4'b1000;rd=4'b0111;

continued

156 MODELING AT DATA FLOW LEVEL

continued

#3sd=4'b0000;rd=4'b0000;
#2cen=1'b1;

end
always
begin
#2clk =~clk;
end
initial #50 $stop;
endmodule

Figure 6.36 A module for a ring counter and a test bench for the same.

Figure 6.37 Waveforms of a selected set of signals obtained with the test bench in

Figure 6.36. The numbers below indicate the time steps

Figure 6.38 Synthesized circuit of the ring counter in Figure 6.36.

EXERCISES 157

6.7 EXERCISES

1. Use continuous assignment statements to design circuits for the following:

Byte comparator, Parity generator for one data byte, Binary byte to BCD

code, a pair of BCD digits to binary, BCD to Ex-3 code, Ex-3 to BCD, byte

multiplier, BCD nibble to 7-segment decoder [Bignel, Sedra, Tocci].

2. What is the result vector in each of the following concatenation operations?

 {3{a},b,c}; {3{a},2{b},c};{3{{a},2{b ,c}}};{3{3{a},2{b}},c};

 {{3{a},b},c};{3{a},b,2{c,1’b0}};};{3{{a, 2’b10, b},2{c,1’b0}}}.

3. Consider the program segment in Figure 6.39; test the segment through a

test-bench with values of p and q ranging from 0 to 10. Explain why only

r3 is correct. Declare r1, r2, and r3 to be 5 bits wide: Repeat the test run and

comment on the results.

…..

reg[3:0] p, q, r1, r2, r3;

….

….

….

assign r1 = p + q;

assign r1 = p + q + 3’b0;

assign r1 = p + q + 0;

…..

….

Figure 6.39 Segment of a module for Exercise No. 3 above.

4. Realize the edge-triggered flip-flop of Figure 5.14 through continuous

assignments for the gates. Test it through a test bench.

5. Form the NOR gate counterpart of the edge-triggered flip-flop of Figure

5.14; realize it through continuous assignments. Test it through a test bench.

6. Use the set of 4 edge-triggered flip-flops of Figure 6.34 as the basis and

form the following. In each case, form a test-bench and test the design.

A left-shift-type shift register.

An 8-bit shift register of the left shift type.

A 4-bit Johnson counter.

Have a select line sl. If sl = 1, q[0], q[1], and q[2] are to be

connected to the data inputs d[1], d[2], and d[3], respectively and the

set of flip-flops should function as a right-shift-type shift register. If

sl = 0, q[3], q[2], and q[1] are to be connected to d[2], d[1], and

d[0], respectively, to form a left-shift-type shift register.

158 MODELING AT DATA FLOW LEVEL

7. Use the edge-triggered flip-flop of Figure 6.32 as the basis and form (a) a

ripple counter of the count up type, (b) a ripple counter of the count-down

type, (c) an up down counter. In the case of the up down counter, U_Db is

the mode signal. If it is high, the counter will count up. If it is low, the

counter will count down.

8. Maximum length sequences (Pseudo-random sequences)[Proakis]: Consider

a set of r flip-flops connected in a shift register fashion. D[k] and q[k]
represent the data input and output of the kth flip-flop, respectively. The

flip-flops are clocked at regular intervals by the clock signal clk. D[1], the

data input to the first flip-flop, is formed as the XOR function of a select set

of flip-flop outputs; if these are selected suitably, the binary vector

representing the outputs of all the flip-flops together takes all possible states

in a “pseudo-random” fashion and repeats the sequence cyclically.

Specifically, N – the total number of states the sequence passes through – is

given by

N = 2r – 1

 Table 6.12 gives the flip-flop numbers whose outputs are to be XOR’ed to

form d[1] to yield the maximum length sequence. Design the Maximum

length sequence generator for different values of r. Give the clock input and

obtain the output waveform.

Table 6.12 Details for Exercise 8 above

r 2 3 4 5 6 7 8 9 10 11 12

N 3 7 15 31 63 127 255 511 1023 2047 4095

FF numbers to

be XOR’ed
2,1 3,1 4,1 5,2 6,2 7,1 8,5,3,1 9,4 10,3 11,1 12,6,4,1

159

7

BEHAVIORAL MODELING — 1

7.1 INTRODUCTION

Design descriptions at data flow level and gate level are close to the circuit. At

every stage of the design description process, one can relate the modules and the

instantiations with the corresponding logic or sequential blocks and their

interconnections. The approach is practical and effective as long as the gate count

remains within a few hundred. An increase in gate count may still be

accommodated, if it is due to an increase in vector size –for example, when a

system designed and tested at the 8-bit level is being scaled up to a 16- or 32-bit

level. But with many of the VLSI’s of today, one has to work at a different

dimension – the circuit can have a million gates. The increase in vector size may

still be accommodated at the data flow level (e.g., 32- or 64-bit systems), since it

calls only for scaling of a smaller design. But increase in terms of functional

complexity makes the approach almost intractable for many designs.

Behavioral level modeling constitutes design description at an abstract level.

One can visualize the circuit in terms of its key modular functions and their

behavior; it can be described at a functional level itself instead of getting bogged

down with implementation details. The description is carried out essentially with

constructs similar to those in “C” language; the design itself is similar to

programming in “C” [Gottfried]. For example, one can describe an FFT or a

digital filter routine in terms of these constructs. The design can be simulated,

debugged, and finalized. This completes the system level structure for the design.

Subsequently, one can expand the design by describing the modules in terms of

components closer to the data flow and gate level models. One can simulate and

debug each such component module, check it for its functionality, integrate it with

the main design and test conformity. Constructs for such layered expansion of

design are available in behavioral modeling. Proceeding with the layered

expansion of design, one can have the final design description at the RTL level

itself. However, we may add here that such a top-down activity is more in the

realm of design.

The constructs available in behavioral modeling aim at the system level

description. Here direct description of the design is not a primary consideration in

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

160 BEHAVIORAL MODELING — 1

the Verilog standard. Rather, flexibility and versatility in describing the design are

in focus [IEEE]. One should be able to describe the design and simulate it for its

functionality. Hence the constructs aim essentially at these two aspects of the

design. Synthesis tools available from different vendors can synthesize most of

the constructs at the data flow as well as the gate levels, but not all constructs or

combinations possible at the behavioral level can be synthesized. The extent to

which the constructs at the behavioral level are accommodated in synthesis varies

with vendors. The synthesized circuit need not guarantee optimum or near-

optimum realization either. These limitations are in line with the basic purpose of

behavioral level modeling mentioned above – that is, to complete an error or bug-

free description and identify the functional modules required. Their synthesis is

more often done following a more detailed design description at the RTL level.

7.2 OPERATIONS AND ASSIGNMENTS

The design description at the behavioral level is done through a sequence of

assignments. These are called ‘procedural assignments’ – in contrast to the

continuous assignments at the data flow level. Though it appears similar to the

assignments at the data flow level discussed in the last chapter, the two are

different. The procedure assignment is characterized by the following:

The assignment is done through the “=” symbol (or the “<=” symbol) as was

the case with the continuous assignment earlier.

An operation is carried out and the result assigned through the “=” operator to

an operand specified on the left side of the “=” sign – for example,

N = ~N;

Here the content of reg N is complemented and assigned to the reg N itself.

The assignment is essentially an updating activity.

The operation on the right can involve operands and operators. The operands

can be of different types – logical variables, numbers – real or integer and so

on.

All the operands are given in Tables 6.1 to 6.9. The format of using them and

the rules of precedence remain the same.

The operands on the right side can be of the net or variable type. They can be

scalars or vectors.

It is necessary to maintain consistency of the operands in the operation

expression – e.g.,

N = m / l;

Here m and l have to be same types of quantities – specifically a reg,

integer, time, real, realtime, or memory type of data – declared in

advance.

The operand to the left of the “=” operator has to be of the variable (e.g.,

reg) type. It has to be specifically declared accordingly. It can be a scalar, a

vector, a part vector, or a concatenated vector.

FUNCTIONAL BIFURCATION 161

Procedural assignments are very much like sequential statements in C.

Normally they are carried out one at a time sequentially. As soon as a

specified operation on the right is carried out, the result is assigned to the

quantity on the left – for example

N = m + l;

N1 = N * N;

The above form a set of two procedures placed within an always block.

Generally they are carried out sequentially in the order specified; that is, first

m and l are added and the result assigned to N. Then the square of N is

assigned to N1. Subsequently the following assignment, if any, is carried out.

However, there can be exceptions to this which will be discussed later. The

sequential nature of the assignments requires the operands on the left of the

assignment to be of reg (variable) type. The basic sequential nature of

assignments here is in direct contrast to the concurrent nature of assignments

at the data flow level.

Procedural assignments within a process are of a variety of types. These are

discussed later.

7.3 FUNCTIONAL BIFURCATION

Design description at the behavioral level is done in terms of procedures of two

types; one involves functional description and interlinks of functional units. It is

carried out through a series of blocks under an “always” banner – discussed

later. The second concerns simulation – its starting point, steering the simulation

flow, observing the process variables, and stopping of the simulation process; all

these can be carried out under the “always” banner, an “initial” banner, or

their combinations. However, each always and each initial block initiates

an activity flow during simulation. In general the activity with all such blocks

starts at the simulation time and flows concurrently during the whole simulation

process. The concurrent flow of activity with all processes is characteristic of any

behavioral level module. A procedure-block of either type – initial or

always – can have a structure shown in Figure 7.1. A block starts with the

declaration of the type of block – that is, initial or always. It may be

followed by the definition of a triggering activity and then the body of the block.

The body may be a single procedural assignment or a group of procedural

assignments. In the latter case the block appears within a “begin – end” or

similar blocks. The initial and always blocks have distinct characteristics.

The two are discussed separately.

162 BEHAVIORAL MODELING — 1

 type_of_block @(sensitivity_list)

begin; name_of_block

 local variable declarations;

 procedural assignment

statements;

end

Type of block is specified here: only two types

are possible;- initial & always

The symbol signifies an event control (only for

always blocks)

Specifies the event which flags off the execution

of the block (only for always blocks)

The block can be assigned a name which can be

referred

All variables etc., local to the block are declared at

the beginning of the block

The procedural statements form the body of the block

All the activities within the block are enclosed within

the begin-end construct

Figure 7.1 Structure of a typical procedural block.

7.3.1 begin – end Construct

If a procedural block has only one assignment to be carried out, it can be specified

as below:

initial #2 a=0;

FUNCTIONAL BIFURCATION 163

The above statement assigns the value 0 to variable a at the simulation time of

2 ns. It is possibly the simplest initial block. More often more than one

procedural assignment is to be carried out in an initial block. All such

assignments are grouped together between “begin” and “end” declarations.

Functionally, the construct is similar to the begin–end construct in Pascal or the

{ } construct in C language. The following are to be noted here:

Every begin declaration must have its associated end declaration.

begin – end constructs can be nested as many times as desired.

For clarity in description and to avoid mistakes, nested begin – end blocks

are separated suitably (see Figure 7.2).

7.3.2 Name of the Block

Any block can be assigned a name, but it is not mandatory. Only the blocks which

are to be identified and referred by the simulator need be named. Needless to say

the names assigned to different blocks have to be different. Names chosen should

conform to the rules for the selection of names to variables [see Section 3.4].

Assigning names to blocks serves different purposes:

Registers declared within a block are local to it and are not available outside.

However, during simulation they can be accessed for simulation, etc., by

proper dereferencing [see Section 11.4].

Named blocks can be disabled selectively when desired [see Section 8.6].

begin

...........

assignments

.........

begin

.............

assignments

..............

begin

..........

assignments

............

...........

end

............

end

end

in
n
er

m
o
st

b
lo

ck

in
te

rm
ed

ia
te

 b
lo

ck o
u
te

rm
o
st

b
lo

ck

Figure 7.2 Nesting of begin-end blocks.

164 BEHAVIORAL MODELING — 1

7.3.3 Local Variables

Variables used exclusively within a block can be declared within it. Such a

variable need not be declared outside, in the module encompassing the block.

Such local declarations conserve memory and offer other benefits too. Regs

declared and used within a block are static by nature. They retain their values at

the time of leaving the block. The values are modified only at the next entry to the

block.

7.4 INITIAL CONSTRUCT

A set of procedural assignments within an initial construct are executed only

once – and, that too, at the times specified for the respective assignments.

Consider the initial process shown in Figure 7.3. It is characterized by the

following:

In any assignment statement the left-hand side has to be a storage type of

element (and not a net). It can be a reg, integer, or real type of

variable. The right-hand side can be a storage type of variable (reg,

integer, or real type of variable) or a net.

As already mentioned in Section 7.2, all the operations described in Tables 6.1

to 6.9 for continuous assignment can be used for procedural assignments as

well. The context decides whether the assignment is of a continuous type or

procedural type. In the latter case it is present within an always or an

initial construct.

All the procedural assignments appear within a begin–end block explained

earlier.

All the procedural assignments are executed sequentially – in the same order

as they appear in the design description. The waveforms of a and b
conforming to the assignments in the block are shown in Figure 7.4.

Initially (at time t = 0 ns), a and b are set equal to zero.

reg a,b;
initial

begin

 a = 1'b0;

 b = 1'b0;

 #2 a = 1'b1;

 #3 b = 1'b1;

 #1 a = 1'b0;

 #100$stop;
end

Figure 7.3 A typical initial block.

INITIAL CONSTRUCT 165

a

b

t0 642 104 106

finish

variables

change

value

start

Figure 7.4 Nature of variation of a and b with time in the module of Figure 7.3.

At time 2 ns a is made equal to 1. After 3 more nanoseconds – that is, at the

5th ns – b is made equal to 1.

After one more ns – that is, at the 6th ns – a is made equal to 0.

$stop is a system task. 100 ns later – that is, at the 106th ns – the simulation

comes to an end (see Figure 7.4).

Integer values have been used here to decide time delay values. In a more

general case the delay value can be a constant expression. It is evaluated and

decided dynamically as the simulation proceeds.

The initial block above does three controlling activities during the

simulation run.

Initialize the selected set of reg's at the start.

Change values of reg's at predetermined instances of time. These form the

inputs to the module(s) under test and test it for a desired test sequence.

Stop simulation at the specified time.

Figure 7.4 depicts the events for the above case; t is the time axis here.

Specific system tasks available in Verilog can be used to tabulate the values of

selected variables. Providing such output display in a desired or preferred format

is the activity of the simulation run. Two system tasks are useful here –

$display & $monitor [see Section 3.15 and Chapter 11]. By way of

illustration consider the simulation routine in Figure 7.5. It incorporates the block

166 BEHAVIORAL MODELING — 1

module nil;

reg a, b;
initial

begin

 a = 1'b0;

 b = 1'b0;

 $display ("display: a = %b, b = %b", a, b);

 #2 a = 1'b1;

 #3 b = 1'b1;

 #1 a = 1'b0;

 #100 $stop;
end

initial

$monitor("monitor: a = %b, b = %b", a, b);
endmodule

Figure 7.5 A typical module with an initial block.

Figure 7.3 and two system tasks. The result of the simulation is shown in

Figure 7.6. The $display task is a one-time activity. It is executed when

encountered. At that instant in simulation the values of a and b are zero and the

same are displayed. In contrast, $monitor is a repeated activity. It need be

present only once in a simulation routine – all the specified variables will be

monitored. If multiple $monitor tasks are present in the routine, only the last

one will be active. All others will be ignored. In contrast, the $display task

may appear any number of times in a module. It is executed every time it is

encountered.

Simulators have the facility to observe the waveforms and changes in the

magnitudes of different variables with simulation time. The necessary facility is

provided with the help of user-friendly menus and icons. Waveforms of a and b
obtained with the test bench of Figure 7.5 are shown in Figure 7.7; they can be

seen to be consistent with their values shown in Figure 7.6.

output

display : a = 0 ,b = 0
monitor : a = 0 ,b = 0
monitor : a = 1 ,b = 0
monitor : a = 1 ,b = 1
monitor : a = 0 ,b = 1

Figure 7.6 Results of running the test bench in Figure 7.5.

INITIAL CONSTRUCT 167

Figure 7.7 Results of running the test bench in Figure 7.5 shown as waveforms.

7.4.1 Multiple Initial Blocks

A module can have as many initial blocks as desired. All of them are

activated at the start of simulation. The time delays specified in one initial

block are exclusive of those in any other block. Consider the module in Figure 7.8

which is a modified version of that in Figure 7.5. It has four initial blocks.

The $monitor task is declared separately (a healthy practice). The simulated

results are shown in Figure 7.9. The following observations are in order here:

module nil1;

initial

reg a, b;

begin

 a = 1'b0;

 b = 1'b0;

 $display ($time,"display: a = %b, b = %b", a, b);

 #2 a = 1'b1;

 #3 b = 1'b1;

 #1 a = 1'b0;

end

initial #100$stop;

initial $monitor ($time, “monitor: a = %b, b = %b", a, b);

initial

 begin

 #2 b = 1'b1;

 end

endmodule

Figure 7.8 A typical module with multiple initial blocks.

168 BEHAVIORAL MODELING — 1

output

display : a = 0 , b = 0
monitor : a = 0 , b = 0
monitor : a = 0 , b = 1
monitor : a = 1 , b = 1
monitor : a = 1 , b = 0
monitor : a = 1 , b = 1
monitor : a = 0 , b = 1

Figure 7.9 Results of running the test bench in Figure 7.8.

All changes in a are brought about in one initial block.

Changes to b are specified in two blocks, and both these blocks are executed

concurrently.

The progress of simulation time in different blocks is concurrent. However,

those in one block are sequential. Changes in b are consistent with this.

The $stop task is in an independent initial block. Hence simulation is

terminated at 100 ns. Contrast this with the previous case (Figure 7.4), where

sequential execution results in finish of simulation after 106 ns (even though

in both the cases the statement “#100 $stop” remains the same).

More than one activity may be scheduled for execution at one time instant.

Those in one initial block are executed in the same order as they appear

– that is, sequentially.

Thus, the two events

a = 1'b0;

b = 1'b0;

are executed in the same sequential order – that is, b is set to 0 after a is set to

0, although both the activities are scheduled for execution at the same time.

At 2 ns a changes to 1 and b changes to 0. These two activities are to be done

concurrently. They are in different initial blocks. The order of their

execution depends upon the implementation. This does not cause any

anomaly in the present case. But it can be a potential source of problem in

more involved designs and their simulation.

7.5 ALWAYS CONSTRUCT

The always process signifies activities to be executed on an “always basis.” Its

essential characteristics are:

Any behavioral level design description is done using an always block.

The process has to be flagged off by an event or a change in a net or a reg.

Otherwise it ends in a stalemate.

ALWAYS CONSTRUCT 169

The process can have one assignment statement or multiple assignment

statements. In the latter case all the assignments are grouped together within a

“begin – end” construct.

Normally the statements are executed sequentially in the order they appear.

7.5.1 Event Control

The always block is executed repeatedly and endlessly. It is necessary to specify

a condition or a set of conditions, which will steer the system to the execution of

the block. Alternately such a flagging-off can be done by specifying an event

preceded by the symbol “@”. The event can be a change in the variable specified

in either direction or a change in a specified direction. For example,

@(negedge clk) :

executes the following block at the negative edge of the reg (variable) clk.

@(posedge clk) :

executes the following block at the positive edge of the reg (variable) clk.

@clk :

executes the following block at both the edges of clk.

The event can be a combination as well.

@(prt or clr) :

With the above event the block is executed whenever either of the variables

prt or clr undergoes a change.

@(posedge clk1 or negedge clk2) :

With the above event the block is executed in two cases – whenever the clock

clk1 changes from 0 to 1 state or the clock clk2 changes from 1 to 0. One can

specify more elaborate events by OR'ing individual ones. The following are

to be noted:

The events can be changes in reg, integer, real or a signal on a net.

These should be declared beforehand.

No algebra or logic operation is permitted as an event. The OR'ing signifies

“execute the block if any one of the events takes place.”

The edge transition on each event is to be specified separately

Note the difference between the following:

(posedge clk1 or clk2): means “execute the block following if clk1

goes to 1 state or clk2 changes state (whether 0 to 1 or 1 to 0).”

(posedge clk1 or posedge clk2): means “execute the block

following if clk1 goes to 1 state or clk2 goes to 1 state.”

170 BEHAVIORAL MODELING — 1

The positive transition for a reg type single bit variable is a change from 0 to1.

For a logic variable it is a transition from false to true.

The “posedge” transition for a signal on a net can be of three different

types:

0 to1

0 to x or z

x or z to 1

The “negedge” transition for a signal on a net can be of three different

types:-

1 to 0

1 to x or z

x or z to 0

If the event specified is in terms of a multibit reg, only its least significant bit

is considered for the transition. Changes in the other bits are ignored.

The event-based flagging-off of a block is applicable only to the always

block.

According to the recent version of the LRM, the comma operator (,) plays the

same role as the keyword or. The two can be used interchangeably or in a

mixed form. Thus the following are identical:

@ (a or b or c)

@ (a or b, c)

@ (a, b, c)

@ (a, b or c)

7.6 EXAMPLES

A few simple design examples are considered here [Arnold, Bogart, Navabi]]; they

are aimed at bringing out the potential flexibility at the behavioral level, despite

the compactness in the module descriptions. Some of these examples have already

been discussed in earlier chapters at the data flow as well as the gate levels.

Example 7.1 A Versatile Counter

We consider a versatile up-down counter module with the following facilities:

Clear input: If it goes high, the counter is cleared and reset to zero.

U/D input: If it goes high, the counter counts up; if it goes down, the counter

counts down.

The counter counts at the negative edge of the clock.

The counter counts up or down between 0 and N where N is any 4-bit hex

number.

EXAMPLES 171

The above counter design specifications are implemented in stages. The module in

Figure 7.10 is an up counter which counts up repeatedly from 0 to a preset number

N. A test-bench for the counter is also shown in the figure. N is an input to the

module. The count advances at every negative edge of the clock. When the count

reaches the value N, the count value a is reset to 0. The simulation results are

shown as waveforms in Figure 7.11 (only partially shown). The periodic clock

waveform (with a period of 4 ns), the incrementing of a at every negative edge of

the clock and counting of a from 0 to the set value of N (=1011 in this specific

module counterup(a,clk,N);
input clk;
input[3:0]N;
output[3:0]a;
reg[3:0]a;
initial a=4'b0000;
always@(negedge clk) a=(a==N)?4'b0000:a+1'b1;
endmodule

module tst_counterup;//TEST_BENCH
reg clk;
reg[3:0]N;
wire[3:0]a;
counterup c1(a,clk,N);
initial
begin

clk = 0;
N = 4'b1011;

end
always #2 clk=~clk;
initial $monitor($time,"a=%b,clk=%b,N=%b",a,clk,N);
endmodule

Figure 7.10 An up counter module.

Figure 7.11 Partial results of running the test bench in Figure 7.10.

172 BEHAVIORAL MODELING — 1

Figure 7.12 Synthesized circuit of the up counter in Figure 7.10.

case) can be seen from the figure. The synthesized circuit of the counter is shown

in Figure 7.12. It has a versatile counter block and a comparator. The comparator

compares the value of a with the set value of N and resets the counter when the

two are equal – as specified in the design module.

The module of Figure 7.13 is a down counter. The count a decrements at the

negative edge of the clock – clk. The counter counts down from N to zero. As

soon as the count reaches the value 0, it is set back to N. The simulation results

are shown tabulated in Figure 7.14 and as waveforms in Figure 7.15; these can be

seen to be consistent with the design module. The synthesized circuit is shown in

Figure 7.16. The basic blocks – namely versatile counter, comparator and buffer

for the clock – are the same as those for the up counter of Figure 7.12. The

comparator output loads the value of N back into the counter every time a reaches

the set value of N (In contrast, in the case of the up counter above, the comparator

resets the counter back to zero, whenever a reaches the set value of N.)

module counterdn(a,clk,N);
input clk;
input[3:0]N;
output[3:0]a;
reg[3:0]a;
initial a =4'b0000;

continued

EXAMPLES 173

continued

always@(negedge clk) a=(a==4'b0000)?N:a-1'b1;
endmodule

module tst_counterdn();//TEST_BENCH
reg clk;
reg[3:0]N;
wire[3:0]a;
counterdn cc(a,clk,N);
initial
begin

N = 4'b1010;
Clk = 0;

end
always #2 clk=~clk;
initial $monitor($time,"a=%b,clk=%b,N=%b",a,clk,N);
initial #55 $stop;
endmodule

Figure 7.13 Design module of a down counter and a test bench for the same.

Output

0a=1010,clk=0,N=1010
2a=1010,clk=1,N=1010
4a=1001,clk=0,N=1010
6a=1001,clk=1,N=1010
8a=1000,clk=0,N=1010
10a=1000,clk=1,N=1010
12a=0111,clk=0,N=1010
14a=0111,clk=1,N=1010
16a=0110,clk=0,N=1010
18a=0110,clk=1,N=1010
20a=0101,clk=0,N=1010
22a=0101,clk=1,N=1010
24a=0100,clk=0,N=1010
26a=0100,clk=1,N=1010
28a=0011,clk=0,N=1010
30a=0011,clk=1,N=1010
32a=0010,clk=0,N=1010
34a=0010,clk=1,N=1010
36a=0001,clk=0,N=1010

continued

174 BEHAVIORAL MODELING — 1

continued

38a=0001,clk=1,N=1010
40a=0000,clk=0,N=1010
42a=0000,clk=1,N=1010
44a=1010,clk=0,N=1010
46a=1010,clk=1,N=1010
48a=1001,clk=0,N=1010
50a=1001,clk=1,N=1010
52a=1000,clk=0,N=1010
54a=1000,clk=1,N=1010

Figure 7.14 Results of running the test bench in Figure 7.13.

Figure 7.15 Results of running the test bench in Figure 7.13 – shown partly as waveform.

Figure 7.16 Synthesized circuit of the down counter in Figure 7.13.

EXAMPLES 175

The up and down modes of counting have been combined in the up down

counter of Figure 7.17. A test bench is also shown in the figure. The test results

are tabulated in Figure 7.18 and also shown as waveforms in Figure 7.19. Figure

7.20 shows the synthesized circuit; the counter block remains the same as in the

last two cases; the mode control part of the circuit has been changed to meet the

enhanced needs. The counting can be seen to be changing from “up” to the

“down” type, when the mode control input u_d changes.

module updcounter(a,clk,N,u_d);
input clk,u_d;
input[3:0]N;
output[3:0]a;
reg[3:0]a;
initial a =4'b0000;
always@(negedge clk)
a=(u_d)?((a==N)?4'b0000:a+1'b1):((a==4'b0000)?N:a-
1'b1);
endmodule

module tst_updcounter();//TEST_BENCH
reg clk,u_d;
reg[3:0]N;
wire[3:0]a;
updcounter c2(a,clk,N,u_d);
initial
begin

N = 4'b0111;
u_d = 1'b0;
clk = 0;

end
always #2 clk=~clk;
always #34u_d=~u_d;
initial $monitor
($time,"clk=%b,N=%b,u_d=%b,a=%b",clk,N,u_d,a);
initial #64 $stop;
endmodule

Figure 7.17 Design module of an up down counter and a test bench for the same.

176 BEHAVIORAL MODELING — 1

0clk=0,N=0111,u_d=0,a=0111
2clk=1,N=0111,u_d=0,a=0111
4clk=0,N=0111,u_d=0,a=0110
6clk=1,N=0111,u_d=0,a=0110
8clk=0,N=0111,u_d=0,a=0101
10clk=1,N=0111,u_d=0,a=0101
12clk=0,N=0111,u_d=0,a=0100
14clk=1,N=0111,u_d=0,a=0100
16clk=0,N=0111,u_d=0,a=0011
18clk=1,N=0111,u_d=0,a=0011
20clk=0,N=0111,u_d=0,a=0010
22clk=1,N=0111,u_d=0,a=0010
24clk=0,N=0111,u_d=0,a=0001
26clk=1,N=0111,u_d=0,a=0001
28clk=0,N=0111,u_d=0,a=0000
30clk=1,N=0111,u_d=0,a=0000
32clk=0,N=0111,u_d=0,a=0111
34clk=1,N=0111,u_d=1,a=0111
36clk=0,N=0111,u_d=1,a=0000
38clk=1,N=0111,u_d=1,a=0000
40clk=0,N=0111,u_d=1,a=0001
42clk=1,N=0111,u_d=1,a=0001
44clk=0,N=0111,u_d=1,a=0010
46clk=1,N=0111,u_d=1,a=0010
48clk=0,N=0111,u_d=1,a=0011
50clk=1,N=0111,u_d=1,a=0011
52clk=0,N=0111,u_d=1,a=0100
54clk=1,N=0111,u_d=1,a=0100
56clk=0,N=0111,u_d=1,a=0101
58clk=1,N=0111,u_d=1,a=0101
60clk=0,N=0111,u_d=1,a=0110
62clk=1,N=0111,u_d=1,a=0110

Figure 7.18 Results of running the test bench in Figure 7.17.

Figure 7.19 Results of running the test bench in Figure 7.17 – shown partly as waveforms.

EXAMPLES 177

Figure 7.20 Synthesized circuit of the up down counter in Figure 7.17.

The counter as described in Figure 7.21 has an additional “clear” input. With

this enhancement, it has become versatile (compare with 74196 or 74197). Note

that despite the versatility offered by the design, the full counter has been

described in the single line of executable statement reproduced below:

always@(negedge clk or posedge clr)

a=(clr)?4'h0:((u_d)?((a==N)?4'b0000:a+1'b1):((a==4'b0000)?N:a-1'b1));

module clrupdcou(a,clr,clk,N,u_d);
input clr,clk,u_d;
input[3:0]N;
output[3:0]a;
reg[3:0]a;
initial a =4'b0000;
always@(negedge clk or posedge clr)
 a=(clr)?4'h0:((u_d)?((a==N)?4'b0000:a+1'b1):((a==
4'b0000)?N:a-1'b1));
 /*signals having priority over clk have to be included
in the sensitivity list*/
endmodule

continued

178 BEHAVIORAL MODELING — 1

continued

module tst_clrupdcou;//TEST_BENCH
reg clr,clk,u_d;
reg[3:0]N;
wire [3:0]a;
clrupdcou cc11(a,clr,clk,N,u_d);
initial
begin

N = 4'b0111;
Clr = 1'b1;u_d=1'b1;
Clk = 0;

end
always
begin

#2 clk = ~clk;
 clr = 1'b0;

end
always #34 u_d<=~u_d;
initial $monitor($time
,"clk=%b,clr=%b,u_d=%b,N=%b,a=%b",clk,clr,u_d,N,a);
initial #60 $stop;
endmodule

Figure 7.21 Design module of an up down counter with clear facility and a test bench for

the same.

The test bench for the counter is also shown in the figure. The test results are

reproduced in Figure 7.22 as waveforms; the synthesized circuit is shown in

Figure 7.23.

Figure 7.22 Results of running the test bench in Figure 7.21 – shown partly as waveforms.

EXAMPLES 179

Figure 7.23 Synthesized circuit of the up counter in Figure 7.21.

Example 7.2 Shift Register

Figure 7.24 shows an 8-bit shift register module along with a test bench for the

same. The register shifts by one bit to the right if r_l = 1 and to the left by one bit

otherwise (i.e., if r_l = 0). The whole shift register is described in a single line of

procedural assignment, namely

always@(negedge clk) a=(r_l)?(a>>1'b1):(a<<1'b1);

The simulation results are given in tabular form in Figure 7.25 and as

waveforms in Figure 7.26.

module shifrlter(a,clk,r_l);
input clk,r_l;
output [7:0]a;
reg[7:0]a;
initial a= 8'h01;
always@(negedge clk)

continued

180 BEHAVIORAL MODELING — 1

continued

begin
a=(r_l)?(a>>1'b1):(a<<1'b1);

end
endmodule

module tst_shifrlter;//test-bench
reg clk,r_l;
wire [7:0]a;
shifrlter shrr(a,clk,r_l);
initial
begin

clk =1'b1;
r_l = 0;

end
always #2 clk =~clk;
initial #16 r_l =~r_l;
initial
$monitor($time,"clk=%b,r_l = %b,a =%b ",clk,r_l,a);
initial #30 $stop;
endmodule

Figure 7.24 Design module of a shift register with facility for right or left shift and a test

bench for the same.

Output

0 clk=1, r_l = 0 , a = 00000001
2 clk=0, r_l = 0 , a = 00000010
4 clk=1, r_l = 0 , a = 00000010
6 clk=0, r_l = 0 , a = 00000100
8 clk=1, r_l = 0 , a = 00000100
10 clk=0, r_l = 0 , a = 00001000
12 clk=1, r_l = 0 , a = 00001000
14 clk=0, r_l = 0 , a = 00010000
16 clk=1, r_l = 1 , a = 00010000
18 clk=0, r_l = 1 , a = 00001000
20 clk=1, r_l = 1 , a = 00001000
22 clk=0, r_l = 1 , a = 00000100
24 clk=1, r_l = 1 , a = 00000100
26 clk=0, r_l = 1 , a = 00000010
28 clk=1, r_l = 1 , a = 00000010

Figure 7.25 Results of running the test bench in Figure 7.24.

EXAMPLES 181

Figure 7.26 Results of running the test bench in Figure 7.24 – shown partly as waveforms.

Example 7.3 Clocked Flip-Flop

The module for a clocked flip-flop is shown in Figure 7.27. A test bench for the

flip-flop is also included in the figure. The test results are shown in Figure 7.28

and Figure 7.29 in tabular form and as waveforms, respectively. The input can be

seen to be sensed, latched, and presented as output at every negative edge of the

clock. Otherwise the output remains frozen at the last latched value. The

synthesized circuit of the flip-flop is shown in Figure 7.30.

module dff(do,di,clk);
output do;
input di,clk;
reg do;
initial
do=1'b0;
always@(negedge clk) do=di;
endmodule

module tst_dffbeh();//test-bench
reg di,clk;
wire do;
dff d1(do,di,clk);
initial
begin

clk=0;
di=1'b0;

end
always #3clk=~clk;
always #5 di=~di;
initial
$monitor($time,"clk=%b,di=%b,do=%b",clk,di,do);
initial #35 $stop;
endmodule

Figure 7.27 Design module of a D-flip-flop and a test bench for the same.

182 BEHAVIORAL MODELING — 1

Output

0clk=0,di=0,do=0
3clk=1,di=0,do=0
5clk=1,di=1,do=0
6clk=0,di=1,do=1
9clk=1,di=1,do=1
10clk=1,di=0,do=1
12clk=0,di=0,do=0
15clk=1,di=1,do=0
18clk=0,di=1,do=1
20clk=0,di=0,do=1
21clk=1,di=0,do=1
24clk=0,di=0,do=0
25clk=0,di=1,do=0
27clk=1,di=1,do=0
30clk=0,di=0,do=0
33clk=1,di=0,do=0

Figure 7.28 Results of running the test bench in Figure 7.27.

Figure 7.29 Results of running the test bench in Figure 7.27– shown partly as waveforms.

Figure 7.30 Synthesized circuit of the D-flip-flop in Figure 7.27.

EXAMPLES 183

Example 7.4 D Latch

Figure 7.31shows the module of a D latch along with its test bench. Whenever en
is high, the output follows the input; the latch is transparent. When en goes low

the output remains frozen at the last value. The simulation results are shown as

waveforms in Figure 7.32.

module dffen(do,di,en); // d-latch
output do;
input di,en;
reg do;
initial
do=1'b0;
always@(di or en)
if(en)
do=di;
endmodule

module tst_dffbehen;//test-bench
reg di,en;
wire do;
dffen d1(do,di,en);
initial
begin

en=0;
di=1'b0;

end
always#7 en =~en;
always#4 di=~di;
initial
$monitor($time,"en=%b,di=%b,do=%b",en,di,do);
initial #50 $stop;
endmodule

Figure 7.31 Design module of a D-latch and a test bench for the same.

Figure 7.32 Results of running the test bench in Figure 7.31– shown partly as waveforms.

184 BEHAVIORAL MODELING — 1

Example 7.5 Clock Waveform

Consider the design description line

always #3 clk = ~clk;

The sequence of operation taking place within this line segment is as follows:

When the system comes across the statement, it schedules an activity 3 ns

later.

At the end of the 3 ns, the value of clk is sensed; the sensed value is

complemented and then stored temporarily.

Then the stored value is assigned to the clock, which completes the activity of

the always block; once again, execution resumes at step 1.

The clock waveform is shown in Figure 7.33.

7.7 ASSIGNMENTS WITH DELAYS

Specific delays can be associated with procedural assignments. The delay refers to

the specific activity it qualifies. A variety of possibilities of specifying delays to

assignments exist. A clear understanding makes room for flexibility through their

judicious use; the absence of a clear understanding can be disastrous! The variety

and flexibility are brought here through simple illustrations.

Consider the assignment

always #3 b = a;

simulator encounters this at zero time and posts the entire activity to be done 3 ns

later. Further, by virtue of the always nature of the activity, the assignment is

scheduled to be repeated every 3 ns, irrespective of whether a changes in the

meantime. Values of a at the 3rd, 6th, 9th, etc., ns are sampled and assigned to b.

Figure 7.35 shows the waveforms of a and b with the above assignment and

execution of the module in Figure 7.34. Changes in the values of a lasting less

than 3 ns may be ignored. Specifically, in this case, a took the value of 1 during

the interval 4th ns to the 5th ns which is not passed on to b.

t

clk

Figure 7.33 The clock waveform with an always block of one statement to generate a

clock.

ASSIGNMENTS WITH DELAYS 185

module del1;

reg a,b;

always #3 b=a;
Initial

begin

a = 1’b1;
 b = 1’b0;

 #1 a = 1’b0;
 #3 a = 1’b1;

 #1 a = 1’b0;
 #2 a = 1’b1;

 #3 a = 1’b0;
end

initial $monitor($time, " a = %d, b = %d", a, b);

initial #20 $finish;
endmodule

Figure 7.34 A module to illustrate delayed assignment.

The module of figure 7.36 is a modified version of that in Figure 7.34. The

activities within the always block (of a single statement) are carried out whenever

the value of a changes. The sole activity is that of assigning the value of a to b
with a delay of 2 ns – that is, 2 ns after a changes sign. The waveform assigned to

a as well as the resulting waveform of b is shown in Figure 7.37. If a were to

remain invariant, b will have no assignment here. In contrast in the previous case

(Figure 7.35), b is given an assignment (=a) at every 3rd ns.

0 84
t

a

b

a is sensed and its value assigned to b at these instants

Figure 7.35 Waveforms of a and b with the simulation of the module in Figure 7.34.

186 BEHAVIORAL MODELING — 1

module del2;

reg a,b;

always @(a) #2 b=a;

Initial

begin

a = 1’b1;
 b = 1’b0;

 #1 a = 1’b0;
 #3 a = 1’b1;
 #1 a = 1’b0;
 #2 a = 1’b1;

 #3 a = 1’b0;
end

initial $monitor($time, " a = %d, b = %d", a, b);

initial #20 $finish;
endmodule

Figure 7.36 A modified version of the module in Figure 7.34.

t

a

b

0 84 12

Figure 7.37 Waveforms of a and b obtained with the simulation of the module in

Figure 7.36.

Consider a more detailed example – that of Figure 7.38. The always block

has two assignments. These are carried out sequentially and repeatedly. At the

3rd ns the assignment b = a is executed. The assignment that follows is executed

1 ns later – that is, at the 4th ns. Again 3 ns later – that is, at the 7th ns – the first

assignment is executed, and so on. The results obtained are shown in Table 7.1.

Only the values of a, b, and c at the first few time step values are shown in the

table.

ASSIGNMENTS WITH DELAYS 187

module del3;

integer a,b, c;
always

begin

 # 3 b = a;
 # 1 c = a;
 end

initial
begin

a = 0;
 b = 0;
 c = 0;
 #2 a = 1;

#2 a = 2;
#2 a = 3;
#2 a = 4;
#2 a = 5;
#2 a = 6;

end

initial $monitor($time, " a = %d, b = %d", a, b);

initial #20 $finish;
endmodule

Figure 7. 38 A module where b and c are versions of a with different delays.

7.7.1 Intra-assignment Delays

An assignment delay of the type discussed above, delays execution of the whole

assignment by the specified time duration. In contrast, the “intra-assignment”

delay carries out the assignment in two parts. An assignment with an intra-

assignment has the form

A = # dl expression;

Here the expression is scheduled to be evaluated as soon as it is encountered.

However, the result of the evaluation is assigned to the right-hand side quantity a

Table 7.1 Values of variables in the module of Figure 7.38

t 0 1 2 3 4 5 6 7 8 9 10 11 12

a 0 0 1 1 2 2 3 3 4 4 5 5 6

b 0 0 0 1 1 1 1 3 3 3 3 5 5

c 0 0 0 0 2 2 2 2 4 4 4 4 6

188 BEHAVIORAL MODELING — 1

after a delay specified by dl. dl can be an integer or a constant expression [see

Section 7.7.2]. Consider the example in Figure 7.39. b is assigned the value of a
with an intra-assignment delay of 2 ns. The value of a is sensed at zero ns and

assigned to b after 2 ns. Until that time, b retains its old value. Again at the 2nd

ns, a is sensed and b is assigned the new value of a at the 4th ns, and so on. Partial

results of simulation are shown in Table 7.2. The following points are to be noted

here:

The value of a is sensed at time instants 2, 4, 6, etc.

Values at other instants of time are not sensed.

All assignments are carried out with a delay of 2 ns.

Changes in a which do not last for 2 ns may be ignored.

Module del4;

Integer a, b;

Always b = #2 a;

Initial

begin

 a = 0; b = 0; #2 a =1; #2 a =2; #2 a =3;

 #2 a =4; #2 a = 5; #2 a =6; #2 a =7; #2 a =8;

end

initial $monitor($time, " a = %d, b = %d", a, b);

initial #20 $finish;

endmodule

Figure 7.39 A module to illustrate delayed assignment.

Delays tied to different segments of an assignment have different effects. The

subtle differences are brought out through two more examples crafted specifically

for the purpose. Consider the module in Figure 7.40. The integer a is assigned the

value 0 at 0th ns and the value 1 at 1 ns. Subsequently, it is incremented every 2

ns until the end of simulation. Values are assigned to b, c, and d – declared as

integers. These assignments are done with specific delays. The results of the

simulation are given in Table 7.3. Changes to b, c, and d and the reasons for the

same in each case are explained in the remarks columns of the table. A few

observations are in order here:

Table 7.2 Partial output with the simulation of the module in Figure 7.39

t a b Remarks

0 0 0

2 1 x

4 2 1

6 3 2

8 4 2

There are two assignment statements to a at 2 ns intervals – namely

the one in the always block and the other one in the initial block;

both are concurrent. The simulator decides the precedence. The

output here shows that the assignment in the always block has the

precedence.

ASSIGNMENTS WITH DELAYS 189

Module del_dem4;

Integer a,b,c,d,n;

Always

begin

 #2 b = a;

 c = #1 a;

 d = a;

end

initial

begin

a = 0; b = 0; c = 0; d = 0;

 #1 a = 1; #2 a = 2; #2 a = 3; #2 a = 4;

 #2 a = 5; #2 a = 6; #2 a = 7; #2 a = 8; #2 a = 9; #2 a = 10;

end

initial $monitor ($time, " a = %d, b = %d, c = %d, d = %d", a, b, c, d);

endmodule

Figure 7.40 A module to illustrate combinations of delays.

The always block extends for three time steps. Thereafter it is repeated

cyclically.

The assignment statements in the always block are sequential assignment

statements.

Precedence of assignments slotted for a specific time instant, when they are in

one block, is clear. However, when they are in different blocks, the compiler

decides the precedence. But this does not cause any discrepancy in the

present case.

Table 7.3 Output obtained with the simulation of the module in Figure 7.40 (shown

rearranged)

Time a b c d Remarks

0 0 0 0 0 …

1 1 0 0 0 …

2 1 1 0 0
The value of a at 2nd ns is assigned to b; the same is

stored for assignment to c, 1 ns later

3 2 1 1 2
c is assigned the value of a 1 ns earlier; the present value

of a is assigned to d.

5 3 3 1 2

All assignments within the always block are done; the

assignment sequential is repeated; no change at the 4th

ns; at the 5th ns b is assigned the value of a and so on.

6 3 3 3 3 …

7 4 3 3 3 …

190 BEHAVIORAL MODELING — 1

Consider the module of Figure 7.41, which is a slight variant of the above in

Figure 7.40. The assignments to b and c in the module of Figure 7.40 have been

interchanged to form the module here. The simulated results are shown in

Table 7.4. The following additional observations are in order here:

The always block is repeated after every 3 ns – the total assignment time for

the sequential.

At t = 0, a is sampled and the sampled value is stored for assignment to c at

t = 1; the sampling precedes the assignment a = 0 at zero time. Hence the

value of c at zero time is not decided.

The increment to a and (the samples of a for subsequent assignment to c) at

0th, 3rd, 6th etc., ns values are concurrent. The compiler decides their

precedence. With the specific compiler used, the value of a is sampled and

only then a is incremented. Hence the assignment to c at the 4th ns is the

value of a sampled at the 3rd ns before its increment – that is, 1. Similar is

the case with the subsequent assignment changes to c.

At the 3rd, 6th, 9th, etc., ns values, a is sampled and assigned to b as well as

d. Hence changes in b and d are identical. Contrast this with the previous

example where the assignment sequence

c = #1 a;
d = a;

results in different sampling instances and assignments to c and d.

module del_dem5;

integer a,b,c,d;

always

begin

 c = #1 a;

 #2 b = a;

 d = a;

end

initial

begin

a = 0; b = 0; c = 0; d = 0;

 #1 a = 1; #2 a = 2; #2 a = 3; #2 a = 4; #2 a = 5; #2 a = 6; #2 a = 7; #2 a = 8;

 #2 a = 9; #2 a = 10;

end

initial $monitor ($time, " a = %d, b = %d, c = %d, d = %d", a, b, c, d);

endmodule

Figure 7.41 Another module to illustrate combinations of delays.

ASSIGNMENTS WITH DELAYS 191

Table 7.4 Simulated results of the module of Figure 7.41

t 0 1 3 4 5 6 7 9 10 11

a 0 1 2 2 3 3 4 5 5 6

b 0 0 1 1 1 3 3 5 5 5

c 0 X X 1 1 1 3 3 5 5

d 0 0 1 1 1 3 3 5 5 5

t 12 13 15 16 17 18 19 21 22

a 6 7 8 8 9 9 10 10 10

b 6 6 8 8 8 9 9 10 10

c 5 6 6 8 8 8 9 9 10

d 6 6 8 8 8 9 9 10 10

7.7.2 Delay Assignments

In all the illustrations above, delay was specified as a number. It may be a variable

or a constant expression. In case it is an expression, it is evaluated and execution

delayed by the number of time steps. If the number evaluates to a negative

quantity, the same is interpreted as a 2’s complement value. In the statement

always #b a = a + 1;

a and b are variables. The execution incrementing a is scheduled at b ns. If b
changes, the execution time also changes accordingly. As another example

consider the procedural assignment

always #(b + c) a = a + 1;

Here a, b, and c are variables. The algebraic addition of variables b and c is to be

done. The scheduler schedules the incrementing of a and reassigning the

incremented values back to a with a time delay of (b + c) ns. As an additional

example consider the assignment below with an intra-assignment delay.

always #(a + b) a = #(b + c) a +1;

Here the simulator evaluates (a + b) during simulation. After a lapse of (a + b)

ns, execution of the statement is taken up; (a + 1) is evaluated and assigned as the

new value of a – but the assignment is delayed by (b + c) ns.

7.7.3 Zero Delay

A delay of 0 ns does not really cause any delay. However, it ensures that the

assignment following is executed last in the concerned time slot. Often it is used

to avoid indecision in the precedence of execution of assignments.

192 BEHAVIORAL MODELING — 1

7.8 wait CONSTRUCT

The wait construct makes the simulator wait for the specified expression to be

true before proceeding with the following assignment or group of assignments. Its

syntax has the form

wait (alpha) assignment1;

alpha can be a variable, the value on a net, or an expression involving them. If

alpha is an expression, it is evaluated; if true, assignment1 is carried out. One

can also have a group of assignments within a block in place of assignment1.
The activity is level-sensitive in nature, in contrast to the edge-sensitive nature of

event specified through @. Specifically the procedural assignment

@clk a = b;

assigns the value of b to a when clk changes; if the value of b changes when clk is

steady, the value of a remains unaltered. In contrast, with

wait(clk) #2 a = b;

the simulator waits for the clock to be high and then assigns b to a with a delay of

2 ns. The assignment will be refreshed as long as the clk remains high. The use of

wait construct is brought out here through two examples.

Example 7.6

Figure 7.42 shows one version of the up-down counter module along with a test

bench. It is a modification of the up down counter of Figure 7.10 and uses a wait

construct. It has an enable input En. The counter is active and counts only when

En = 1, that is, from the 5th ns to the 25th ns. The simulation results reproduced in

Figure 7.43 confirm this.

module ctr_wt(a,clk,N,En);

input clk,En;

input[3:0]N;

output[3:0]a;

reg[3:0]a;

initial a=4'b1111;

always

begin

 wait(En)

 @(negedge clk)

 a=(a==N)?4'b0000:a+1'b1;

end

endmodule

continued

wait CONSTRUCT 193

continued

//TEST_BENCH

module tst_ctr_wt;

reg clk,En;

reg[3:0]N;

wire[3:0]a;

ctr_wt c1(a,clk,N,En);

initial

begin

clk=0;N=4'b1111;En=1'b0;#5 En=1'b1;#20 En=1'b0;

end

always

#2 clk=~clk;

initial #35 $stop;

initial $monitor($time,"clk=%h,En=%b,N=%b,a=%b",clk,En,N,a,);

endmodule

Figure 7.42 A counter module to illustrate the use of wait construct. The test bench is

also shown in the figure.

 //output

0clk=0,En=0,N=1111,a=1111

2clk=1,En=0,N=1111,a=1111

4clk=0,En=0,N=1111,a=1111

5clk=0,En=1,N=1111,a=1111

6clk=1,En=1,N=1111,a=1111

8clk=0,En=1,N=1111,a=0000

10clk=1,En=1,N=1111,a=0000

12clk=0,En=1,N=1111,a=0001

14clk=1,En=1,N=1111,a=0001

16clk=0,En=1,N=1111,a=0010

18clk=1,En=1,N=1111,a=0010

20clk=0,En=1,N=1111,a=0011

22clk=1,En=1,N=1111,a=0011

24clk=0,En=1,N=1111,a=0100

25clk=0,En=0,N=1111,a=0100

26clk=1,En=0,N=1111,a=0100

28clk=0,En=0,N=1111,a=0101

30clk=1,En=0,N=1111,a=0101

32clk=0,En=0,N=1111,a=0101

34clk=1,En=0,N=1111,a=0101

Figure 7.43 Simulation results of the module in Figure 7.42.p

194 BEHAVIORAL MODELING — 1

Example 7.7

Figure 7.44 shows a rudimentary and crude version of a serial receiver module and

its test bench. Simulation results are shown in Figure 7.45. The module receives

serial data on the di line. The data are synchronized to the clock clk. The

sequence of operations carried out by the module is as follows:

Wait for recv input to go high.

Once recv=1, latch the next 4 successive bits of incoming data into respective

bit positions of the do register.

 //Example for 'wait'

module sr_rec(do, ack, clk, di, recv);

output [3:0] do; output ack;

input clk, recv, di;

reg [3:0] do; reg ack;

initial ack = 1'b0;

always begin

 wait(recv)

 @(negedge clk) do[0]=di;

 @(negedge clk) do[1]=di;

 @(negedge clk) do[2]=di;

 @(negedge clk) do[3]=di;

 @(negedge clk) ack = 1'b1;

 end

endmodule

module tst_sr_rec;

reg clk, di, recv;

wire [3:0]do; wire ack;

initial begin

 clk=1'b0; recv=1'b0; di=1'b0; #5 recv=1'b1;

 end

always #2clk = ~clk;

initial begin

 #7di=1'b1; #4di=1'b0; #8di=1'b1; #8di=1'b0;

 end

initial $monitor($time, "clk=%d, recv=%b, di=%b, do=%b, ack=%b",

 clk, recv, di, do, ack);

sr_rec rrcc(do, ack, clk, di, recv);

initial #25 $stop;

endmodule

Figure 7.44 A rudimentary serial transmitter module.

MULTIPLE ALWAYS BLOCKS 195

//output

0clk=0, recv=0, di=0, do=xxxx, ack=0

2clk=1, recv=0, di=0, do=xxxx, ack=0

4clk=0, recv=0, di=0, do=xxxx, ack=0

5clk=0, recv=1, di=0, do=xxxx, ack=0

6clk=1, recv=1, di=0, do=xxxx, ack=0

7clk=1, recv=1, di=1, do=xxxx, ack=0

8clk=0, recv=1, di=1, do=xxx1, ack=0

10clk=1, recv=1, di=1, do=xxx1, ack=0

11clk=1, recv=1, di=0, do=xxx1, ack=0

12clk=0, recv=1, di=0, do=xx01, ack=0

14clk=1, recv=1, di=0, do=xx01, ack=0

16clk=0, recv=1, di=0, do=x001, ack=0

18clk=1, recv=1, di=0, do=x001, ack=0

19clk=1, recv=1, di=1, do=x001, ack=0

20clk=0, recv=1, di=1, do=1001, ack=0

22clk=1, recv=1, di=1, do=1001, ack=0

24clk=0, recv=1, di=1, do=1001, ack=1

Figure 7.45 Simulation results of the module in Figure 7.44.

Once the above nibble receipt is accomplished, set acknowledgment flag high.

If recv continues to remain high, the subsequent serial bits will be loaded into

the do nibble, again and again in groups of 4 bits.

If at any time recv goes low, the receipt and the serial to parallel conversion

will come to a stop.

7.9 MULTIPLE ALWAYS BLOCKS

All the activities within an always block are scheduled for sequential execution.

The activities can be of a combinational nature, a clocked sequential nature, or a

combination of these two. (A design description involving such combinations is

conventionally called the ‘Register Transfer Level’ description.) Basically, any

circuit block whose end-to-end operation can be described as a continuous

sequence can be described within an always block. A typical circuit block

conforming to the above description is shown in Figure 7.46. It has three activities

termed A1, A2, and A3. These three are to be done in that order. Activity A1

accepts x as input, and it generates output B and p. p and y form inputs to activity

A2. Similarly activity A2 generates outputs c and q after activity A1 is completed.

196 BEHAVIORAL MODELING — 1

A
1

x

y z

p q

B C

D
A

2 A
3

Figure 7.46 A module where execution proceeds through three blocks sequentially.

q and z form outputs of A2. After activity A2 is completed, activity A3 is

scheduled. It accepts z and q as inputs and generates D as output. Here if A1, A2,

and A3 are logical activities, the whole block can be synthesized as a

combinational logic unit. If one or more of these are clocked events, execution

may be sequential. The design examples considered so far are broadly of this

category.

In a comparatively bigger IC, the activity flow can be more complex. One

with an additional level of complexity is shown in Figure 7.47. The activities are

marked A1-A2-A3 and B1-B2-B3, These are the two streams in the circuit. It is

possible that the intermediate results of one may affect the flow of the other.

Functioning of two timers – dependent on each other –is a typical example. A

processor servicing serial reception and serial transmission simultaneously is

another example. In all these cases, each sequential activity is described in a

separate always block.

A design of the type in Figure 7.47 can be described with two always blocks.

In some others, three or more always blocks may be called for. Examples of such

designs are considered later.

x

v

u

y
1

z
1

y
3

y
2

z
2

w

A
2

B
2

A
1

B
1

A
3

B
3

z
3

P

Q

Figure 7.47 A module where execution proceeds concurrently through two groups of

blocks.

DESIGNS AT BEHAVIORAL LEVEL 197

Activities within one always block are normally sequential – as with the

examples considered so far. If necessary, they can be made selectively concurrent.

(see Section 7.11). But when designs are spread out in two or more always blocks

(with design structures as in Figure 7.47), they are necessarily concurrent. Thus the

blocks P and Q in Figure 7.47 are concurrent while the “sub-blocks” within each

(namely A1, A2, and A3 within block P and B1, B2, and B3 within block Q) are

sequential. In short, with behavioral level descriptions, one can organize the

activities to be in concurrent form, in sequential form, or in combinations. In

contrast, all design descriptions involving constructs at gate and data flow levels

are necessarily concurrent.

7.10 DESIGNS AT BEHAVIORAL LEVEL

All simple algebraic as well as logical expressions can be described at the

behavioral level. One can also mix them with blocks at the gate level as well as

the data flow level to form composite as well as more involved modules. The

simple A-O-I gate is taken as an example below to bring out the possibilities.

Example 7.8

Figure 7.48 shows a module of an AOI gate and its test bench; Figure 7.49 shows

the simulation results, and the synthesized circuit is shown in Figure 7.50. The A-

O-I gate module has two vector inputs – a and b – both being two bits wide. The

bits of the two vectors are ANDed; the ANDed bits are subsequently used as the

inputs to the following NOR gate to form the output. Note the following:

All the input bits are to figure in the sensitivity list specified to trigger

execution. If any one is left out, a change in that will not be reflected in the

output immediately.

The block becomes active, if any bit in the sensitivity list changes value.

The assignments specified are executed out sequentially – but all at the same

time step. Some elaboration is in order here. All the four assignments within

the aoibeh module of Figure 7.48 are sequentially executed but at the same

time step. The values of a and b displayed at the end of the respective time

steps in Figure 7.49 confirm this. Concurrency of the assignments here also

leads to a combinational circuit in synthesis.

All quantities that appear to the left of the assignment statements have to be of

the variable type; they have been declared as reg here.

198 BEHAVIORAL MODELING — 1

module aoibeh(o,a,b);
output o;
input[1:0]a,b;
reg o,a1,b1,o1;
always@(a[1] or a[0]or b[1]or b[0])
begin
 a1=&a;
 b1=&b;
 o1=a1||b1;
 o=~o1;
end
endmodule

module tst_aoibeh;
reg [1:0]a,b; /* specicific values will be assigned to
a1,a2,b1, and b2 and these connected
to input ports of the gate insatntiations;
hence these variables are declared as reg */
wire o;
initial
begin

a[0]=1'b0;a[1] =1'b0;b[0]=1'b0;b[1] =1'b0;
#3 a[0] =1'b1;
#3 a[1] =1'b1;
#3 b[0] =1'b1;
#3 b[1] =1'b0;
#3 a[0] =1'b1;
#3 a[1] =1'b0;
#3 b[0] =1'b0;

end
initial #100 $stop;//the simulation ends after running
for 100 tu's.
initial $monitor($time, "o =%b,a[0]=%b,a[1]=%b, b[0] =
%b ,b[1] = %b ",o,a[0],a[1],b[0],b[1]);
aoibeh gg(o,a,b);
endmodule

Figure 7.48 An A-O-I gate module at the behavioral level and its test bench.

0 o = 1,a[0]=0,a[1]=0,b[0]=0,b[1]=0
3 o = 1,a[0]=1,a[1]=0,b[0]=0,b[1]=0
6 o = 0,a[0]=1,a[1]=1,b[0]=0,b[1]=0
9 o = 0,a[0]=1,a[1]=1,b[0]=1,b[1]=0
#18 o = 1,a[0]=1,a[1]=0,b[0]=1,b[1]=0
#21 o = 1,a[0]=1,a[1]=0,b[0]=0,b[1]=0

Figure 7.49 Simulation results of the module in Figure 7.48.

DESIGNS AT BEHAVIORAL LEVEL 199

Figure 7.50 Synthesized circuit of the A-O-I module in Figure 7.48.

Example 7.9

Figure 7.51 shows an alternate but more compact description of the A-O-I gate

again at the behavioral level. Since the full assignment is realized in one line, no

begin-end type construct is called for. Simulation results are identical to those

of Figure 7.49 and are not repeated.

Example 7.10

The AOI gate in Figure 7.51 has again been described as a module in Figure 7.52.

Here the AND functions are realized as and-gate primitives. The NOR function

alone is realized in behavioral mode. The sensitivity list includes the two outputs

of the AND gates. The gate primitives describe a set of two continuous AND

functions. In contrast, the NOR function is activated only when a1 or b1 changes.

Though conceptually different, the latter also results in outputs identical to the

continuous assignments. The test bench in Figure 7.51 can be used here by

changing the instantiation statements suitably.

module aoibeh1(o,a,b);
output o;
input[1:0]a,b;
reg o;
always@(a[1]ora[0]or b[1]orb[0]) o=~((&a)||(&b));
endmodule

Figure 7.51 Another realization of the AOI gate at the behavioral level.

200 BEHAVIORAL MODELING — 1

module aoibeh2(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
and g1(a1,a[1],a[0]),g2(b1,b[1],b[0]);
always@(a1 or b1)
o=~(a1||b1);
endmodule

Figure 7.52 AOI gate realization by the combined use of primitive instantiations and

procedural assignments.

Example 7.11

Figure 7.53 shows another realization of the AOI gate. Here the AND functions

are realized as continuous assignments. The NOR function is realized as an

always block.

module aoibeh3(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
assign a1=&a,b1=&b;
always@(a1 or b1)o=~(a1||b1);
endmodule

Figure 7.53 The AOI gate realized by combining continuous assignments and procedural

assignments.

Figure 7.54 shows another realization of the AOI gate where a gate primitive, a

continuous assignment (at data flow level), and an always block are present.

The examples above bring out the variety of possibilities in design

description. Designers’ expertise as well as constraints and facilities in the

simulation and synthesis tools often limit the choice. More often the same design

may have to be described differently as one proceeds from a system level design

and simulation to circuit synthesis [Navabi, Palnitkar].

BLOCKING AND NONBLOCKING ASSIGNMENTS 201

module aoibeh4(o,a,b);
output o;
input[1:0]a,b;
wire a1,b1;
reg o;
assign a1=&a;
and g2(b1,b[1],b[0]);
always@(a1 or b1)
o=~(a1||b1);
endmodule

Figure 7.54 The AOI gate realized by combining primitive instantiation, continuous

assignment, and procedural assignment.

7.11 BLOCKING AND NONBLOCKING ASSIGNMENTS

All assignment within an initial or an always block considered so far are done

through an equality (“=”) operator. These are executed sequentially – that is, one

statement is executed, and only then the following one is executed. Such

assignments block the execution of the following lot of assignments at any time

step. Hence they are called “blocking assignments”. Further, when such a

blocking assignment has time delays associated with it, the delay is applicable to

the following assignment or activity also. Different examples of groups of

blocking assignments have been considered in the preceding sections.

One comes across situations where assignments are to be effected

concurrently (as with the continuous assignments considered in the preceding

chapter). A facility called the “nonblocking assignment” is available for such

situations. The symbol “<=” signifies a non-blocking assignment. The same

symbol signifies the “less than or equal to” operator in the context of an operation.

The context decides the role of the symbol. The main characteristic of a non-

blocking assignment is that its execution is concurrent with that of the following

assignment or activity. A discussion of the features of nonblocking assignments

and their comparison with blocking assignments are in order here.

Consider the set of nonblocking assignments in Figure 7.55. All three

assignments are executed concurrently – that is, A, B, and C are assigned the

values 00 01 and 11concurrently and not sequentially. Figure 7.56 shows the same

non-blocking assignments with time delays. All three assignments are taken up for

execution concurrently. If the block is entered at time step t1,

 A is assigned the value 00 at time step t1.

 B is assigned the value 01 with a time delay of 2 ns – that is, at time t1 + 2 ns.

 C is assigned the value 11 with a delay of 1 ns – that is, at time t1 + 1 ns (and

not at time 3 ns as happens with blocking assignments).

202 BEHAVIORAL MODELING — 1

A <= 2'b00;
B <= 2'b01;
C <= 2'b11;

A <= 2'b00;
#2 B <= 2'b01;
#1 C <= 2'b11;

Figure 7.55 A group of nonblocking

assignments.

Figure 7.56 A group of nonblocking

assignments with time delays.

Nonblocking assignments are essentially two-step affairs. For all the non-blocking

assignments in a block, the right-hand sides are evaluated first. Subsequently the

specified assignments are scheduled. Consider the block of assignments in Figure

7.57. First A is assigned the binary value 00, and then B is assigned the value 01.

These two assignments are sequential. The subsequent two assignments are

concurrent. The assignment

A <= b

“reads” the value of B, stores it separately, and then assigns it to A. The new value

of a is 01. The assignment

B <= A ;

takes the value of A– i.e., 00 – stores it separately and assigns it to B. Thus the

new value of B is 00. After the block is executed, A has the value 01 while B has

the value 00. Contrast this with the set of blocking assignments in Figure 7.58.

All four assignments here are sequential in nature. The third one, namely

A = B;

assigns the value 01 to a; subsequently the fourth and following assignment

B = A ;

assigns the present value of A (i.e., 01) to b; The value of b remains at 01 itself.

Consider the block of Figure 7.59. It has three nonblocking assignments. The

sequence of execution of the three assignments is as follows:

1. At the positive edge of the clock, values of A, B, and C are read and stored

and B &(~c) are computed.

A = 2'b00;
B = 2'b01;
A <= B;
B <= A;

A = 2'b00;
B = 2'b01;
A = B;
B = A;

Figure 7.57 Swapping variable values

through nonblocking assignments.

Figure 7.58 Another group of blocking

assignments.

BLOCKING AND NONBLOCKING ASSIGNMENTS 203

initial

begin

A= 1'b0;
B= 1'b1;
C = 1'b0;

end

always @(posedge clk)
begin

A <= B;
@(negedge clk) C <= B &(~c);

#2 B< = C;
end

Figure 7.59 Segment of a module involving blocking and nonblocking assignments.

2. A is assigned the stored value of B (=1); this and the activity in (1) above are

carried out concurrently in the same time step.

3. At the next negative clk edge, C is assigned the value of B & (~C) evaluated

and stored earlier (=1) – mentioned in (1) above.

4. Two nanoseconds after the positive edge of clk (i.e., after the entry to the

block), B is assigned the value of C stored earlier (=0).

In the segment in Figure 7.60, two always blocks do assignments concurrently;

both of these are of the blocking variety. The values assigned to A and B are

decided by the structure of the simulator. The block has the potential to create a

race condition. In contrast, in the segment of Figure 7.61, the two assignments are

of the nonblocking type; A is assigned the previous value of B, while B is assigned

the previous value of A. The race condition is avoided here.

Observations :

In a design whenever a number of concurrent data transfers take place after a

common event, nonblocking assignments are preferred. The common event

forms the sensitivity list followed by the nonblocking assignments.

always @(posedge clk)

A = B;

always @(posedge clk)

B = A;

always @(posedge clk)

A <= B;
always @(posedge clk)

B <= A;

Figure 7.60 A set of assignments with a

potential race condition.

Figure 7.61 The assignments of Figure

7.60 modified to avoid race condition.

204 BEHAVIORAL MODELING — 1

All nonblocking assignments in a block are executed concurrently. However,

the scheduling is done in the same order as the specified statements. If two

assignments are done to a reg in a time step, the latter prevails. For example

with the following sequence of statements in a block,

A <= 1;
A <= 0;

A is assigned the value of zero.

Although blocking and nonblocking assignment can be mixed in a block,

many synthesis tools may not support such combinations.

7.11.1 Nonblocking Assignments and Delays

Delays – of the assignment type and the intra-assignment type – can be associated

with nonblocking assignments also. The principle of their operation is similar to

that with blocking assignments. As explained earlier, the delay values can be

constant expressions. Blocking and nonblocking assignments, together with

assignment and intra-assignment delays, open up a variety of possibilities. They

can be used individually and in combinations to suit different situations. The

subtle differences in their use are brought out here through a series of simple

illustrations. Some further clarifications regarding assignments and time delays are

in order here.

Example 7.12

Consider the module of Figure 7.62, which has a delay of 3 ns for the blocking

assignment to c1. If a or b changes, the always block is activated. Three ns later,

(a&b) is evaluated and assigned to c1. The event “(a or b)” will be checked for

change or trigger again. If a or b changes, all the activities are frozen for 3 ns. If a
or b changes in the interim period, the block is not activated. Hence the module

does not depict the desired output.

module nil1 (c1, a, b);

output c1;

input a, b;

reg c1;

always @(a or b)

 #3 c1 = a&b;
endmodule

module nil2 (c2, a, b);

output c2;

input a, b;

reg c2;

always @(a or b)

c2 = #3 a&b;
endmodule

Figure 7.62 A time delay in an evaluation. Figure 7.63 An intra-assignment delay.

THE case STATEMENT 205

module nil3 (c3, a, b);

output c3;

input a, b;

reg c3;

always @(a or b)

 #3 c3 <= a&b;
endmodule

module nil4 (c4, a, b);

output c4;

input a, b;

reg c4;

always @(a or b)

c4 <= #3 a&b;
endmodule

Figure 7.64 A time delay in a non-

blocking assignment.

Figure 7.65 An intra-assignment delay in

a nonblocking assignment.

Consider the module of Figure 7.63 with an intra-assignment delay of 3 ns to

the assignment to c2. The always block is activated if a or b changes. (a & b) is

evaluated immediately but assigned to c2 only after 3 ns. However, the behavior

is not acceptable on two counts:

The output assignment has to wait for 3 ns after the change.

Only after the delayed assignment to c2, the event (a or b) checked for

change. If a or b changes in the interim period, the block is not activated.

The module in Figure 7.64 has a blocking delay of 3 ns; but the assignment is

of the nonblocking type. The block is entered if the value of a or b changes but

the evaluation of a&b and the assignment to c3 take place with a time delay of 3

ns. If a or b changes in the interim period, the block is not activated. The module

in Figure 7.65 possibly represents the best alternative with time delay. The always

block is activated if a or b changes. (a&b) is evaluated immediately and

scheduled for assignment to c4 with a delay of 3 ns. Without waiting for the

assignment to take effect (i.e., at the same time step as the entry to the block),

control is returned to the event control operator. Further changes to a or b – if any

– are again taken cognizance of. The assignment is essentially a delay operation.

Figure 7.66 shows the waveforms for c1, c2, c3, and c4 in the modules of

Figures 7.62 to 7.65 for representative waveforms of a and b. One can clearly see

that c4 has a representation of a & b, which is the most acceptable of the lot.

7.12 THE case STATEMENT

The case statement is an elegant and simple construct for multiple branching in a

module. The keywords case, endcase, and default are associated with the

case construct. Format of the case construct is shown in Figure 7.67. First

expression is evaluated. If the evaluated value matches ref1, statement1 is

executed; and the simulator exits the block; else expression is compared with

206 BEHAVIORAL MODELING — 1

c1

c4

c3

c2

b

a

86420
t

Figure 7.66 Waveforms of c1, c2, c3, and c4 of the modules in Figures 7.62 to 7.65 for

representative values of a and b.

ref2 and in case of a match, statement2 is executed, and so on. If none of the

ref1, ref2, etc., matches the value of expression, the default statement is

executed.

Case (expression)

Ref1 : statement1;
Ref2 : statement2;
Ref3 : statement3;

.. .

. . .

default: statementd;
endcase

Figure 7.67 Structure of the case statement.

THE case STATEMENT 207

Observations:

A statement or a group of statements is executed if and only if there is an

exact – bit by bit – match between the evaluated expression and the specified

ref1, ref2, etc.

For any of the matches, one can have a block of statements defined for

execution. The block should appear within the begin-end construct.

There can be only one default statement or default block. It can appear

anywhere in the case statement.

One can have multiple signal combination values specified for the same

statement for execution. Commas separate all of them.

Example 7.13

Consider the module in Figure 7.68 for a 2-to-4 decoder. The test bench is also

included in the figure. One of the 4 output bits goes high, depending on the binary

value of {i1, i2}. If i1, i2, or both take x or z values, there is no match and the

default block is executed. The simulation results are shown in Figure 7.69.

module dec2_4beh(o,i);
output[3:0]o;
input[1:0]i;
reg[3:0]o;
always@(i)
begin
case(i)
 2'b00:o=4'h0;
 2'b01:o=4'h1;
 2'b10:o=4'h2;
 2'b11:o=4'h4;
default:
begin
 $display ("error");
 o=4'h0;
end
endcase
end
endmodule

continued

208 BEHAVIORAL MODELING — 1

continued

//test bench
module tst_dec2_4beh();
wire [3:0]o;
reg[1:0] i;
//reg en;
dec2_4beh dec(o,i);
initial
begin
 i =2'b00;
 #2i =2'b01;
 #2i =2'b10;
 #2i =2'b11;
 #2i =2'b11;
 #2i =2'b0x;
end
initial $monitor ($time , " output o = %b , input i
= %b " , o ,i);
endmodule

Figure 7.68 A 2-to-4 decoder using the case statement.

Example 7.14

Consider the module in Figure 7.70, which is a modified version of the decoder

module in Figure 7.68. A test bench is also included in the figure. Here if either

bit is at x state, all the output bits are in the x state. Default corresponds to one or

both of the input bits being z or both the bits being at x state. In such a case an

error message is also output by the simulator. The simulation results are shown in

Figure 7.71.

output

0 output o = 0000 , input i = 00
2 output o = 0001 , input i = 01
4 output o = 0010 , input i = 10
6 output o = 0100 , input i = 11
error
10 output o = 0000 , input i = 0x

Figure 7.69 Simulation results of the decoder module in Figure 7.69.

THE case STATEMENT 209

module dec2_4beh1(o,i);
output[3:0]o;
input[1:0]i;
reg[3:0]o;
always@(i)
begin
case(i)
 2'b00:o[0]=1'b1;
 2'b01:o[1]=1'b1;
 2'b10:o[2]=1'b1;
 2'b11:o[3]=1'b1;
 2'b0x,2'b1x,2'bx0,2'bx1:o=4'b0000;
default: begin
 $display ("error");
 o=4'h0;
 end
endcase
end
endmodule

module tst_dec2_4beh1;//test bench
wire [3:0]o;
reg[1:0] i;
dec2_4beh1 dec(o,i);
initial
begin
 i =2'b00;
 #2i =2'b01;
 #2i =2'b10;
 #2i =2'b11;
 #2i =2'b11;
 #2i =2'b1x;
 #2i =2'b0x;
 #2i =2'bx0;
 #2i =2'bx1;
 #2i =2'bxx;
 #2i =2'b0z;
end
initial $monitor ($time , " output o = %b , input i
= %b " , o ,i);
endmodule

Figure 7.70 A 2-to-4 decoder where all the outputs are forced to zero, if any of the inputs is

at x state.

210 BEHAVIORAL MODELING — 1

0 output o = xxx1 , input i = 00
2 output o = xx11 , input i = 01
4 output o = x111 , input i = 10
6 output o = 1111 , input i = 11
10 output o = 0000 , input i = 1x
12 output o = 0000 , input i = 0x
14 output o = 0000 , input i = x0
16 output o = 0000 , input i = x1
error
18 output o = 0000 , input i = xx
error
20 output o = 0000 , input i = 0z

Figure 7.71 Results of the simulation run with the test bench in Figure 7.70.

Example 7.15 ALU

Figure 7.72 shows an ALU module along with a test bench. The ALU function

has been realized through a block with a case construct. The ALU realization

can be seen to be compact and elegant compared to the versions considered thus

far. Additional functions can be added to the ALU by a direct expansion of the

case block. The ALU size too can be altered to suit requirements. Results of the

simulation run with the test bench in Figure 7.72 are shown in Figure 7.73 and

Figure 7.74. The synthesized circuit is shown in Figure 7.75.

module alubeh(c,s,a,b,f);
output[3:0]c;
output s;
input [3:0]a,b;
input[1:0]f;
reg s;
reg[3:0]c;
always@(a or b or f)
begin

case(f)
 2'b00: c=a+b;
 2'b01: c=a-b;
 2'b10: c=a&b;
 2'b11: c=a|b;

endcase

continued

THE case STATEMENT 211

continued

end
endmodule

module tst_alubeh;//test-bench
reg[3:0]a,b;
reg[1:0]f;
wire[3:0]c;
wire s;
alubeh aa(c,s,a,b,f);
initial
begin
f=2'b00;a=2'b00;b=2'b00;
end
always
begin

#2 f=2'b00;a=4'b0011;b=4'b0000;
#2 f=2'b01;a=4'b0001;b=4'b0011;
#2 f=2'b10;a=4'b1100;b=4'b1101;
#2 f=2'b11;a=4'b1100;b=4'b1101;

end
initial $monitor($time,"f=%b,a=%b,b=%b,c=%b",f,a,b,c);
initial #10 $stop;
endmodule

Figure 7.72 A simple ALU module along with its test bench.

0f=00,a=0000,b=0000,c=0000
#2f=00,a=0011,b=0000,c=0011
#4f=01,a=0001,b=0011,c=1110
#6f=10,a=1100,b=1101,c=1100
#8f=11,a=1100,b=1101,c=1101
#10f=00,a=0011,b=0000,c=0011

Figure 7.73 Results of the simulation run with the test bench in Figure 7.72.

212 BEHAVIORAL MODELING — 1

Figure 7.74 Results of the simulation run with the test bench in Figure 7.73 – another view.

7.12.1 Casex and Casez

The case statement executes a multiway branching where every bit of the case

expression contributes to the branching decision. The statement has two variants

where some of the bits of the case expression can be selectively treated as don’t

cares – that is, ignored. Casez allows z to be treated as a don’t care. “?”

character also can be used in place of z. casex treats x or z as a don’t care. An

illustrative example using casez construct follows.

Figure 7.75 Synthesized circuit of the ALU module in Figure 7.73.

THE case STATEMENT 213

Example 7.16

A module for a priority encoder and a test bench for it are shown in Figure 7.76.

The encoder gives a 2-bit output. The binary output represents the position of the

first one bit in the 4-bit input combination. The simulation results are shown in

Figure 7.77. The synthesized circuit is shown in Figure 7.78.

module pri_enc(a,b);
output[1:0]a;
input[3:0]b;
reg[1:0]a;
always@(b)
casez(b)
4'bzzz1:a=2'b00;
4'bzz10:a=2'b01;
4'bz100:a=2'b10;
4'b1000:a=2'b11;
endcase
endmodule

module pri_enc_tst;//test-bench
reg [3:0]b;
wire[1:0]a;
pri_enc pp(a,b);
initial b=4'bzzz0;
always
begin

#2 b=4'bzzz1;
#2 b=4'bzzz1;
#2 b=4'bzz10;
#2 b=4'bz100;
#2 b=4'b1000;

end
initial $monitor($time, "input b =%b,a =%b ",b,a);
initial #40 $stop;
endmodule

Figure 7.76 A design module for a 2-bit priority encoder using the casez statement; a test

bench is also shown.

214 BEHAVIORAL MODELING — 1

 0input b = zzz0 ,a = 01
 2input b = zzz1 ,a = 00
 6input b = zz10 ,a = 01
 8input b = z100 ,a = 10
 10input b = 1000 ,a = 11
 12input b = zzz1 ,a = 00
 16input b = zz10 ,a = 01
 18input b = z100 ,a = 10
 20input b = 1000 ,a = 11
 22input b = zzz1 ,a = 00
 26input b = zz10 ,a = 01
 28input b = z100 ,a = 10
 30input b = 1000 ,a = 11
 32input b = zzz1 ,a = 00
 36input b = zz10 ,a = 01
 38input b = z100 ,a = 10

Figure 7.77 Results of simulating the test bench in Figure 7.76.

Figure 7.78 Synthesized circuit of the priority encoder in Figure 7.76.

7.13 SIMULATION FLOW

Different constructs for design description and simulation have been dealt with so

far. These can be at different levels of abstraction – gate, data flow, or behavioral

level. The constructs to be discussed in the following chapters add to the variety

and flexibility. Such elements in different combinations make up the design and

simulation modules in Verilog. Further, as an HDL, Verilog has to be an

inherently parallel processing language. The fact that all the elements of a digital

circuit (or any electronic circuit for that matter) function and interact continuously

conforming to their interconnections demands parallel processing. In Verilog the

parallel processing is structured through the following [IEEE]:

SIMULATION FLOW 215

Simulation time: Simulation is carried out in simulation time. The simulator

functions with simulation time advancing in (equal) discrete steps.

At every simulation step a number of active events are sequentially carried

out.

The simulator maintains an event queue – called the “Stratified Event Queue”

– with an active segment at its top. The top most event in the active segment

of the queue is taken up for execution next.

The active event can be of an update type or evaluation type.

The evaluation event can be for evaluation of variables, values on nets,

expressions, etc.

Refreshing the queue and rearranging it constitutes the update event.

Any updating can call for a subsequent evaluation and vice versa.

Only after all the active events in a time step are executed, the simulation

advances to the next time step.

Completion of the sequence of operations above at any time step signifies the

parallel nature of the HDL.

A number of active events can be present for execution at any simulation time

step; all may vie for “attention.” Amongst these, an event specified at #0 time is

scheduled for execution at the end – that is, before simulation advances to the next

time step. The order, in which the other events are executed, is essentially

simulator-dependent.

7.13.1 Stratified Event Queue

The events being carried out at any instant give rise to other events – inherent in

the execution process. All such events can be grouped into the following 5 types:

Active events – explained above.

Inactive events – The inactive events are the events lined up for execution

immediately after the execution of the active events. Events specified with

zero delay are all inactive events.

Blocking Assignment Events – Operations and processes carried out at

previous time steps with results to be updated at the current time step are of

this category.

Monitor Events – The Monitor events at the current time step – $monitor

and $strobe – are to be processed after the processing of the active events,

inactive events, and nonblocking assignment events.

Future events – Events scheduled to occur at some future simulation time are

the future events.

The simulation process conforming to the stratified event queue is shown in

flowchart form in Figure 7.79.

216 BEHAVIORAL MODELING — 1

start

any

event

inactive

event

non-

blocking

assigns

monitor

event

update

event

end of

simulation

c

activate all

inactive events

c

activate them

activate them

d

d

advance simulation

time

activate all inactive

events at the next

time step

* evaluate the process

* add update events to

 the event queue

* update

* add evaluation events

 to the event queue

ba

a

b

yes

yes

yes

yes

no

no

no

no

no yes

Figure 7.79 Flowchart for the simulation flow.

EXERCISES 217

7.14 EXERCISES

Prepare design modules for the following operations [Sedra, Tocci, Wakerly]. In

each case prepare a suitable test bench and test the design module.

1. Add two BCD nibbles.

2. Add two pairs of BCD nibbles – 2 decimal numbers each of two digits.

3. Interrupt Service Routine (ISR): An ISR receives an Interrupt Request

(IRQ). The PC content is saved on a stack – 4 bytes deep. Then a specific

byte 5a5ah is loaded into the PC. The ISR sets an INTA flag high and

returns. Use the ‘wait’ construct and design the module.

4. Form an ALU for two input bytes. All the operations are to be carried out

using the “case” construct. Use the algebraic and logic instructions

available with 8085, 6805, 6502 z80, and the PIC series of processors as the

basis [in all 5 ALUs]. Designate the two input vectors as ba and bb. Output

is on ba. All the flags are to be on bb.

5. Memory Block: Have a 1 kb size memory with a 10-bit Memory Address

Register. Use clock beta for memory read and memory write. Use Wr and

Rd as two separate control input lines. The operations to be realized are:

Wr=1: Write into the location specified by the MAR.

RD=1: Read from location specified by MAR.

Wr=0 & Rd=0: Condition to be satisfied to write into the MAR.

Data input and data output are to be through an 8-bit-wide bus “ba.”

6. Change the always block in Example 7.6 (Figure 7.42) to the following:

always

begin

 @(negedge clk)

 a=(En)?((a==N)?4’b0000:a+1’b1):a);

end

How does the block here differ from that in the Example? Prepare a test

bench, simulate, and explain.

7. A priority encoder is used to prioritize service to interrupt requests in a

microcontroller. The priority encoder in Example 7.15 can be expanded to

suit the desired role here. It receives a byte (IRQ byte) and outputs a byte

(vector address). The vector address has to be 32 times the serial number of

the leading one bit in the IRQ byte. Prepare the necessary design module

and synthesize it.

219

8

BEHAVIORAL MODELING II

8.1 INTRODUCTION

Comparatively simple and direct behavioral level constructs were discussed in the

last chapter. They are essentially centered on the algebraic or logic operators.

Different combinational and sequential circuits can be realized using them. The

case construct and its variants enhance the possibilities of design description

considerably. A few constructs are available for looping and branching. Their

usage can make the design description compact and elegant. Further such

constructs enhance the modeling capabilities substantially [Navabi]. These

constructs mostly follow their counterparts in C language [Gottfried]. These

constructs and certain other facilities that add to the flexibility of test benches are

discussed here. Their use is illustrated through appropriate examples.

8.2 if AND if-else CONSTRUCTS

The if construct checks a specific condition and decides execution based on the

result. Figure 8.1 shows the structure of a segment of a module with an if

statement. After execution of assignment1, the condition specified is checked. If

it is satisfied, assignment2 is executed; if not, it is skipped. In either case the

execution continues through assignment3, assignment4, etc. Execution of

assignment2 alone is dependent on the condition. The rest of the sequence

remains. The flowchart equivalent of the execution is shown in Figure 8.2. If the

. . .
assignment1;
if (condition) assignment2;
assignment3;
assignment4;
. . .

Figure 8.1 Use of if construct.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

220 BEHAVIORAL MODELING II

condition

assignment2

assignment4

assignment3

assignment1

yes no

Figure 8.2 Flowchart of the if loop.

number of assignments associated with the if condition is more than 1, the whole

set of them can be grouped within a begin-end block. Figure 8.3 shows a

segment of a design using the if construct. It is a ring counter, which shifts one

bit right at every clock pulse. The shift operation shifts the a byte right by one bit

and fills the vacated bit – a[7] – with a zero. It is set to 1 if the bit shifted out last

– a[0] – was a 1. The same is carried out through the if statement. The if-

else construct is more common and turns out to be more useful than the if

construct taken alone. Figure 8.4 shows the use in a typical design description.

Figure 8.5 shows the same in flowchart form. The design description has two

branches; the alternative taken is decided by the condition:

Reg[7:0] a;

Reg c;

always@(posedge clk)
begin

c = a[0];
a = a>>1'b1; // Since the vacated bit of a is filled with a zero, it need be

if(c) a[7] = c;// set only if a[0] =1
end

Figure 8.3 A Ring counter description using the if construct.

if AND if-else CONSTRUCTS 221

. . .

assignment1;

if(condition)

begin // Alternative 1

 assignment2;

 assignment3;
 end

else

begin //alternative 2

 assignment4;

 assignment5;
end

assignment6;

. . .

. . .

Figure 8.4 Use of the if–else construct.

condition

assignment2 assignment4

assignment3

assignment1

yes no

assignment6

assignment5

Figure 8.5 Flowchart of execution of the if-else loop.

222 BEHAVIORAL MODELING II

After the execution of assignment1, if the condition is satisfied, alternative1

is followed and assignment2 and assignment3 are executed.

Assignment4 and assignment 5 are skipped and execution proceeds with

assignment6.

If the condition is not satisfied, assignment2 and assignment3 are skipped

and assignment4 and assignment5 are executed. Then execution continues

with assignment6.

Example 8.1

Figure 8.6 shows a 2 to 4 demux module. The whole demux module is realized

through the if-else-if sequence of constructs. The selected channel is

connected to the output, and all other channels are tri-stated. A test bench for the

demux module is also shown in the figure. Partial results of simulation are shown

in Figure 8.7; the synthesized circuit is shown in Figure 8.8.

In fact the use of case statement to realize mux, demux, direct encoders, and

decoders makes the design description simple and direct – in contrast to the use of

if-else-if construct. But the if-else-if construct is more general. It can

accommodate different types of conditions at each branching. In contrast the

case construct does a direct multiway branching.

module demux(a,b,s);
output [3:0]a;
input b;
input[1:0]s;
reg[3:0]a;
always@(b or s)
begin
 if(s==2'b00)
 begin
 a[2'b0]=b;
 a[3:1]=3'bZZZ;
 end
 else if(s==2'b01)
 begin
 a[2'd1]=b;
 {a[3],a[2],a[0]}=3'bZZZ;
 end
else if(s==2'b10)
 begin
 a[2'd2]=b;
 {a[3],a[1],a[0]}=3'bZZZ;

continued

if AND if-else CONSTRUCTS 223

continued

 end
else
 begin
 a[2'd3]=b;
 a[2:0]=3'bZZZ;
 end
end
endmodule

//tst_bench
module tst_demux();
reg b;
reg[1:0]s;
wire[3:0]a;
demux d1(a,b,s);
initial
b=1'b0;
always
begin
 #2 s=2'b00;b=1'b1;
 #2 s=2'b00;b=1'b0;
 #2 s=2'b01;b=1'b0;
 #2 s=2'b10;b=1'b1;
 #2 s=2'b11;b=1'b0;
end
initial
$monitor("t=%0d, s=%b,b=%b,output =%b",$time,s,b,a);
initial #30 $stop;
endmodule

Figure 8.6 A 2-to-4 demux module using the if-else-if construct: A testbench is also shown

in the figure.

t=0, s=xx,b=0,output a=0zzz
t=2, s=00,b=1,output a=zzz1
t=4, s=00,b=0,output a=zzz0
t=6, s=01,b=0,output a=zz0z
t=8, s=10,b=1,output a=z1zz
t=10, s=11,b=0,output a=0zzz

Figure 8.7 Partial results of the simulation of the testbench in Figure 8.6.

224 BEHAVIORAL MODELING II

Figure 8.8 The synthesized circuit of the 2-to-4 demux module in Figure 8.6.

Example 8.2

Figure 8.9 shows the design description of a mod-n up-counter module along with

a test-bench for it. At every clock pulse the counter advances by one bit. As soon

as the count reaches the binary value n, the counter is reset to zero. The initial

value of n is specified within the module itself. It is changed at a later stage. The

simulation results are shown in Figure 8.10 (only partial results are shown).

Observations:

The $write is a system task; it is similar to the $display task except in

one respect: When $write is executed, the simulator does not advance to

the new line after the specified display [see Chapter 11 for details].

The value of n can be changed only from within the module. If necessary, the

constraint can be removed by making n as an input to the module.

The character set ‘%0d’ within the $write statement ensures that the

concerned quantity is displayed in decimal form with the minimum number of

digits necessary for it. It makes the display elegant.

For convenience the value of time is displayed in decimal form. Other

quantities are in hex form.

 The counter can be easily modified to function as a down counter, a clock

divider, or an up / down counter. It can be made more versatile with

additional control inputs for Preset, Reset, and Enable.

assign–deassign CONSTRUCT 225

//counter using if else if;
module countif(a,clk);
output[7:0]a;
input clk;
reg[7:0]a,n;
initial
begin
 n=8'h0a;
 a=8'b00000000;
 #45 n=8'h23;
end
always@(posedge clk)
begin
 $write ("time=%0d ",$time);
 if(a==n)
 a=8'h00;
 else a=a+1'b1;
end
endmodule

module tst_countif();//test-bench
reg clk;
wire[7:0]a;
countif c1(a,clk);
initial clk =1'b0;
always
#2clk=~clk;
initial
$monitor(" n=%h, a=%h",c1.n,a);
initial #200 $stop;
endmodule

Figure 8.9 A counter realized using the if-else construct.

8.3 assign–deassign CONSTRUCT

A behavior block is activated by the event at the beginning. A proper operation

demands that all variables with assignments within the block are to be included in

the sensitivity list. The assign – deassign constructs allow continuous

assignments within a behavioral block. By way of illustration, consider the

following simple block:

226 BEHAVIORAL MODELING II

 n=0a, a=00

 time=2 n=0a, a=01

 time=6 n=0a, a=02

 time=10 n=0a, a=03

 time=14 n=0a, a=04

 time=18 n=0a, a=05

 time=22 n=0a, a=06

 time=26 n=0a, a=07

 time=30 n=0a, a=08

 time=34 n=0a, a=09

 time=38 n=0a, a=0a

 time=42 n=0a, a=00

 n=23, a=00

time=46 n=23, a=01

time=50 n=23, a=02

time=54 n=23, a=03

time=58 n=23, a=04

time=62 n=23, a=05

time=66 n=23, a=06

time=70 n=23, a=07

time=74 n=23, a=08

time=78 n=23, a=09

time=82 n=23, a=0a

time=86 n=23, a=0b

time=90 n=23, a=0c

time=94 n=23, a=0d

time=98 n=23, a=0e

Figure 8.10 Partial results of running the test bench in Figure 8.9.

always@(posedge clk) a = b;

By way of execution, at the positive edge of clk the value of b is assigned to

variable a, and a remains frozen at that value until the next positive edge of clk.

Changes in b in the interval are ignored.

As an alternative, consider the block

always@(posedge clk) assign c = d;

Here at the positive edge of clk, c is assigned the value of d in a continuous

manner; subsequent changes in d are directly reflected as changes in variable c:

The assignment here is akin to a direct (one way) electrical connection to c from d
established at the positive edge of clk.

Again consider an enhanced version of the above block as

Always

Begin

@(posedge clk) assign c = d;

 @(negedge clk) deassign c;
end

The above block signifies two activities:

1. At the positive edge of clk, c is assigned the value of d in a continuous

manner (as mentioned above).

2. At the following negative edge of clk, the continuous assignment to c is

removed; subsequent changes to d are not passed on to c; it is as though c
is electrically disconnected from d.

The above sequence of twin activities is repeated cyclically.

assign–deassign CONSTRUCT 227

In short, assign allows a variable or a net change in the sensitivity list to

mandate a subsequent continuous assignment within. deassign terminates the

assignment done through the assign-based statement. The assignment to c in

the above two cases is referred to as a “Procedural Continuous Assignment.”

Example 8.3 A 2 to 4 Demux through Procedural Continuous Assignment

Consider the mux module in Figure 8.11. It is activated whenever s changes. But

the assignment is continuous to reg b. It is achieved through the use of the

//an alternate realization of the demux using the assign construct

module demux1(a0,a1,a2,a3,b,s);

output a0,a1,a2,a3;

input b;

input [1:0]s;

reg a0,a1,a2,a3;

always@(s)

 if(s==2'b00)

 assign {a0,a1,a2,a3}={b,3'oz};

 else if(s==2'b01)

 assign {a0,a1,a2,a3}={1'bz,b,2'bz};

 else if(s==2'b10)

 assign {a0,a1,a2,a3}={2'bz,b,1'bz};

 else if(s==2'b11)

 assign {a0,a1,a2,a3}={3'oz,b};

endmodule

module tst_demux1();

reg b;

reg[1:0]s;

demux1 d2(a0,a1,a2,a3,b,s);

initial begin b=1'b0;s=2'b0; end

always

begin

#1 s=s+1'b1;

$display("t=%0d, s=%b, b=%b, {a0,a1,a2,a3} =%b",$time,s,b,{a0,a1,a2,a3});

#1b=~b;

$display("t=%0d, s=%b, b=%b, {a0,a1,a2,a3} =%b",$time,s,b,{a0,a1,a2,a3});

end

initial #14 $stop;

endmodule

Figure 8.11 An alternate realization of the demux using the assign construct.

228 BEHAVIORAL MODELING II

t=1, s=01, b=0, {a0,a1,a2,a3} =0zzz

t=2, s=01, b=1, {a0,a1,a2,a3} =z0zz

t=3, s=10, b=1, {a0,a1,a2,a3} =z1zz

t=4, s=10, b=0, {a0,a1,a2,a3} =zz1z

t=5, s=11, b=0, {a0,a1,a2,a3} =zz0z

t=6, s=11, b=1, {a0,a1,a2,a3} =zzz0

t=7, s=00, b=1, {a0,a1,a2,a3} =zzz1

t=8, s=00, b=0, {a0,a1,a2,a3} =1zzz

t=9, s=01, b=0, {a0,a1,a2,a3} =0zzz

t=10, s=01, b=1, {a0,a1,a2,a3} =z0zz

t=11, s=10, b=1, {a0,a1,a2,a3} =z1zz

t=12, s=10, b=0, {a0,a1,a2,a3} =zz1z

t=13, s=11, b=0, {a0,a1,a2,a3} =zz0z

Figure 8.12 Results of simulating the test bench of Figure 8.11.

“assign” construct. Specifically, if s = 2'b01, a[1] is connected to b and

remains so connected so long as s remains unchanged. If b changes value, a[1]

follows it even though b is not included in the sensitivity list. A test bench is also

included in Figure 8.11.Simulation results are shown in Figure 8.12.

Example 8.4 A D Flip-Flop through assign – deassign Constructs

Consider the module Figure 8.13, which represents a D flip-flop with Preset and

Clear. If Clear or Preset becomes true, the output is forced to the Preset or Set

condition, respectively. It is ensured by the first always block with the quasi-

continuous assignments. If both Preset and Clear are false, the quasi-continuous

assignment is removed. The second always block provides the assignment to q at

every positive edge of the clk. It can take effect only if the asynchronous set–reset

block is not active. Thus the asynchronous set/reset through Preset/Clear override

the synchronous set/reset decided by the value of di at the clock edge. A test

bench for the D flip-flop module is also included in the figure.

Observations:

Some (many) synthesizers may not support the quasi-continuous assign-

deassign constructs.

The quasi-continuous assignment is made only to a variable (reg type); it can

be a scalar or a full vector but not a part vector.

The quasi-continuous assignment overrides all other assignments to the

variable.

assign–deassign CONSTRUCT 229

module dffassign(q,qb,di,clk,clr,pr);
output q,qb;
input di,clk,clr,pr;
reg q;
assign qb=~q;
always@(clr or pr)
begin
 if(clr)assign q = 1'b0;//asynchronous clear and
 if(pr) assign q = 1'b1;// preset of FF overrides
 else deassign q;// the synchronous behaviour
end
always@(posedge clk)
 q = di;//synchronous (clocked)value assigned to q
endmodule

//test-bench
module dffassign_tst();
reg di,clk,clr,pr;
wire q,qb;
dffassign dd(q,qb,di,clk,clr,pr);
initial
begin
 clr=1'b1;pr=1'b0;clk=1'b0;di=1'b0;
end
always
begin
 #2 clk=~clk;clr=1'b0;
end
always
4 di =~di;
always
#16 pr=1'b1;
always
#20 pr =1'b0;
initial $monitor("t=%0d, clk=%b, clr=%b, pr=%b,
di=%b, q=%b ", $time,clk,clr,pr,di,q);
initial #46 $stop;
endmodule

Figure 8.13 Design description of a D_flip-flop with Preset and Clear facilities: The

module illustrates the use of the assign–deassign construct.

230 BEHAVIORAL MODELING II

t=0, clk=0, clr=1, pr=0, di=0, q=0
t=2, clk=1, clr=0, pr=0, di=0, q=0
t=4, clk=0, clr=0, pr=0, di=1, q=0
t=6, clk=1, clr=0, pr=0, di=1, q=1
t=8, clk=0, clr=0, pr=0, di=0, q=1
t=10, clk=1, clr=0, pr=0, di=0, q=0
t=12, clk=0, clr=0, pr=0, di=1, q=0
t=14, clk=1, clr=0, pr=0, di=1, q=1
t=16, clk=0, clr=0, pr=1, di=0, q=1
t=18, clk=1, clr=0, pr=1, di=0, q=1
t=20, clk=0, clr=0, pr=0, di=1, q=1
t=22, clk=1, clr=0, pr=0, di=1, q=1
t=24, clk=0, clr=0, pr=0, di=0, q=1
t=26, clk=1, clr=0, pr=0, di=0, q=0
t=28, clk=0, clr=0, pr=0, di=1, q=0
t=30, clk=1, clr=0, pr=0, di=1, q=1
t=32, clk=0, clr=0, pr=1, di=0, q=1
t=34, clk=1, clr=0, pr=1, di=0, q=1
t=36, clk=0, clr=0, pr=1, di=1, q=1
t=38, clk=1, clr=0, pr=1, di=1, q=1
t=40, clk=0, clr=0, pr=0, di=0, q=1
t=42, clk=1, clr=0, pr=0, di=0, q=0
t=44, clk=0, clr=0, pr=0, di=1, q=0

Figure 8.14 Simulation results of the test bench in Figure 8.13.

Example 8.5 Another D Flip-Flop with if and if-else

Figure 8.15 shows a module of a flip-flop again using the if-else-if

construct. clr, pr, and clk are all included in the sensitivity list itself. A test bench

is also included in the figure. The synthesized circuit of the module is shown in

Figure 8.16. Simulation results are in Figure 8.17.

module dffalter(q,qb,di,clk,clr,pr);
output q,qb;
input di,clk,clr,pr;
reg q;
assign qb =~q;//continous assignment
always@(posedge clr or posedge pr or posedge clk)
 begin
 if(clr) q=1'b0;

continued

assign–deassign CONSTRUCT 231

continued

 else if(pr) q=1'b1;
 else q=di;
 end
endmodule

//test-bench
module dffalter_tst();
reg di,clk,clr,pr;
wire q;
dffalter dff(q,qb,di,clk,clr,pr);
initial
begin
 clr=1'b1;pr=1'b0;clk=1'b0;di=1'b0;
end
always
begin
 #2 clk=~clk;clr=1'b0;
end
always # 4 di =~di;
always #16 pr=1'b1;
always #20 pr =1'b0;
initial $monitor("t=%0d, clk=%b, clr=%b, pr=%b,
di=%b, q=%b ", $time,clk,clr,pr,di,q);
initial #46 $stop;
endmodule

Figure 8.15 An alternate description of the D_FF module and its test bench.

Figure 8.16 Synthesized circuit of the flip-flop of Example 8.5.

232 BEHAVIORAL MODELING II

0clk = 0, clr = 1, pr = 0, di = 0, q = 0
2clk = 1, clr = 0, pr = 0, di = 0, q = 0
4clk = 0, clr = 0, pr = 0, di = 1, q = 0
6clk = 1, clr = 0, pr = 0, di = 1, q = 1
8clk = 0, clr = 0, pr = 0, di = 0, q = 1
10clk = 1, clr = 0, pr = 0, di = 0, q = 0
12clk = 0, clr = 0, pr = 0, di = 1, q = 0
14clk = 1, clr = 0, pr = 0, di = 1, q = 1
16clk = 0, clr = 0, pr = 1, di = 0, q = 1
18clk = 1, clr = 0, pr = 1, di = 0, q = 1
20clk = 0, clr = 0, pr = 0, di = 1, q = 1
22clk = 1, clr = 0, pr = 0, di = 1, q = 1
24clk = 0, clr = 0, pr = 0, di = 0, q = 1
26clk = 1, clr = 0, pr = 0, di = 0, q = 0
28clk = 0, clr = 0, pr = 0, di = 1, q = 0
30clk = 1, clr = 0, pr = 0, di = 1, q = 1
32clk = 0, clr = 0, pr = 1, di = 0, q = 1
34clk = 1, clr = 0, pr = 1, di = 0, q = 1
36clk = 0, clr = 0, pr = 1, di = 1, q = 1
38clk = 1, clr = 0, pr = 1, di = 1, q = 1
40clk = 0, clr = 0, pr = 0, di = 0, q = 1
42clk = 1, clr = 0, pr = 0, di = 0, q = 0
44clk = 0, clr = 0, pr = 0, di = 1, q = 0

Figure 8.17 Simulation results for the test bench of Figure 8.15.

Examle 8.6 A Counter with a Continuous Procedural Assignment

Figure 8.18 shows the module of an up counter with Preset and Clear facilities.

Preset and Clear are carried out through Procedural Continuous Assignments. If clr
goes high, a is reset to zero. If pr goes high, a is set to the number specified as n.

Either of these assignments will remain as long as either Clear or Preset is active

as the case may be. If both these asynchronous control signals go low, the module

increments the value of a at every positive edge of the clock. The module can

easily be modified to function as a down counter, an up–down counter, or a

counter to any other modulus.

assign–deassign CONSTRUCT 233

module ctr_a(a,n,clr,pr,clk);

output [7:0]a;
input [7:0]n;
input clr,pr,clk;
reg[7:0]a;
initial a =8'h00;

always@(posedge clk)
a=a+1'b1;
always@(clr or pr)
 if (clr)assign a =7'h00;

 else if(pr)assign a =n;
 else deassign a;
endmodule

module counprclrasgn_tst();//test-bench
reg [7:0]n;

reg clr,pr,clk;
wire[7:0] a;
ctr_a cc(a,n,clr,pr,clk);
initial
begin

 n=8'h55; clr=1'b1;
 pr=1'b0;clk=1'b0;
end
always

begin
 #2 clk=~clk;clr=1'b0;
end
always #16 pr=1'b1;

always #20 pr =1'b0;
initial $monitor($time , "clk = %b , clr = %b
, pr = %b , a = %b ", clk,clr,pr,a);
initial #44 $stop;

endmodule

Figure 8.18 Design description of an up counter with Preset and Clear facilities.

234 BEHAVIORAL MODELING II

 0clk = 0 , clr = 1 , pr = 0 , a = 00000000
 2clk = 1 , clr = 0 , pr = 0 , a = 00000001
 4clk = 0 , clr = 0 , pr = 0 , a = 00000001
 6clk = 1 , clr = 0 , pr = 0 , a = 00000010
 8clk = 0 , clr = 0 , pr = 0 , a = 00000010
 10clk = 1 , clr = 0 , pr = 0 , a = 00000011
 12clk = 0 , clr = 0 , pr = 0 , a = 00000011
 14clk = 1 , clr = 0 , pr = 0 , a = 00000100
 16clk = 0 , clr = 0 , pr = 1 , a = 01010101
 18clk = 1 , clr = 0 , pr = 1 , a = 01010101
 20clk = 0 , clr = 0 , pr = 0 , a = 01010101
 22clk = 1 , clr = 0 , pr = 0 , a = 01010110
 24clk = 0 , clr = 0 , pr = 0 , a = 01010110
 26clk = 1 , clr = 0 , pr = 0 , a = 01010111
 28clk = 0 , clr = 0 , pr = 0 , a = 01010111
 30clk = 1 , clr = 0 , pr = 0 , a = 01011000
 32clk = 0 , clr = 0 , pr = 1 , a = 01010101
 34clk = 1 , clr = 0 , pr = 1 , a = 01010101
 36clk = 0 , clr = 0 , pr = 1 , a = 01010101
 38clk = 1 , clr = 0 , pr = 1 , a = 01010101
 40clk = 0 , clr = 0 , pr = 0 , a = 01010101
 42clk = 1 , clr = 0 , pr = 0 , a = 01010110

Figure 8.19 Simulation results of the test bench in Figure 8.18.

Example 8.7

Consider the module in Figure 8.20 which is a variant of the flip-flop in Figure

8.15. A test bench for the flip-flop is also included in the figure. Here the

always block is activated at every positive edge of the clock. At that instant if

clr = 1, the flip-flop is cleared. If pr = 1, the flip-flop is set. If clr = 0 and pr = 0,

the flip-flop output takes on the value of d. Here all the assignments to q take

effect at the positive edge of the clock. Hence the behavior is fully synchronous.

This is not necessarily the case with the flip-flop of Figure 8.15. The synthesized

circuit of the flip-flop is shown in Figure 8.21.

module dff_1beh(q,qb,di,clk,clr,pr);
output q,qb;
input di,clk,clr,pr;
reg q;
assign qb=~q;
always@(posedge clk)
begin
 if(clr)q = 1'b0;

continued

assign–deassign CONSTRUCT 235

continued

 else if(pr) q = 1'b1;
 else q=di;
end
endmodule

//test-bench
module dff_1beh_tst();
reg di,clk,clr,pr;
wire q,qb;
dff_1beh dd(q,qb,di,clk,clr,pr);
initial
begin
clr=1'b1;pr=1'b0;clk=1'b0;di=1'b0;
end
always
begin
 #2 clk=~clk;clr=1'b0;
end
always # 4 di =~di;
always #16 pr=1'b1;
always #20 pr =1'b0;
always #24 clr=1'b1;
always #28 clr =1'b0;
initial $monitor("t=%0d, clk=%b, clr=%b, pr=%b,
di=%b, q=%b ", $time, clk,clr,pr,di,q);
initial #46 $stop;
endmodule

Figure 8.20 Another design description of a flip-flop and its test bench.

Figure 8.21 Synthesized circuit of the flip-flop in Figure 8.20.

236 BEHAVIORAL MODELING II

8.4 repeat CONSTRUCT

The repeat construct is used to repeat a specified block a specified number of

times. Typical format is shown in Figure 8.22. The quantity a can be a number or

an expression evaluated to a number. As soon as the repeat statement is

encountered, a is evaluated. The following block is executed “a” times. If “a”

evaluates to 0 or x or z, the block is not executed.

Example 8.8

The repeat construct is well-suited to repeat a block of assignments a fixed

number of times. Figure 8.23 shows a block in a module using it. The block has a

set of 16 registers each 8 bits wide. A repeat block is used to load a set of

numbers into them. Subsequently, the content of each register is displayed

sequentially again through a repeat block. The simulation results are shown in

Figure 8.24.

…
repeat (a)

begin

assignment1;
 assignment2;

 …
 end

 …

Figure 8.22 Structure of a repeat block.

module trial_8b;

reg[7:0] m[15:0];

integer i;

reg clk;

always

begin

 repeat(8)

 begin

 @(negedge clk)

 m[i]=i*8;

 i=i+1;

 end

 repeat(8)

 begin

 @(negedge clk)

 i=i-1;

 $display("t=%0d, i=%0d, m[i]=%0d", $time,i,m[i]);

continued

repeat CONSTRUCT 237

continued

 end
end
initial
begin
 clk = 1'b0;
 i=0;
 #70 $stop;
end
always #2 clk=~clk;
endmodule

Figure 8.23 A module to illustrate the use of the repeat construct.

t=32, i=7, m[i]=56

t=36, i=6, m[i]=48

t=40, i=5, m[i]=40

t=44, i=4, m[i]=32

t=48, i=3, m[i]=24

t=52, i=2, m[i]=16

t=56, i=1, m[i]=8

t=60, i=0, m[i]=0

Figure 8.24 Results of simulating the test bench in Figure 8.23.

Example 8.9

The module in Figure 8.25 outputs n successive words. The data to be output are

available in n successive locations of memory. out is the output port. The output

activity takes place at the positive edge of clk and is completed in n cycles of clk.

. . .
always
 begin
 repeat(n-1'b1)
 begin
 @(posedge clk)
 begin
 out = m(mar);
 mar = mar + 1'b1;
 end
 end
 end

Figure 8.25 A block in a module to output n successive bytes using the repeat construct.

238 BEHAVIORAL MODELING II

8.5 for LOOP

The for loop in Verilog is quite similar to the for loop in C; the format of the

for loop is shown on Figure 8.26. It has four parts; the sequence of execution is

as follows:

1. Execute assignment1.

2. Evaluate expression.

3. If the expression evaluates to the true state (1), carry out statement. Go

to step 5.

4. If expression evaluates to the false state (0), exit the loop.

5. Execute assignment2. Go to step 2.

Operation of the loop is shown in Figure 8.27 in flowchart form. It may be

compared with Figure 8.5 for the if-else-if construct. In general, whenever

one has to accommodate alternatives for execution, the if and if-else

constructs are preferred. Whenever a sequence of assignments is to be done

repeatedly with an index for termination, the for construct is preferred.

. . . .
for(assignment1; expression; assignment 2)

statement;

. . .

Figure 8.26 Structure of the for loop.

expression

execute block

assignment

no yes

assignment2

Figure 8.27 Flowchart of execution of the for loop.

for LOOP 239

Examle 8.10

The earlier memory-load example – Example 8.8 – has been redone here with the

for loop. The changed module and the simulation results are shown in Figure

8.28. The simulation results can be compared with those in Figure 8.24.

module trial_8a;
reg[7:0] m[15:0];
integer i;
reg clk;
always
begin
 for(i=0;i<8;i=i+1)
 @(negedge clk)
 m[i]=i*8;
 for(i=0;i<8;i=i+1)
 @(negedge clk)
 $display("t=%0d, i=%0d, m[i]=%0d", $time,i,m[i]);
end
initial clk = 1'b0;
always #2 clk=~clk;
initial #70 $stop;
endmodule

//Simulation results
t=32, i=0, m[i]=0
t=36, i=1, m[i]=8
t=40, i=2, m[i]=16
t=44, i=3, m[i]=24
t=48, i=4, m[i]=32
t=52, i=5, m[i]=40
t=56, i=6, m[i]=48
t=60, i=7, m[i]=56

Figure 8.28 A module to illustrate the use of the for construct to load a memory block.

Example 8.11

Figure 8.29 shows the design description of an 8-bit adder module using the for

loop. The module waits for En to go high; then the adder block is executed.

Addition is carried out sequentially on a bit-by-bit basis starting with the 0th bit.

Carry bit c[1] is generated when adding the bits in the 0th position. It is the carry

input to the addition in the first bit position, and so on. Since all the assignments

are of the blocking type, execution is sequential; but all are carried out at the same

time step. A test bench is also included in the figure. Simulation results are in

Figure 8.30.

240 BEHAVIORAL MODELING II

module addfor(s,co,a,b,cin,en);
output[7:0]s;
output co;
input[7:0]a,b;
input en,cin;
reg[8:0]c;
reg co;
reg[7:0]s;
integer i;
always@(posedge en)
begin
 c[0] =cin;
 for(i=0;i<=7;i=i+1)
 begin
 {c[i+1],s[i]}=(a[i]+b[i]+c[i]);
 end
 co=c[8];
end
endmodule

//testbench
module tst_addfor();
wire [7:0]s;
wire co;
reg [7:0]a,b;
reg en,cin;
addfor add(s,co,a,b,cin,en);
always #2 en=~en;
initial
begin
 #0 en=1'b0;
 #1 cin=1'b0;a=8'h01;b=8'h00;
 #2 cin=1'b0;a=8'h01;b=8'h00;
 #2 cin=1'b0;a=8'h01;b=8'h01;
 #2 cin=1'b0;a=8'h01;b=8'h01;
 #2 cin=1'b1;a=8'h01;b=8'h02;
 #2 en=1'b1;cin=1'b1;a=8'h01;b=8'h03;
 #2 cin=1'b0;a=8'h01;b=8'h09;
 #2 cin=1'b1;a=8'h01;b=8'h09;
 #2 cin=1'b0;a=8'hff;b=8'hff;
 #2 cin=1'b1;a=8'hff;b=8'hff;
 #2 cin=1'b1;a=8'hff;b=8'hff;
end
initial $monitor("t=%0d, en = %b, cin = %b, a = %0h, b
= %0h, s = %0h, co = %b ",$time,en,cin,a,b,s,co);
initial #30 $stop;
endmodule

Figure 8.29 An adder module using the for loop.

for LOOP 241

t=0, en = 0, cin = x, a = x, b = x, s = x, co = x

t=1, en = 0, cin = 0, a = 1, b = 0, s = x, co = x

t=2, en = 1, cin = 0, a = 1, b = 0, s = 1, co = 0

t=4, en = 0, cin = 0, a = 1, b = 0, s = 1, co = 0

t=5, en = 0, cin = 0, a = 1, b = 1, s = 1, co = 0

t=6, en = 1, cin = 0, a = 1, b = 1, s = 2, co = 0

t=8, en = 0, cin = 0, a = 1, b = 1, s = 2, co = 0

t=9, en = 0, cin = 1, a = 1, b = 2, s = 2, co = 0

t=10, en = 1, cin = 1, a = 1, b = 2, s = 4, co = 0

t=11, en = 1, cin = 1, a = 1, b = 3, s = 4, co = 0

t=12, en = 0, cin = 1, a = 1, b = 3, s = 4, co = 0

t=13, en = 0, cin = 0, a = 1, b = 9, s = 4, co = 0

t=14, en = 1, cin = 0, a = 1, b = 9, s = a, co = 0

t=15, en = 1, cin = 1, a = 1, b = 9, s = a, co = 0

t=16, en = 0, cin = 1, a = 1, b = 9, s = a, co = 0

t=17, en = 0, cin = 0, a = ff, b = ff, s = a, co = 0

t=18, en = 1, cin = 0, a = ff, b = ff, s = fe, co = 1

t=19, en = 1, cin = 1, a = ff, b = ff, s = fe, co = 1

t=20, en = 0, cin = 1, a = ff, b = ff, s = fe, co = 1

t=22, en = 1, cin = 1, a = ff, b = ff, s = ff, co = 1

t=24, en = 0, cin = 1, a = ff, b = ff, s = ff, co = 1

t=26, en = 1, cin = 1, a = ff, b = ff, s = ff, co = 1

t=28, en = 0, cin = 1, a = ff, b = ff, s = ff, co = 1

Figure 8.30 Results of simulating the test bench in Figure 8.29.

Example 8.12

Figure 8.31 shows an alternate realization of the adder along with a test bench.

Here again the addition proceeds sequentially starting with the 0th bit. The 0th

bits are added at the first positive edge of clk. The next set of bits is added at the

subsequent positive edge of clk, and so on. The adder is realized as a one-bit

adder doing the 8-bit addition. The synthesis tool will minimize hardware but will

demand maximum time for execution as the price. The simulation results are

shown in Figure 8.32.

242 BEHAVIORAL MODELING II

module addfor1(s,co,a,b,cin,en,clk);
output[7:0]s;
output co;
input[7:0]a,b;
input en,cin,clk;
reg[8:0]c;
reg co;
reg[7:0]s;
integer i;

//assign c[0]=cin;
always@(posedge en)
begin
 for(i=0;i<=7;i=i+1)
 @(posedge clk)
 begin
 if(i==0)c[0]=cin;
 {c[i+1],s[i]}=(a[i]+b[i]+c[i]);
 end
 co=c[8];
end
endmodule

//testbench
module tst_addfor1();
wire [7:0]s;
wire co;
reg [7:0]a,b;
reg en,cin,clk;
addfor1 add1(s,co,a,b,cin,en,clk);
initial
begin
 clk=1'b0;en=1'b0;cin=1'b0;a=8'h00;b=8'h00;
end
always #2 clk =~clk;
initial
begin
 #1 en=1'b1; #34 en=1'b0;
 #1 cin=1'b0;a=8'h01;b=8'h00;
 #1 en=1'b1; #34 en=1'b0;
 #1 cin=1'b1;a=8'h05;b=8'h02;
 #1 en=1'b1; #34 en=1'b0;
 #1 cin=1'b1;a=8'h06;b=8'h03;

continued

for LOOP 243

continued

 #1 en=1'b1; #34 en=1'b0;
 #1 cin=1'b0;a=8'h07;b=8'h09;
 #1 en=1'b1; #34 en=1'b0;
 #1 cin=1'b1;a=8'h01;b=8'h09;
 #1 en=1'b1; #34 en=1'b0;
 #1 cin=1'b0;a=8'hff;b=8'hff;
 #1 en=1'b1; #34 en=1'b0;
 #1 cin=1'b1;a=8'hff;b=8'hff;
end
always@(negedge en)
$display("t=%0d, clk=%0b, en=%0b, cin=%0b, a=%0h,
b=%0h, s=%0h, co=%0b",$time,clk,en,cin,a,b,s,co);
initial #300 $stop;
endmodule

Figue 8.31 Another module for byte addition using the for construct.

t=0, clk=0, en=0, cin=0, a=0, b=0, s=x, co=x
t=35, clk=1, en=0, cin=0, a=0, b=0, s=0, co=0
t=71, clk=1, en=0, cin=0, a=1, b=0, s=1, co=0
t=107, clk=1, en=0, cin=1, a=5, b=2, s=8, co=0
t=143, clk=1, en=0, cin=1, a=6, b=3, s=a, co=0
t=179, clk=1, en=0, cin=0, a=7, b=9, s=10, co=0
t=215, clk=1, en=0, cin=1, a=1, b=9, s=b, co=0
t=251, clk=1, en=0, cin=0, a=ff, b=ff, s=fe, co=1

Figure 8.32 Simulation output with the test-bench in Figure 8.31.

Example 8.13

Figure 8.33 shows a segment of a test bench to test the adder module for all input

combinations. At every time step, one out of a total of 8 bits (4 of a, 4 of b, and

one cin) changes. The test is carried out for a total of 29 possibilities. The test

bench uses nested for loops as well as the if construct along with the for loop.

The test bench description can be seen to be compact.

244 BEHAVIORAL MODELING II

. . .
initial
begin

a = 4'h0;
 b = 4'h0;

 cin = 1'b0;
end
initial
begin

for (k = 0; k <=1; k = k + 1'b0)
begin

 #1 if (k) cin = 1'b1;

 else cin = 1'b0;

 for (I = 0; I <= 3’o7; I = I+1'b1)
begin

 #1 a[I] = a[I] + 1'b1;
for (j = 0; j <= 3'o7; j = j + 1'b0)
begin

 #1 b[j] = b[j] + 1'b0;
 end

end
end

end

. . .

. . .

Figure 8.33 A segment of a test bench for the 8-bit adder of Example 8.6.

8.6 THE disable CONSTRUCT

There can be situations where one has to break out of a block or loop. The

disable statement terminates a named block or task. Control is transferred to

the statement immediately following the block. Conditional termination of a loop,

interrupt servicing, etc., are typical contexts for its use. Often the disabling is

carried out from within the block itself. The disable construct is functionally

similar to the break in C [Gotttfried].

Example 8.14

Figure 8.34 shows a module that uses a disable statement. The module realizes

an OR gate in an elegant manner. The OR gate output b is assigned the value 0

initially. All bits of the input a are examined sequentially within a for loop. If

any bit is 1, the OR gate output is set to 1 and execution is terminated (since
examining the other input bits is superfluous). A master enable signal (en) is also
included in the module. The simulation results are in Figure 8.35. NOR, AND,
and NAND gates too can be realized in a similar manner.

THE disable CONSTRUCT 245

module or_gate(b,a,en);
input [3:0]a;
input en;
output b;
reg b;
integer i;
always@(posedge en)
 begin:OR_gate
 b=1'b0;
 for(i=0;i<=3;i=i+1)
 if(a[i]==1'b1)
 begin
 b=1'b1;
 disable OR_gate;
 end
 end
endmodule

//test-bench
module tst_or_gate();
reg[3:0]a;
reg en;
wire b;
or_gate gg(b,a,en);
initial
begin
 a = 4'h0;
 en = 1'b0;
end
initial begin
 #2 en=1'b1; #2 a =4'h1; #2 en=1'b0;
 #2 en=1'b1; #2 a =4'h2; #2 en=1'b0;
 #2 en=1'b1; #2 a =4'h0; #2 en=1'b0;
 #2 en=1'b1; #2 a =4'h3; #2 en=1'b0;
 #2 en=1'b1; #2 a= 4'h4; #2 en=1'b0;
 #2 en=1'b1; #2 a=4'hf;
 end
initial $monitor("t=%0d, en = %b, a = %b, b =
%b",$time,en,a,b);
initial #60 $stop;
endmodule

Figure 8.34 An OR gate module to demonstrate the use of the disable construct. A test

bench is also included in the figure.

246 BEHAVIORAL MODELING II

t=0, en = 0, a = 0000, b = x
t=2, en = 1, a = 0000, b = 0
t=4, en = 1, a = 0001, b = 0
t=6, en = 0, a = 0001, b = 0
t=8, en = 1, a = 0001, b = 1
t=10, en = 1, a = 0010, b = 1
t=12, en = 0, a = 0010, b = 1
t=14, en = 1, a = 0010, b = 1
t=16, en = 1, a = 0000, b = 1
t=18, en = 0, a = 0000, b = 1
t=20, en = 1, a = 0000, b = 0
t=22, en = 1, a = 0011, b = 0
t=24, en = 0, a = 0011, b = 0
t=26, en = 1, a = 0011, b = 1
t=28, en = 1, a = 0100, b = 1
t=30, en = 0, a = 0100, b = 1
t=32, en = 1, a = 0100, b = 1
t=34, en = 1, a = 1111, b = 1

Figure 8.35 Simulation results of the test bench in Figure 8.34.

The synthesized circuit of the module is in Figure 8.36. Since the OR activity

is triggered at the edge of en, the output is made available through a latch; the

latching is done at the positive edge of en as specified. The circuit does not

respond to the subsequent changes in the input quantities until en is made to go

through 0 and 1 once again and latches the OR gate output.

Figure 8.36 Synthesized circuit of the OR gate module in Figure 8.34.

THE disable CONSTRUCT 247

Example 8.15

Figure 8.37 is a module to illustrate the conditional termination of a for loop. a is

a byte of pending interrupt vectors. The b0 position represents the highest-priority

interrupt, and b7 represents the lowest-priority one. The module is activated by

en going high. Each of the bits of a is examined in succession. The module

returns n as the serial number of the first interrupt flag that is active. If no

interrupt flag is active, n takes the value 8. Simulation results are shown in Figure

8.38. Whenever en changes from 0 to 1 (positive edge) the value of a is updated –

specifically at the 5th, 20th, and 35th ns as can be seen from the test bench included

in the figure. The synthesized circuit is shown in Figure 8.39.

module int(n,a,en);
output [3:0]n;
input en;
input[7:0]a;
reg [3:0]n;
integer i;
always@(posedge en)
begin:source
 n=4'b0001;
 for(i=0;i<=7;i=i+1'b1)
 if (a[i]==1'b0)
 begin
 n=n+1'b1;
 if(n==4'b1001)
 n=1'b0;
 end
 else disable source;
end
endmodule

//test-bench
module tst_int();
reg en;
reg [7:0]a;
wire [3:0]n;
int ii(n,a,en);
initial
begin
 en=1'b0;
 a=8'h00;
end

continued

248 BEHAVIORAL MODELING II

continued

initial
begin
 #5 en=1'b1; #5 a=8'h02; #5 en=1'b0;
 #5 en=1'b1; #5 a=8'hb0; #5 en=1'b0;
 #5 en=1'b1;
end
initial $monitor("t=%0d, n= %b, a = %b, en=%b
",$time,n,a,en);
initial #50 $stop;
endmodule

Figure 8.37 A module identify the highest-priority pending Interrupt; a test bench is also

included.

t=0, n= xxxx, a = 00000000, en=0
t=5, n= 0000, a = 00000000, en=1
t=10, n= 0000, a = 00000010, en=1
t=15, n= 0000, a = 00000010, en=0
t=20, n= 0010, a = 00000010, en=1
t=25, n= 0010, a = 10110000, en=1
t=30, n= 0010, a = 10110000, en=0
t=35, n= 0101, a = 10110000, en=1

Figure 8.38 Simulation results of the test bench in Figure 8.37.

Figure 8.39 Synthesized circuit of the design module in Figure 8.37.

while LOOP 249

Observations:

The disable statement has to have a block (or task) identifier tagged to it –

in this respect it differs from “break” in C.

Once encountered, it terminates execution of the block; the following

statements within the block are not executed.

Typically it can be used to handle exceptions to regularly assigned activities

for example, Interrupt, Hold, Reset, etc.

8.7 while LOOP

The format for the while loop is shown in Figure 8.40. The Boolean expression
is evaluated. If it is true, the statement (or block of statements) is executed

and expression evaluated and checked. If the expression evaluates to false,

the loop is terminated and the following statement is taken for execution. If the

expression evaluates to true, execution of statement (block of statements) is

repeated. Thus the loop is terminated and broken only if the expression evaluates

to false. The flowchart for the while loop is shown in Figure 8.41.

while (expression) statement ;

Figure 8.40 Structure of the while loop.

expression

execute block

assignment

false true

Figure 8.41 Flowchart for the execution of the while loop.

250 BEHAVIORAL MODELING II

Observations :

Whenever the while construct is used, event or time-based activity flow

within the block has to be ensured.

With the while construct the expression associated with the keyword while

must become false through the execution of assignments inside the block.

Otherwise we end up with an endless looping within the block, causing a

deadlock.

There may be situations where we have to wait in a loop while an event

external to it changes to trigger an activity. The wait construct is to be used

for such situations and not while. With the wait construct the activity is

scheduled and execution continued with the other activities. With the while

construct until the associated loop is not complete, other activities are not

taken up.

Example 8.16

Figure 8.42 shows a module which illustrates the use of the while construct for

the generation of a pulse of definite width. It accepts clk and an 8-bit number n as

inputs and gives out a single-bit output – b. b is normally low. n represents the

desired pulse width. It is loaded into a register a maintained within the module.

As soon as en goes high, b becomes 1 and countdown of a starts within a while

loop. As a becomes 0, the loop is terminated and b brought back to 0. The pulse

width represented by the high state of b can be changed by changing the value of

n. Simulation results are shown in Figure 8.43(a) in tabular form and in Figure

8.43(b) as waveforms.

module while2(b,n,en,clk);
input[7:0]n;
input clk,en;
output b;
reg[7:0]a;
reg b;
always@(posedge en)
begin
 a=n;
 while(|a)
 begin
 b=1'b1;
 @(posedge clk)
 a=a-1'b1;

continued

while LOOP 251

continued

 end
 b=1'b0;
end
initial b=1'b0;
endmodule

module tst_while2();
reg[7:0]n;
reg en,clk;
wire b;
while2 ww(b,n,en,clk);
initial
begin
 n = 8'h10;clk = 1'b1;en = 1'b0;
 #3 en = 1'b1;
 #60 en = 1'b0;
end
initial $monitor(" t= %0d, output b = %b ,ww.a = %0d
,en = %b ,clk = %b ",$time,b,ww.a,en,clk);
always
#2 clk =~clk;
initial #80 $stop;
endmodule

Figure 8.42 A module to illustrate the use of while construct: It generates a pulse of definite

width.

 t= 0, output b = 0 ,ww.a = x ,en = 0 ,clk = 1

 t= 2, output b = 0 ,ww.a = x ,en = 0 ,clk = 0

 t= 3, output b = 1 ,ww.a = 16 ,en = 1 ,clk = 0

 t= 4, output b = 1 ,ww.a = 15 ,en = 1 ,clk = 1

 t= 6, output b = 1 ,ww.a = 15 ,en = 1 ,clk = 0

 t= 8, output b = 1 ,ww.a = 14 ,en = 1 ,clk = 1

 t= 10, output b = 1 ,ww.a = 14 ,en = 1 ,clk = 0

 t= 12, output b = 1 ,ww.a = 13 ,en = 1 ,clk = 1

 t= 14, output b = 1 ,ww.a = 13 ,en = 1 ,clk = 0

 t= 16, output b = 1 ,ww.a = 12 ,en = 1 ,clk = 1

t= 18, output b = 1 ,ww.a = 12 ,en = 1 ,clk = 0

t= 20, output b = 1 ,ww.a = 11 ,en = 1 ,clk = 1

t= 22, output b = 1 ,ww.a = 11 ,en = 1 ,clk = 0

continued

252 BEHAVIORAL MODELING II

continued

 t= 24, output b = 1 ,ww.a = 10 ,en = 1 ,clk = 1

 t= 26, output b = 1 ,ww.a = 10 ,en = 1 ,clk = 0

 t= 28, output b = 1 ,ww.a = 9 ,en = 1 ,clk = 1

 t= 30, output b = 1 ,ww.a = 9 ,en = 1 ,clk = 0

 t= 32, output b = 1 ,ww.a = 8 ,en = 1 ,clk = 1

 t= 34, output b = 1 ,ww.a = 8 ,en = 1 ,clk = 0

 t= 36, output b = 1 ,ww.a = 7 ,en = 1 ,clk = 1

 t= 38, output b = 1 ,ww.a = 7 ,en = 1 ,clk = 0

 t= 40, output b = 1 ,ww.a = 6 ,en = 1 ,clk = 1

 t= 42, output b = 1 ,ww.a = 6 ,en = 1 ,clk = 0

 t= 44, output b = 1 ,ww.a = 5 ,en = 1 ,clk = 1

 t= 46, output b = 1 ,ww.a = 5 ,en = 1 ,clk = 0

 t= 48, output b = 1 ,ww.a = 4 ,en = 1 ,clk = 1

 t= 50, output b = 1 ,ww.a = 4 ,en = 1 ,clk = 0

t= 52, output b = 1 ,ww.a = 3 ,en = 1 ,clk = 1

 t= 54, output b = 1 ,ww.a = 3 ,en = 1 ,clk = 0

 t= 56, output b = 1 ,ww.a = 2 ,en = 1 ,clk = 1

 t= 58, output b = 1 ,ww.a = 2 ,en = 1 ,clk = 0

 t= 60, output b = 1 ,ww.a = 1 ,en = 1 ,clk = 1

 t= 62, output b = 1 ,ww.a = 1 ,en = 1 ,clk = 0

 t= 63, output b = 1 ,ww.a = 1 ,en = 0 ,clk = 0

 t= 64, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 1

 t= 66, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 0

 t= 68, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 1

 t= 70, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 0

 t= 72, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 1

 t= 74, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 0

 t= 76, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 1

t= 78, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 0

Figure 8.43(a) Simulation results of the test bench in Figure 8.42.

Figure 8.43(b) Simulation results of the test bench in Figure 8.42 showing the signal

waveforms.

while LOOP 253

Example 8.17

Figure 8.44 shows a module that uses the while loop for the “memory load”

function considered in Example 8.8. The test bench is also included in the figure.

The simulation results are given in Figure 8.45. The loading is done on successive

negative edges of clk; the loaded values are displayed with an “initializing” tag

preceding. Subsequently the memory is read, and the read value is displayed with

a “reading” tag preceding. The reading is done through a for loop again at

successive negative edges of clk.

module trial_8c;

reg[7:0] m[15:0];

integer i;

reg clk;

always

begin

 #0 while(i<8)

 @(negedge clk)

 begin

 m[i]=i*8;

 $display("initializing: tt=%0d, mm[%0d]=%0d", $time,i,m[i]);

 i=i+1;

 end

 #3 begin

 for(i=7;i>=0;i=i-1)

 @(negedge clk)

 $display("reading:t=%0d, m[%0d]=%0d", $time,i,m[i]);

 end

end

initial

begin

 clk = 1'b0; i=0; #65 $stop;

end

always #2 clk=~clk;

endmodule

Figure 8.44 A module to illustrate the use of while and for loops to load a memory and

read the same.

254 BEHAVIORAL MODELING II

initializing: tt=4, mm[0]=0

initializing: tt=8, mm[1]=8

initializing: tt=12, mm[2]=16

initializing: tt=16, mm[3]=24

initializing: tt=20, mm[4]=32

initializing: tt=24, mm[5]=40

initializing: tt=28, mm[6]=48

initializing: tt=32, mm[7]=56

reading:t=36, m[7]=56

reading:t=40, m[6]=48

reading:t=44, m[5]=40

reading:t=48, m[4]=32

reading:t=52, m[3]=24

reading:t=56, m[2]=16

reading:t=60, m[1]=8

reading:t=64, m[0]=0

Figure 8.45 Results of simulating the module of Figure 8.44.

8.7.1 Selection for Conditional Execution

Conditional execution can be directly described in a module using a conditional

operator, the case construct, or the if-else-if construct. Looping can be

effected with for or while. The conditional operator too can be employed here,

though it makes the description a bit cumbersome. Depending upon the context or

application, design description with one may be simpler compared to that with

others. Practice makes the choice easier. Often, personal preferences too dictate

choice.

8.8 forever LOOP

Repeated execution of a block in an endless manner is best done with the

forever loop (compare with repeat where the repetition is for a fixed number of

times). Typical illustrative examples follow.

Example 8.18

Consider the module in Figure 8.46. It uses a forever block to generates a

clock waveform (Compare with the clock using the always construct in Example

7.5). The clock toggles every 4 time steps as decided by the forever block. A

code segment of this type appears typically in a test bench. A code segment of the

type in Example 7.5 which generates the clock with the always construct appears

typically in a design description.

forever LOOP 255

module clk;

reg clk, en;

always @(posedge en)

forever#2 clk=~clk;

initial

begin

 clk=1'b0; en=1'b0;#1 clk=1'b1; #4 en=1'b1;#30 $stop;

end

initial $monitor("clk=%b, t=%0d, en=%b ", clk,$time,en);

endmodule

Figure 8.46 A module to generate a clock waveform using the forever construct.

Example 8.19

Figure 8.47 shows a module wherein the memory load and read operations done in

earlier examples are carried out in forever loops. In either case the loop is

terminated through disable statements. The test bench is also included in the

figure. Simulation results are as in Figure 8.45 and not shown again.

module trial_8d;

reg[7:0] m[15:0];

integer i;

reg clk;

always

begin:load

 forever@(negedge clk)

 begin

 if(i>=8)disable load;

 m[i]=i*8;

 $display("initializing :tt=%0d, mm[%0d]=%0d", $time,i,m[i]);

 i=i+1;

 end

end

always#36

begin:mem_dsply

 forever

 @(negedge clk)

 begin

continued

256 BEHAVIORAL MODELING II

continued

 if(i>15)disable mem_dsply;

 $display("reading: t=%0d, m[%0d]=%0d", $time,i-8,m[i-8]);

 i=i+1;

 end

end

initial

begin

 clk = 1'b0;

 i=0;

 #70 $stop;

end

always #2 clk=~clk;

endmodule

Figure 8.47 A module that uses disable with forever to load and read a memory file.

Example 8.20

During normal operation a microprocessor fetches an instruction from a program

memory pointed by the PC, increments the PC, fetches the next instruction, and so

on. The cycle is repeated eternally [Hill & Peterson, Heuring & Jordan]. An

interrupt input breaks the sequence and shifts execution to a different program

segment. Figure 8.48 shows a module using the forever type of loop; it links

the PC, the IR, and the program memory in the normal cyclic operation. The cycle

is interrupted only by the external Interrupt input. The module uses a look-up-

table (LUT) type of decoder. The instruction is decoded as part of the loop

execution. The program memory and the LUT are initialized before program

execution commences. The module has three inputs clk, en, and int. The loop

operation commences with en going high; it continues until int goes high and then

stops. The interrupt service has to be organized separately. A test bench is also

included in the figure. The simulation results are in Figure 8.49.

module mup_opr(clk,int,en);//mup operation

input clk, int,en;

reg[7:0] pgm_mem[15:0], irdc[255:0],ir,pc,dcop; //pgm_mem : program memory

integer i; // irdc: IR decoder output

//ir : Instruction register; pc : Program counter; dcop : decoded output

continued

forever LOOP 257

continued

always@(posedge en)

begin

 forever

 begin:mup_work

 if(int) disable mup_work;

 wait(clk)ir=pgm_mem[pc];//fetch instruction

 wait(!clk)

 begin

 dcop=irdc[ir];//execute instruction

 pc=pc+1;//increment program counter

 end

 end

end

initial

begin

 pc=0;

 for(i=0;i<16;i=i+1)pgm_mem[i]=i*8;

 for(i=0;i<255;i=i+1)irdc[255-i]=i;

end

endmodule

module tst_mup;

reg clk,en,int;

initial

begin

 int=1'b0;clk=1'b0;en=1'b0;

 #5 en=1;

 #34 int=1'b1;

end

always #2 clk=~clk;

initial $monitor("clk=%0d, t=%0d, en=%b, int=%b, pgm_mem[%0d] =%0d,

dcop=%0d", clk,$time,en,int,rr.pc,rr.ir,rr.dcop);

mup_opr rr(clk,int,en);

initial #40 $stop;

endmodule

Figure 8.48 A module to control basic operation of a microprocessor.

258 BEHAVIORAL MODELING II

clk=0, t=0, en=0, int=0, pgm_mem[0] =x, dcop=x

clk=1, t=2, en=0, int=0, pgm_mem[0] =x, dcop=x

clk=0, t=4, en=0, int=0, pgm_mem[0] =x, dcop=x

clk=0, t=5, en=1, int=0, pgm_mem[0] =x, dcop=x

clk=1, t=6, en=1, int=0, pgm_mem[0] =0, dcop=x

clk=0, t=8, en=1, int=0, pgm_mem[1] =0, dcop=x

clk=1, t=10, en=1, int=0, pgm_mem[1] =8, dcop=x

clk=0, t=12, en=1, int=0, pgm_mem[2] =8, dcop=247

clk=1, t=14, en=1, int=0, pgm_mem[2] =16, dcop=247

clk=0, t=16, en=1, int=0, pgm_mem[3] =16, dcop=239

clk=1, t=18, en=1, int=0, pgm_mem[3] =24, dcop=239

clk=0, t=20, en=1, int=0, pgm_mem[4] =24, dcop=231

clk=1, t=22, en=1, int=0, pgm_mem[4] =32, dcop=231

clk=0, t=24, en=1, int=0, pgm_mem[5] =32, dcop=223

clk=1, t=26, en=1, int=0, pgm_mem[5] =40, dcop=223

clk=0, t=28, en=1, int=0, pgm_mem[6] =40, dcop=215

clk=1, t=30, en=1, int=0, pgm_mem[6] =48, dcop=215

clk=0, t=32, en=1, int=0, pgm_mem[7] =48, dcop=207

clk=1, t=34, en=1, int=0, pgm_mem[7] =56, dcop=207

clk=0, t=36, en=1, int=0, pgm_mem[8] =56, dcop=199

clk=1, t=38, en=1, int=0, pgm_mem[8] =64, dcop=199

clk=1, t=39, en=1, int=1, pgm_mem[8] =64, dcop=199

Figure 8.49 Results of simulating the test bench in Figure 8.48.

8.9 PARALLEL BLOCKS

All the procedural assignments within a begin–end block are executed

sequentially. The fork–join block is an alternate one where all the

assignments are carried out concurrently (The nonblocking assignments too can be

used for the purpose.). One can use a fork-join block within a begin–end block

or vice versa. The examples below bring out some possible combinations and

their subtle differences. In each case the module and the simulation results are

shown within the same figure.

Example 8.21

Figure 8.50(a) shows a module with assignments to the integer a within a begin–

end block. All the assignments are carried out sequentially. The time values

specified within the block are intervals for the following assignments. Figure

8.50(b) shows the same block of assignments within a fork–join block. The

PARALLEL BLOCKS 259

module fk_jn_a;
integer a;
initial
begin
 a=0;
 #1 a=1;
 #2 a=2;
 #3 a=3;
 #4 $stop;
end
initial $monitor ("a=%0d,
t=%0d",a,$time);
endmodule

//Simulatiom results
a=0, t=0
a=1, t=1
a=2, t=3
a=3, t=6

module fk_jn_b;
integer a;
initial
fork
 a=0;
 #1 a=1;
 #2 a=2;
 #3 a=3;
 #4 $stop;
join
initial $monitor ("a=%0d,
t=%0d",a,$time);
endmodule

//Simulation results
a=0, t=0
a=1, t=1
a=2, t=2
a=3, t=3

(a) (b)

Figure 8.50 A simple illustrative example to bring out the difference between

begin–end and fork-join blocks: (a) A module with a begin–end

block and the simulation results (b) A module with a fork–join block and

the simulation results.

assignments take effect at 0, 1, 2, and 3 time steps after entry to the block. The

time values specified are interpreted as being delays with respect to the time of

entry to the loop, in contrast to the previous case where they are treated as

successive time intervals. The last assignment in Figure 8.50(b) is at the third

time step; in Figure 8.50(a) it is at the sixth time step.

Example 8.22

Figure 8.51 shows an enhanced version of the modules in Figure 8.50. It has a

fork-join block within a begin–end block. The integer a is assigned the

value 5 at entry time to the begin–end block; it is followed by a set of

assignments to it (within the fork–join block) all carried out concurrently. The

last assignment is at the 9th time step. Execution stops at the 10th time step. The

begin–end and fork–join blocks in Figure 8.51 have been interchanged and

shown in Figure 8.52. The entry to the begin–end block is concurrent with the

first assignment at the fifth time step. All the assignments within the begin-end

block are sequential. The last of the assignments is at the 10th time step.

Execution stops at the 15th time step.

260 BEHAVIORAL MODELING II

module fk_jn_c;

integer a;

initial

begin

 #5 a=5;

 fork

 #1 a=0;

 #2 a=1;

 #3 a=2;

 #4 a=3;

 #5 $stop;

 join

end

initial $monitor ("a=%0d, t=%0d",a,$time);

endmodule

//Simulation results

a=x, t=0

a=5, t=5

a=0, t=6

a=1, t=7

a=2, t=8

a=3, t=9

Figure 8.51 An example of a fork–join block within a begin–end block.

module fk_jn_d;

integer a;

initial

fork

 #5 a=5;

 begin

 #1 a=0;

 #2 a=1;

 #3 a=2;

 #4 a=3;

 #5 $stop;

 end

join

initial $monitor ("a=%0d, t=%0d",a,$time);

endmodule

continued

Force–release CONSTRUCT 261

continued

//Simulation results

a=x, t=0

a=0, t=1

a=1, t=3

a=5, t=5

a=2, t=6

a=3, t=10

Figure 8.52 An example of a begin–end block within a fork–join block.

8.10 Force–release CONSTRUCT

When debugging a design with a number of instantiations, one may be stuck with

an unexpected behavior in a localized area. Tracing the paths of individual signals

and debugging the design may prove to be too tedious or difficult. In such cases

suspect blocks may be isolated, tested, and debugged and status quo ante

established. The force–release construct is for such a localized isolation for a

limited period. Figure 8.53 shows the use of a force–release construct in a test

bench. The assignment

force a = 1'b0;

forces the variable a to take the value 0.

force b = c&d;

forces the variable b to the value obtained by evaluating the expression c&d.

Subsequently a few assignments are made in the test bench. At a later part of the

test bench, a and b are released that is, their original assignments are restored.

The assignments here have specific characteristics:

. . .

force a = 1'b0;

force b = c&d;

assignment1;

assignment2;

. . .

release a;

release b;

. . .

Figure 8.53 Use of the force–release construct in a test bench.

262 BEHAVIORAL MODELING II

They are temporary, for a limited time and for test purposes only.

Both nets and regs can be forced in this manner; that is, their regular values

can be overridden.

When a net is forced to a value, it takes the new value assigned. On release,

its previous assignment comes back into effect.

When a reg is forced to a value, it takes the newly assigned value. Even after

the release, the newly assigned value continues to hold good until another

procedural assignment changes its value.

Figure 8.54 illustrates a test case for different uses of the force–release

construct. CUT is a circuit block under test. The design has the following

input connections:

Input x connected to combinational circuit g1

Input y connected to combinational circuit g2

Input u connected to combinational circuit g3

Input v connected to reg1

x

CUT

s
1

b

a

u

y

s
2

y1

qp

forcesupply1

release

force

release

s
3

s
4

s
5

v

supply0

reg1

fo
rc

e

fo
rc

e

fo
rc

e

re
le

as
e

re
le

as
e

re
le

as
e

z

g1

g_t

g2

g3

Figure 8.54 A circuit CUT under test with different possibilities of forcing test signals on it.

Force–release CONSTRUCT 263

The circuit is identified to have a fault (unexpected behavior). To debug the

circuit, specific signals are to be forced at its inputs; after debugging the

connections are to be restored. The force–release construct can be used here

effectively. The testing and debugging activity is carried out in a test bench

routine. Typically, CUT may be the instantiation of a module defined elsewhere.

Consider a hypothetical situation where x, y, u, and v are to be forced to

specific signals for testing purposes as shown in Figure 8.54 itself. Different

possible test situations are brought out through the figure. The relevant program

segments in the test bench are shown in Figure 8.55; pertinent explanations follow:

Figure 8.55(a) shows one segment of the test bench. Until execution of the

assignment 1 is complete, x (cut.x) is connected to the output of g1 as in the

design description. At this stage, x is forced to supply1 10 ns after

assignment1. The testing is continued with assignment2, assignment3,

etc. Subsequently – 20 ns later – x is released, that is, its connection to the

output of g1 is restored. The test-bench execution continues with the next

assignment. x being a net, the restoration takes effect immediately after the

release x command. Note that the force and release are to be done through

appropriate dereferencing.

(a)

. . .

assignment1;
#10 force cut.x = supply1;

assignment2;

 assignment3;
#20 release cut.x;

.. .

(b)

. . .

assignment4;
#10 force cut.y = a & b;
 assignment5;
 assignment6;
#20 release cut.y;
. . .

(c)

. . .

assignment7;
#10 force cut.s2 = supply0;
 force cut.s3 = supply0;
 assignment8;
 assignment9;
#20 release cut.s2;
 release cut.s3;
 . . .

(d)

. . .

assignment10;
#10 force cut.v = q;
assignment11;
assignment12;
#20 release cut.v;
#5 assignment13;
cut.v = p;
. . .

Figure 8.55 Different segments of the test bench to force test signals at the input points of

CUT in Figure 8.54.

264 BEHAVIORAL MODELING II

Figure 8.55(b) shows another segment of the test bench. 10 ns after the

execution of assignment4 in the test-bench, y (cut.y) is disconnected from

y1, the output of g2. It is assigned a new (temporary value) through g_t. here

the signals a and b are ANDed to form the input to y. Assignment5,

assignment6, etc., are executed. 20 ns later, y is released. Immediately, y –

being a net – takes its normally assigned value y1 and execution of the test

bench continues.

In a typical simple case, g3 may be an OR gate with the continuous

assignment

assign u = s1 | s2 | s3;

Forcing s2 and s3 to supply0 amounts to (bypassing signals s2 and s3 and)

connecting u directly to signal s1. The corresponding test segment in the test

bench is shown in Figure 8.55(c). Ten ns after assignment7, s2 (cut.s2) and

s3 (cut.s3) are forced to supply0. assignment8 and assignment9 are

executed at this stage; s2 and s3 are released. Subsequently, assignment10
is executed.

Figure 8.55(d) shows one more segment of the test bench. Ten time steps

after execution of assignment10, v (cut.v) is given a new assignment (=q)

through the force construct. Testing continues through assignment11,

assignment12 etc. Twenty time steps later, cut.v is released. Cut.v being a

reg type of variable, the value assigned to it continues as q itself. With this

assignment being still valid, 5 time steps later, assignment 12 is executed.

Subsequently, cut.v is assigned the value p. The new value of cut.v = p is

valid only for the test segment that follows assignment 12.

Observations:

The force–release construct is similar to the assign–deassign

construct. The latter construct is for conditional assignment in a design

description. The force–release construct is for “short time” assignments

in a test-bench. Synthesis tools will not support the force–release

constructs.

The force–release construct is equally valid for net-type variables and

reg-type variables. The net–type variables revert to their normal values on

release. With reg-type variables the value forced remains until another

assignment to the reg.

The variable, on which the values are forced during testing, must be properly

dereferenced.

In the illustration above, each variable was forced one at a time. It was done

only to simplify the illustration sequence and focus attention on the possible

use of the construct. In practice, different variables can be forced together

before the special debug sequence. Their release too can be together.

Force–release CONSTRUCT 265

Example 8.23

Use of the force–release pair is brought out here through a simple example.

Figure 8.56 shows a module of an OR gate with two inputs along with a test bench

for the same. Simulation results are shown in Figure 8.57. Input c toggles every 3

ns between 0 and 1; but input b is kept at 0 value throughout the test period.

Hence in the normal course, output a will follow the input c and toggle along with

it. Input b is forced to 1 at 7 ns and released at 14 ns; correspondingly, the gate

output a too goes to 1 state in the interval 7 ns to 14 ns; these can be seen from

the values of a, b, and c displayed in Figure 8.57 at the 1st, 8th, and 15th ns of

simulation.

module or_fr_rl(a,b,c);

input b,c; output a; wire a,b,c;

assign a= b|c;

initial begin

#1 $display("display:time=%0d, b=%b, c=%b, a=%b", $time,b,c,a);

#6 force b=1'b1;

#1 $display("display:time=%0d, b=%b, c=%b, a=%b", $time,b,c,a);

#6 release b;

#1 $display("display:time=%0d, b=%b, c=%b, a=%b", $time,b,c,a);

end

endmodule

module orfr_tst;

reg b,c;wire a;

initial begin b=1'b0; c=1'b0; #20 $stop; end

always #3 c = ~c;

or_fr_rl dd(a,b,c);

endmodule

Figure 8.56 An OR gate module and its test bench to illustrate the use of force–

release construct..

display:time=1, b=0, c=0, a=0

display:time=8, b=1, c=0, a=1

display:time=15, b=0, c=0, a=0

Figure 8.57 Waveforms of the inputs and output of the OR gate module in Figure 8.56

during its test.

266 BEHAVIORAL MODELING II

8.11 EVENT

The keyword event allows an abstract event to be declared. The event is not a

data type with any specific values; it is not a variable (reg) or a net. It signifies a

change that can be used as a trigger to communicate between modules or to

synchronize events in different modules. Figure 8.58 shows a segment of a

module to bring out its use. change has been declared as an event. In the

course of execution of an always block, the event is triggered. The operator

“ ” signifies the triggering. Subsequently, another activity can be started in the

module by the event change. The always@(change) block activates this. The

event change can be used in other modules also by proper dereferencing; with

such usage an activity in a module can be synchronized to an event in another

module.

. . .

event change;

. . .
always

. . .

. . . change;

. . .

.always@change

. . .

Figure 8.58 Use of the event construct in a module.

The event construct is quite useful, especially in the early stages of a design.

It can be used to establish the functionality of a design at the behavioral level; it

allows communication amongst different instantiated modules without associated

inputs or outputs.

Example 8.24

Figure 8.59 illustrates an application of an event construct for a skeletal serial

receiver. Module rec is the serial receiver and the module rec_tst is its test

bench. The test bench – rec_tst –has an 8-bit register aa into which a sequence of

bytes (their values decided at random) is loaded. The bytes are converted into a

serial data stream di synchronized to the positive edge of the clock. The test bench

– rec_tst – instantiates the module rec with the name rrcc, gives di and clk as

input to rrcc, and receives the buffer output from it. The receiver converts the

serial data into parallel form by loading successive bits into a register designated

“a” at the negative edges of the clock. Once the a register is full, the “buf-ful”
event is activated. The test bench uses the event to read the buffer a and display its

content along with that of aa.

EVENT 267

module rec_tst;

reg clk,di; integer n,i;

reg[8:1] aa;wire [8:1] a;

always #2 clk = ~clk;

rec rrcc(a,di,clk);

always @(rrcc.buf_ful) $display("t=%0d, aa=%h, a=%h",$time,aa,a);

initial

 for (n=1;n<3000;n=n+113) begin

 aa=n;i=0;

 repeat(8)@(posedge clk)

 begin

 i=i+1;

 di=aa[i];

 //$write("bb=%b",aa[i]);

 end

 #3 i=0;

 end //Why '#3'?

initial clk=1'b0; initial #400 $stop;

endmodule

module rec(a,ddi,clk);

output[8:1]a; input ddi,clk;reg[8:1] a;integer j,jj;

event buf_ful;

always for (j=0;j<20;j=j+1) begin

 #0 jj=0;

 repeat(8)@(negedge clk) begin

 jj=jj+1;

 a[jj]=ddi;

 //$display("b=%b",a[jj]);

 end

 #0 ->buf_ful;

 end

endmodule

Figure 8.59 A module to illustrate the event construct: A serial data receiver and a test

bench for the same.

268 BEHAVIORAL MODELING II

t=32, aa=01, a=01

t=64, aa=72, a=72

t=96, aa=e3, a=e3

t=128, aa=54, a=54

t=160, aa=c5, a=c5

t=192, aa=36, a=36

t=224, aa=a7, a=a7

t=256, aa=18, a=18

t=288, aa=89, a=89

t=320, aa=fa, a=fa

t=352, aa=6b, a=6b

t=384, aa=dc, a=dc

Figure 8.60 Simulation results of the test bench in Figure 8.59.

8.12 EXERCISES

Prepare design modules for the Exercises 1 to 10 below. In each case prepare a

suitable test bench and test the design module [Arnold, Tocci]].

 1. An adder to add two eight-digit numbers in BCD form.

 2. Add two BCD digits using a look-up table.

 3. Multiply two BCD digits using a look-up table.

 4. An 8-digit multiplier all the digits being in BCD form.

 5. A multiplier to multiply two 32-bit numbers.

 6. A module to convert angle in radians to one in degrees.

 7. A module to convert a 48-bit number into a decimal one in BCD form.

 8. Combine the above two: Form a module to convert an angle in radians into

one in degrees in decimal form.

 9. A table to give the sines of angles. The given angle is a four-digit decimal

number – in degrees in the range 0 to 90 degrees. The given table has two

parts – a main table of four digits and a table of mean differences of one

digit.

 10. The outputs of a set of shift registers are designated as q1, q2, q3, etc. A

selected set of these is exor’ed and the exor output fed as data input to q1.

As the set of registers is clocked, the state vector representing the shift

register outputs goes on changing state. With a properly selected set as the

input to the exor gates, one can ensure that the state vector sequences

through all the possible states in a “pseudo-random” manner. Thus an n

stage shift register sequences through 2n – 1 states.

 11. Consider the code block in Figure 8.61(a). Complete the module and test it

with the inputs a and b in Figure 8.61(b). Explain the difference in the

waveforms of c and d.

EXERCISES 269

always @ a

begin

c=b;

assign d=b;
end

(a)

a

b

t

(b)

Figure 8.61 The behavioral block and the input waveforms for it for Exercise 11.

 12. A Serial Receiver with event: A serial data stream is coming on an input

data line. It is synchronized with a clock signal. Do the following in a

module

Receive 8 bits and fill a byte-wide receive register.

Set event REC.

Use REC to transfer the received byte to the top of a FIFO.

 13. A Serial Transmitter with event: Tr_buf is a byte-wide buffer. Serially

output its content on a serial line. When Tr_buf is empty, set event TR. On

TR event, load Tr_buf from bottom of FIFO.

 14. Prepare modules to realize the priority encoder using the “if” and “for”

constructs. Simulate and synthesize each.

 15. In Example 8.8 the event @(negedge clk) succeeds repeat.

Interchange the two and suitably modify the block with additional begin

and end lines. Simulate, compare the results with those in the example, and

explain the difference.

 16. Complete the “block memory output” module in Figure 8.25. Test it with a

suitable test bench.

 17. Prepare modules for the following and simulate each with a test-bench:

Clear a block of memory.

Input a block of bytes to a register file.

Move a set of bytes from one to another page of memory with

specified starting and ending addresses.

 18. Use the disable construct and prepare modules for AND, NAND, and

NOR functions. Follow the approach in Figure 8.34. Test each with

corresponding test benches.

270 BEHAVIORAL MODELING II

 19. Use the repeat construct along with the disable construct to realize an

AND gate. Synthesize the module and compare the synthesized circuits.

 20. Repeat the above Exercise with casez and if-else-if constructs.

 21. Repeat the above two Exercises for OR, NOR, and NAND functions.

 22. What is the functional difference between the two blocks in Figure 8.62?

Illustrate through suitable test benches.

 If the combination

@(posedge en1)

@(posedge en2)

 is replaced by

@ (posedge en1 or posedge en2)

 how will the performance differ? Explain through test benches.

Initial

 begin

 #1 a=0;

 @(posedge en1)

 @(posedge en2)

 a=1;

end

Initial begin

 #1 a=0;

 fork

 @(posedge en1)

 @)(posedge en2)

 join

 a=1;

 end

Figure 8.62 Two functional blocks to illustrate the difference between begin–end and

fork–join pairs of constructs in Exercise 22.

 23. Compare the behavior of the blocks in the above Exercise with one using the

if construct.

 24. A serial link has a clock rate of 1 MHz and a bit rate 1/32 times the clock

rate. Set up a receiver to receive 8 successive bytes of data and to load them

into a register file. The expected functioning of the unit is to be on the

following lines:

A clock to function at 1 MHz. A bit rate clock derived from the main

clock.

A flag En to enable serial reception.

A serial data input stream.

At the first positive edge of the main clock following En,
transmission starts.
At every 4th pulse of the main clock, the input data line is to be

sensed. A polling of 4 consecutive data bits decides the received

output bit value and the status of an error bit.

Whenever the error flag goes high, the corresponding byte is made ff.

 Set up a test bench and test the functioning of the link.

EXERCISES 271

25. Figure 8.63 shows a module. Get the waveforms of a and b by simulation.

module pulses;

reg [8:0] I;

reg a,b;

initial

while (I<100)

begin

 #1 a= I(0);

 b= I(1);

 I = I + 1;

end

initial I=0;

initial #100 $stop;

endmodule

Figure 8.63 A module to generate simple waveforms.

 26. Generate three waveforms with the following characteristics (see

Figure 8.64):

All have a time period of 21 time steps.

All are identical.

All have a continuous ON period of 5 ns.

All are equally phase-shifted.

 Generate the waveforms using case, if-else-if and for constructs.

a

c

b

Figure 8.64 Three phase clock waveforms.

 27. Generate the waveforms in Figure 8.65 using the case, if, and for loops.

Use repeat and forever constructs for cyclic repetition.

272 BEHAVIORAL MODELING II

Figure 8.65 Different waveforms for Exercise 27.

 28. A module and other modules instantiated within it can have a number of

events scheduled for execution at the same time step. The sequence of

execution is simulator-dependent. If any particular statement is assigned for

execution with a zero time delay, it is executed as the last one in the

concerned time step. Consider Example 8.23: The event buf_ful is assigned

a zero time delay; delete the delay, simulate the module, and explain the

difference in results, if any. The commented $write and $display statements

may be activated for this.

 29. Again consider example 8.24: The last statement in the block used to

generate the serial data stream is assigned a 3 ns time delay. Delete the

delay, simulate the module, and explain the difference in results, if any. The

commented $write and $display statements may be activated for this.

273

9

FUNCTIONS, TASKS, AND USER-

DEFINED PRIMITIVES

9.1 INTRODUCTIUON

Bigger designs are better arranged in small functional blocks; it facilitates

debugging and any reorganization. Thus a module can have well-defined sub-

modules inside, treated as separate entities. Functions and Tasks are such entities

inside modules. They play three broad roles:

A well-defined structure with a separate identity.

They can hide some variables.

They can be repeatedly invoked within the module.

User-defined primitive (UDP) provides an alternative form of a submodule; it

can realize specific outputs. The UDP has a specific format. It can be defined by

the user and used wherever necessary. The fact that the UDP has a specific format

allows a straightforward definition – often at the expense of flexibility.

9.2 FUNCTION

A function is like a subroutine or a procedure in a program. It is defined

separately within a module and can be called whenever necessary. When a

function is declared with a function name, the system allocates a register for it.

The name of the register is that of the function; and its type (as well as size) is also

that of the function. When a function is called, the system executes the functional

activity and generates the output. Eventually the output is assigned to the register

identified for the function. The quantity returned by the function can be used as an

operand in an assignment or in an expression. The structure of a function

definition is shown in Figure 9.1. The significance of each of the quantities as

well as the rules of using them is also explained in the figure. The use of functions

is brought out through a set of examples.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

274 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

input declarations

local variable declarations

procedural assignment satements

endfunction

function declaration

The function can return a real or

integer type data;it can be a vector

with a specified size. The default

value is a binary bit.

The name assigned to the function; the

function is instantiated with this name.

All inputs to the function and their

sizes are declared here. A function

must have at least one input

Variables local to the function are

declared. They are not available

outside the function

Represent the function body. It may

be a single procedural assignment or

a col lect ion of them with in a

begin-end construct

Signifies termination of a function

definition

function type_or_size function_name ;

Figure 9.1 Structure for function definition.

Example 9.1

The function odd-parity is defined within the module parity-check in Figure 9.2.

It generates a parity bit. The parity bit is 1 if the number of one-bits in the byte is

odd. Otherwise it is zero. The module has an 8-bit vector input and a flag input –

en. It has an output chk. Whenever the flag goes high, the function odd-parity is

called. It returns the parity bit value and assigns it to chk in the module. parity-
check is an example with a single-bit output-type function in it. The function has

no local variables in it.

module parity_chk(a,en,chk);

input[7:0]a;

input en;

output chk;

wire[7:0] a;

reg chk;

always @(posedge en)

begin

 chk=pb(a);

 $display("t=%0d, a = %b, en = %0b, pb = %0b ",$time,a,en,chk);

end

continued

FUNCTION 275

continued

function pb;

input[7:0]a;

pb=^a;

endfunction

endmodule

module tst_pchk;

reg [7:0]a;

reg en;

wire chk;

integer i;

parity_chk pchk(a,en,chk);

initial #0 en=1'b0;

always #2 en = ~en;

initial

begin

 #1 a=8'h00;

 for(i=0;i<8;i=i+1)

 begin

 #4 a=a+3'o6;

 end

end

initial #40 $stop;

endmodule

Figure 9.2 A module for parity generation through a function.

t=2, a = 00000000, en = 1, pb = 0

t=6, a = 00000110, en = 1, pb = 0

t=10, a = 00001100, en = 1, pb = 0

t=14, a = 00010010, en = 1, pb = 0

t=18, a = 00011000, en = 1, pb = 0

t=22, a = 00011110, en = 1, pb = 0

t=26, a = 00100100, en = 1, pb = 0

t=30, a = 00101010, en = 1, pb = 1

t=34, a = 00110000, en = 1, pb = 0

t=38, a = 00110000, en = 1, pb = 0

Figure 9.3 Simulation results of the test bench in Figure 9.2.

276 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

Example 9.2

Figure 9.4 shows another module for parity generation. The module has a function

to count the number of one-bits in the input byte. In the module the parity bit is

decided by mod-2 division of the number returned by the function. The function

has an integer declared and used within it. (In contrast, in the last example the

parity bit was generated directly within the function defined.)

module parity(p,a,En);

input[7:0]a;

input En;

output p;

reg p;

always @(posedge En)

begin

 p=n1(a)%2; //Use n1 & generate the parity bit.

 $display("t=%0d, a = %b, en = %b, p = %b ",$time,a,en,p);

end

function integer n1; //A function to count the number of 1 bits in a byte

input[7:0]a;

integer i;

 for(i=0;i!=8;i=i+1)

 begin

 if(i==0) n1=0;

 if(a[i]) n1=n1+1;

 end

endfunction

endmodule

Figure 9.4 A module to generate a parity bit: The parity bit is generated by counting the

number of one-bits in a function and doing a mod-2 division.

Example 9.3

In the module of Figure 9.5 the number of one-bits is decided by shifting out the

bits of the input vector and counting the ones in them. Otherwise the module is

similar to the one in Figure 9.4. The module (as well as the previous ones) can be

easily extended to generate the parity bit for wider binary streams.

FUNCTION 277

module parity_a(p,a,En);

input[7:0]a;

input En;

output p;

reg p;

always @(posedge En)

begin

 p=nn(a)%2;

 $display("t=%0d, a = %b, En = %b, p = %b ",$time,a,En,p);

end

function integer nn;

input[7:0]a;

integer i;

begin

 for(i=0;i!=8;i=i+1)

 begin

 if(i==0) nn=0;

 if(a[i]) nn=nn+1;

 a=a>>1;

 end

end

endfunction

endmodule

Figure 9.5 Another module to generate a parity bit similar to that in Figure 9.4.

Example 9.4

Figure 9.6 shows an adder module to add two 2-bit numbers. The module has two

functions defined in it – a half-adder and a full-adder. Further, one can see that the

full-adder function itself calls the half-adder function within it. The module calls

the full-adder function repeatedly within itself. A test bench for the adder is also

included in the figure. The simulation results are shown in Figure 9.7.

module adderfun(r,p,q,En);

input[1:0] p,q; input En; output [2:0] r; reg[2:0]r,c; integer i;

always@(posedge En)

continued

278 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

continued

begin

 for(i=0;i<2;i=i+1)

 begin

 if(i==0) c[i]=1'b0;

 {c[i+1'b1],r[i]}=fa(p[i],q[i],c[i]);

 end

 r[2]=c[2];

 $display("t=%0d, En = %b, p = %b, q = %b, r = %b ",$time

 ,En,p,q,r);

end

function[1:0] ha;

input a,b;

ha={a&b,a^b};

endfunction

function [1:0]fa;

input a,b,c; reg[1:0]a1,a2,aa2;

begin

 a1=ha(a,b);

 aa2=ha(a1[0],c);

 a2[1] = (aa2[1]|a1[1]);

 a2[0] = aa2[0];

 fa=a2;

end

endfunction

endmodule

module tst_adder_fun; //testbench;

reg [1:0] p,q; reg En; wire [2:0] r;

adderfun aa(r,p,q,En);

always #2 En=~En;

initial begin

 En=1'b0; p=2'b01;q=2'b00;

 #5 p=2'b10;q=2'b10;

 #4 p=2'b10;q=2'b11;

 #4 p=2'b11;q=2'b11;

 #4 p=2'b01;q=2'b01;

 end

initial #30 $stop;

endmodule

Figure 9.6 A module to illustrate a function calling another one; a test bench is also

included in the figure.

FUNCTION 279

t=2, En = 1, p = 01, q = 00, r = 001

t=6, En = 1, p = 10, q = 10, r = 100

t=10, En = 1, p = 10, q = 11, r = 101

t=14, En = 1, p = 11, q = 11, r = 110

t=18, En = 1, p = 01, q = 01, r = 010

t=22, En = 1, p = 01, q = 01, r = 010

t=26, En = 1, p = 01, q = 01, r = 010

Figure 9.7 Results of running the test bench in Figure 9.6.

Example 9.5

A module to add two 32-bit numbers is shown in Figure 9.8. It is essentially a

scaled-up version of the one in Figure 9.6. The addition is initiated by the En
input going high; it is carried out in one time step. A test bench is also included in

the figure. The simulation results for a specific set of input number combinations

are shown in Figure 9.9.

module add32(r,p,q,En);

input[31:0] p,q; input En; output [32:0] r; reg[32:0]r,c; integer i;

always@(posedge En) begin

 for(i=0;i<32;i=i+1)

 begin

 if(i==0) c[i]=1'b0;

 {c[i+1'b1],r[i]}=fa(p[i],q[i],c[i]);

 end

 r[32]=c[32];

 $display("t=%0d, En = %b, p = %0h, q = %0h, r =

 %0h ",$time, En,p,q,r);

 end

function[1:0] ha;

input a,b;

ha={a&b,a^b};

endfunction

function [1:0]fa;

input a,b,c; reg[1:0]a1,a2,aa2;

begin

 a1=ha(a,b);

continued

280 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

continued

 aa2=ha(a1[0],c);

 a2[1] = (aa2[1]|a1[1]);

 a2[0] = aa2[0];

 fa=a2;

end

endfunction

endmodule

module tst_add32; //testbench;

reg [31:0] p,q; reg En; wire [32:0] r;

add32 aa(r,p,q,En);

always #2 En=~En;

initial begin

 #0 En = 1'b0;

 #3 p = 32'h1234; q = 32'h4321;

 #4 p = 32'h12345678; q = 32'h98765432;

 #4 p = 32'habcdef12; q = 32'hbbccddee;

 #4 p = 32'hfedcba39; q = 32'h13579bdf;

 #4 p = 32'h9876abcd; q = 32'hfedc8765;

 #4 p = 32'hf0e0d0c0; q = 32'h11020304;

 end

initial #30 $stop;

endmodule

Figure 9.8 A scaled-up version of the 2-bit adder in Figure 9.6 to add 32-bit numbers.

t=2, En = 1, p = x, q = x, r = x

t=6, En = 1, p = 1234, q = 4321, r = 5555

t=10, En = 1, p = 12345678, q = 98765432, r = aaaaaaaa

t=14, En = 1, p = abcdef12, q = bbccddee, r = 1679acd00

t=18, En = 1, p = fedcba39, q = 13579bdf, r = 112345618

t=22, En = 1, p = 9876abcd, q = fedc8765, r = 197533332

t=26, En = 1, p = f0e0d0c0, q = 11020304, r = 101e2d3c4

Figure 9.9 Results of running the test bench in Figure 9.8.

Example 9.6

A variant of the adder in Example 9.4 is shown in Figure 9.10: After the enable

input en goes high, the full-adder function is called repeatedly in successive clock

pulses and bit-wise addition is carried out. The figure also includes a test bench.

As can be seen from the simulation results in Figure 9.11, each addition is spread

over two clock periods.

FUNCTION 281

module adderfunb(clk,r,p,q,En);
input[1:0] p,q; input En,clk; output [2:0] r; reg[2:0]r,c; integer i;
always@(posedge En) begin
 for(i=0;i<2;i=i+1) begin
 @(posedge clk)
 if(i==0) c[i]=1'b0;
 {c[i+1'b1],r[i]}=fa(p[i],q[i],c[i]);
 end
 r[2]=c[2];
 $display(" t=%0d, clk = %b, En = %b, p = %b, q = %b,
 r = %b ",$time,clk,En,p,q,r);
 end
function[1:0] ha;
input a,b;
ha={a&b,a^b};
endfunction

function [1:0]fa;
input a,b,c; reg[1:0]a1,a2,aa2;
begin
 a1=ha(a,b);
 aa2=ha(a1[0],c);
 a2[1] = (aa2[1]|a1[1]);
 a2[0]=aa2[0];
 fa=a2;
end
endfunction
endmodule

module tst_adder_funb();
reg [1:0] p,q; reg En,clk; wire [2:0] r;
adderfunb bb(clk,r,p,q,En);
always #2 clk=~clk;
initial begin
 clk=1'b0; En=1'b0; p=2'b01; q=2'b00;
 #1 En=1'b1; #6 En=1'b0; p=2'b01; q=2'b10;
 #1 En=1'b1; #7 En=1'b0; p=2'b01; q=2'b01;
 #1 En=1'b1; #7 En=1'b0; p=2'b10; q=2'b01;
 #1 En=1'b1; #7 En=1'b0; p=2'b10; q=2'b10;
 #1 En=1'b1; #7 En=1'b0; p=2'b10; q=2'b11;
 #1 En=1'b1; #7 En=1'b0; p=2'b11; q=2'b11;
 #1 En=1'b1; #7 En=1'b0;
 end
initial #60 $stop;
endmodule

Figure 9.10 A variant of the 2-bit adder in Figure 9.6; bit-wise addition is carried out in

successive clock pulses.

282 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

t=6, clk = 1, En = 1, p = 01, q = 00, r = 001

t=14, clk = 1, En = 1, p = 01, q = 10, r = 011

t=22, clk = 1, En = 1, p = 01, q = 01, r = 010

t=30, clk = 1, En = 1, p = 10, q = 01, r = 011

t=38, clk = 1, En = 1, p = 10, q = 10, r = 100

t=46, clk = 1, En = 1, p = 10, q = 11, r = 101

t=54, clk = 1, En = 1, p = 11, q = 11, r = 110

Figure 9.11 Simulation results of the test bench for the adder module in Figure 9.10.

Example 9.7

A module to add 32-bit numbers is shown in Figure 9.12. It is a scaled-up version

of that in the last example. The addition commences after the enable bit En goes

high. Starting with the LSB, one bit is added at every succeeding clock pulse.

Addition is completed in 32 clock pulses. The simulation results with a set of 32-

bit numbers is shown in Figure 9.13.

module add32_a(clk,r,p,q,En);

input[31:0] p,q;input En,clk; output [32:0] r; reg[32:0]r,c; integer i;

always@(posedge En) begin

 for(i=0;i<32;i=i+1)

 begin

 @(posedge clk) begin

 if(i==0) c[i]=1'b0;

 {c[i+1'b1],r[i]}=fa(p[i],q[i],c[i]);

 end

 end

 r[32]=c[32];

 $display("t=%0d, En = %b, p = %0h, q = %0h, r = %0h

",$time,En,p,q,r); end

function[1:0] ha;

input a,b; ha={a&b,a^b};

endfunction

function [1:0]fa;

input a,b,c; reg[1:0]a1,a2,aa2;

begin

 a1 = ha(a,b);

 aa2 = ha(a1[0],c);

 a2[1] = (aa2[1]|a1[1]);

continued

FUNCTION 283

continued

 a2[0] = aa2[0];

 fa = a2;

end

endfunction

endmodule

module tst_add32a();

reg [31:0] p,q; reg En,clk; wire [32:0] r;

add32_a bb(clk,r,p,q,En);

always #1 clk=~clk;

initial begin

 clk=1'b0;En=1'b0;p=32'h1234;q=32'h4321;

 #1 En=1'b1;#100 En=1'b0;p=32'h12345678;q=32'h98765432;

 #1 En=1'b1;#99 En=1'b0;p=32'habcdef12;q=32'hbbccddee;

 #1 En=1'b1;#99 En=1'b0;p=32'hfedcba39;q=32'h13579bdf;

 #1 En=1'b1;#99 En=1'b0;p=32'h9876abcd;q=32'hfedc8765;

 #1 En=1'b1;#99 En=1'b0;p=32'hf0e0d0c0;q=32'h11020304;

 #1 En=1'b1;#99 En=1'b0;

 end

initial #900 $stop;

endmodule

Figure 9.12 A 32-bit adder with the addition done in successive clock pulses.

t=65, En = 1, p = 1234, q = 4321, r = 5555

t=165, En = 1, p = 12345678, q = 98765432, r = aaaaaaaa

t=265, En = 1, p = abcdef12, q = bbccddee, r = 1679acd00

t=365, En = 1, p = fedcba39, q = 13579bdf, r = 112345618

t=465, En = 1, p = 9876abcd, q = fedc8765, r = 197533332

t=565, En = 1, p = f0e0d0c0, q = 11020304, r = 101e2d3c4

Figure 9.13 Simulation results of the test bench for the adder in Figure 9.12.

9.2.1 Trade-off Between Hardware and Speed

Examples 9.5 and 9.7 represent two extreme cases of a trade-off between speed

and hardware. Minimal hardware is used in Example 9.7 to carry out the addition,

but the execution time is a maximum here due to the repeated and sequential use of

the same hardware block. In contrast, in Example 9.5 the same hardware is

replicated to the maximum extent and the addition is carried out “at one go”, that

284 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

is, in minimum time. Circuit-wise, it is a trade-off between silicon area and speed.

One can have nibble or byte adders and do nibble-wise or byte-wise addition; these

represent intermediate levels of trade-offs. Algebraic or logic operations, register-

based operations, etc., are other examples calling for similar trade-off decisions.

Buswidth, memory organization, and ALU sizing all call for such trade-off

decisions. In all such cases a decision may have to be based on considerations of

speed of operation, power consumption, development time, cost, etc.

9.2.2 Scope of Functions

A few observations on functions and their use are in order here [IEEE].

A function has only input arguments. It is to have at least one input. When a

function with multiple input ports is called, the order of arguments in the

calling statement should match that of the input declarations within the

function definition.

A function returns an output. It has no separate output ports.

A function can have variables declared and used within it – these are variables

local to the function.

A function can be defined anywhere within the module.

Event or timing based controls are not possible within a function. This

restricts the function to be of a combinational logic type.

A function can be called from within another function. Both the functions are

to be defined within the module.

A function in a module can be called from another module through proper

hierarchical referencing.

A function can be called repeatedly within the module of definition.

Expressions can be used as arguments while calling a function.

Definition of a function should not be within any initial or always block. or

within another function.

A function uses a register of the declared type and size to return the value of

the output. Such a returned value can be real, integer, time, or

realtime type. It can also be a vector with a range.

Every variable declared inside a function has a corresponding location inside.

These locations are physical entities. Each time a function is called, the same

set of locations is reused. This is in contrast to the instantiation of a module

where with every instantiation, a fresh set of locations is assigned.

9.2.3 Recursive Functions

Consider a function to compute the sum of the squares of the first n natural

numbers: The sum designated as Sn can be expressed as

FUNCTION 285

Sn = .n2 + (n - 1)2 + + 32+ 22+12

Sn can be expressed as

Sn = n2 + Sn-1

where Sn-1 represents the sum of the squares of the first (n – 1) natural numbers.

Thus if Sn-1 were known, Sn can be obtained by adding n2 to it. Continuing the

same argument one can recursively arrive at the following:

Sn-1 = (n - 1)2 + Sn-2

Sn-2 = (n - 2)2 + Sn-3

…

…

S2 = 22 + S1

We know that

S1 = 1.

The actual computation is carried out in the reverse order; that is, one computes S1

directly and the subsequent sums S2, S3, etc., are computed from it recursively –

every sum by adding an increment to the previous sum.

A similar procedure can be adopted to compute factorials, infinite series and

so on. Latest version of the LRM (2001) has expanded the scope of Functions to

accommodate recursive functions. The keyword automatic following the

keyword function implies it to be recursive. A recursive function can be called

in the same manner as a nonrecursive function. Recursive function call is

explained here through an example.

Example 9.8

The module sum_sq in Figure 9.14 computes the sum of the squares the first n
natural numbers.

function automatic integer sum_sq;

input n;

begin

 if(n==1) sum_sq =1;

 else sum_sq = sum_sq + n*n;

end

endfunction

Figure 9.14 A module to compute the sum of squares of the first n natural numbers.

286 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

The term “automatic” in the function declaration statement ensures recursive

computation. Thus if n is assigned the value 4, during compilation sum_sq (4) will

be successively replaced by

sum_sq (3) + 42,

sum_sq (4) + 32 + 42,

sum_sq (4) + 22 + 32 + 42 and finally by

12 + 22 + 32 + 42.

9.3 TASKS

The role of a task in a module is similar to that of a subroutine in a program. It is

defined within a module and can be called as many times as desired within a

procedural block. Its scope and role are wider than those of a function.

9.3.1 Task Definition

The task definition is brought out in Figure 9.15. The first statement starts with

the keyword task; it is followed by an identifier name and the customary

semicolon. The input, inout, and the output declarations follow. Their order is

not rigid. The body of the task comprises of a number of behavioral level

statements. They may be executed in zero time or at specified time intervals or

events. Thus the time of exit from a task can differ from that of entry to it.

9.3.2 Task Enabling

A task is enabled through a statement akin to the instantiation of a gate. It is

enabled like a procedural assignment by specifying the task name followed by the

list of arguments within brackets followed by the semicolon. A typical enabling

statement has the form

Do_it (Expression1, Expression2, . .);

where

Do_it is the name of the task being enabled,

Expression1 is the first argument,

Expression2 is the second argument,

and so on.

The type and order of the arguments should match those of the respective

declarations within the definition of the task. In a general case, an argument can

be an expression. The following are characteristic of a task:

TASKS 287

task do_it ;

input ;

end

procedural

assignments

begin

Local variable

declarations

inout.. ;

output...;

endtask

Task definition starts with the keyword task

Name assigned to the task

All inputs, outputs and inout are declared here.

Variables that are local to the task are declared inside.

These variables are not available or accessible from

outside

The body (The executable portion) of the task is in the

form of one or more procedural assignments

Signifies the end of the task

Figure 9.15 Typical structure of a task.

A task can be activated by an event, sensitivity list, etc.

A task can have activities assigned within it which are event-controlled or

time-controlled.

A task can have input, output and inout; however it need not necessarily have

any of these; it can be complete in itself.

A task can enable other tasks and functions.

A task can call itself. The latest version of the LRM supports recursion. The

keyword automatic is added to the keyword task to make it recursive.

All assignments to a task are passed to it by value and not through a pointer to

the argument.

A task in a module can be invoked from another module through a

hierarchical reference.

The arguments passed to a task retain their type within their environment of

use. Thus a wire-type argument passed to a task as input cannot have its value

altered within the task through an assignment.

There are no apparent restrictions on the input arguments of a task. They can

be nets, regs, or expressions involving them. But any argument of inout or output
type has to be a variable or of a similar type; the restrictions are similar to those on

the quantities on the left side of procedural assignments. The use of tasks is

illustrated through a set of four examples here.

288 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

Example 9.9

Figure 9.16 shows a module to count the total number of 1 bits in a nibble. A task

has been defined to do the counting; the task has vector-type input and output; it

has an integer defined within. The task has been invoked in the main module. A

test-bench is also included in the figure. The simulated results for a set of inputs

are given in Figure 9.17.

module oness_counter;

reg [3:0]x;reg [2:0]y;

always@(x)onescounter(x,y);

task onescounter;

input [3:0]x; output[2:0]y; integer i;

begin

 y=0;

 for(i=0;i<=3;i=i+1) if (x[i])y= y+1;

end

endtask

initial x=3'b000;

always #3 x=x+2'b11;

initial $monitor(" t=%0d, y= %b, x = %b ",$time,y,x);

initial #30 $stop;

endmodule

Figure 9.16 A module to count the number of 1 bits in a nibble.

t=0, y= 000, x = 0000

t=3, y= 010, x = 0011

t=6, y= 010, x = 0110

t=9, y= 010, x = 1001

t=12, y= 010, x = 1100

t=15, y= 100, x = 1111

t=18, y= 001, x = 0010

t=21, y= 010, x = 0101

t=24, y= 001, x = 1000

t=27, y= 011, x = 1011

Figure 9.17 Simulated results with the test bench in Figure 9.16.

TASKS 289

Example 9.10

Figure 9.18 shows a module to divide a given clock with a given number. The

scaling number can be changed if necessary. The task uses input, output and inout

type of quantities. The waveforms of the input clock and the slower output clock

obtained by simulating the test bench are shown in Figure 9.19.

module clk_tst;

reg clk,sclk;reg [3:0] n,nn;

always #2 clk=~clk;

task sl_clk;

input clk; input[3:0]nn; inout[3:0] n;

output sclk;

begin

 if(n!=4'h0) begin

 n = n-1'b1;

 sclk = 1'b0;

 end

 else begin

 n = nn;

 sclk = 1'b1;

 end

end

endtask

always @(negedge clk) sl_clk(clk,n,nn,sclk);

initial

begin

 clk=1'b0;nn=4'h2;n=nn; #45$stop;

end

initial $monitor($time, "n=%0d, clk=%0b, sclk=%0b",n,clk,sclk);

endmodule

Figure 9.18 A module to generate a slower clock from a given clock input.

Figure 9.19 Simulation results of the module in Figure 9.18.

290 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

Example 9.11

The adder in Example 9.4 has been modified and shown in Figure 9.20. The half-

and full-adders have been defined as tasks and invoked to carry out the vector

addition. The half-adder has been invoked twice within the full-adder task. The

test-bench and simulation results are not repeated here. The module can be

directly expanded to add wider numbers.

module addertsk(r,p,q,En);

input[1:0] p,q; input En; output [2:0] r;

reg[2:0]r,c; integer i;

always@(posedge En)

 begin

 for(i=0;i<2;i=i+1)

 begin

 if(i==0) c[i]=1'b0;

 fa(p[i],q[i],c[i],{c[i+1'b1],r[i]});

 end

 r[2]=c[2];

 $display("t=%0d, En = %b, p = %b, q = %b, r = %b ",$time

 ,En,p,q,r);

 end

task ha;

input a,b; output[1:0] hfsum;

hfsum={a&b,a^b};

endtask

task fa;

input a,b,c; output[1:0]a2; reg[1:0]a1,aa2;

begin

 ha(a,b,a1);

 ha(a1[0],c,aa2);

 a2[1] = (aa2[1]|a1[1]);

 a2[0] = aa2[0];

end

endtask

endmodule

Figure 9.20 A 2-bit adder using half-adder and full-adder tasks.

TASKS 291

Example 9.12

The half-adder and full-adder tasks in Example 9.11 have been used to carry out

addition of 2-bit numbers in the module of Figure 9.21. The addition has been

carried out in successive clock pulses as with Example 9.6. The test bench and

simulation results have been omitted. Once again the module can be redone easily

to add wider numbers.

module addertskb(clk,r,p,q,En);

input[1:0] p,q;input En,clk;output [2:0] r;

reg[2:0]r,c;integer i;

always@(posedge En)

 begin

 for(i=0;i<2;i=i+1)

 begin

 @(posedge clk)

 if(i==0) c[i]=1'b0;

 fatsk(p[i],q[i],c[i],{c[i+1'b1],r[i]});

 end

 r[2]=c[2];

 $display(" t=%0d, clk = %b, En = %b, p = %b, q = %b, r = %b

",$time,clk,En,p,q,r);

 end

task hatsk;

input a,b;output[1:0]ha;

ha={a&b,a^b};

endtask

task fatsk;

input a,b,c;output[1:0]a2;reg[1:0]a1,aa2;

begin

 hatsk(a,b,a1);

 hatsk(a1[0],c,aa2);

 a2[1] = (aa2[1]|a1[1]);

 a2[0] = aa2[0];

end

endtask

endmodule

Figure 9.21 Another 2-bit adder using half-adder and full-adder tasks.

292 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

9.4 USER-DEFINED PRIMITIVES (UDP)

The primitives available in Verilog are all of the gate or switch types. Verilog has

the provision for the user to define primitives – called “user defined primitive

(UDP)” and use them. A UDP can be defined anywhere in a source text and

instantiated in any of the modules. Their definition is in the form of a table in a

specific format. It makes the UDP types of functions simple, elegant, and

attractive. UDPs are basically of two types – combinational and sequential. A

combinational UDP is used to define a combinational scalar function and a

sequential UDP for a sequential function.

9.4.1 Combinational UDPs

A combinational UDP accepts a set of scalar inputs and gives a scalar output. An

inout declaration is not supported by a UDP. The UDP definition is on par with

that of a module; that is, it is defined independently like a module and can be used

in any other module. The definition cannot be within any other module.

Definition of a combinational type of UDP is illustrated through an example

in Figure 9.22; it shows a simple UDP for an AND operation. The following are

noteworthy:

The first statement starts with the keyword “primitive”, it is followed by the

name assigned to the primitive and the port declarations.

A UDP can have only one output port. It has to be the first in the port list.

All the ports following the first are input ports and are all scalars.

inout ports are not permitted in a UDP definition.

Output and input are declared in the body of the UDP.

primitive udp_and (out, in1, in2);

output out;

input in1, in2;
table

// In1 In2 Out

0 0: 0;

0 1: 0;

1 0: 0;

1 1: 1;
endtable

endprimitive

Figure 9.22 A two-input AND gate defined as a UDP.

USER-DEFINED PRIMITIVES (UDP) 293

The behavior block of the primitive is given in the form of a table. It is

specified between keywords table and endtable.

The combinational function is defined as a set of rows (akin to the truth

table).

All the input values are specified first – each in a separate field in the same

order as they appear in the port declaration.

A colon and then the output value follow the set of input values. The

statement ends with a semicolon – as with every statement in Verilog.

A comment line is inserted in the example following the “table” entry. It

facilitates understanding the tabular entries.

All the inputs are nets – wire-type. Hence there is no need for a separate

type definition.

Output can be of the net or reg type depending upon the type of primitive –

explained later.

The last keyword statement – “endprimitive” – signifies the end of the

definition.

9.4.2 More General Combinational UDPs

The UDP for the AND gate in Figure 9.22 specifies output values only for definite

values of the inputs but not for their x states. A full and general definition of a

UDP is characterized by the following additional factors:

The output can take on only three values – 0, 1, or x. It cannot take the value

z.

Outputs can be defined for 0, 1, or x values of the inputs but not for the z

state. However if an input takes the value z, it is taken as x.

All the undefined input combinations lead to x state in the output. Hence it

is desirable to specify outputs for all the possible input combinations.

Figure 9.23 shows the UDP definition of an AND gate with all the input

combinations included. A test-bench for the UDP and the simulation results are

shown in Figure 9.24.

A two-input UDP has nine rows of tabular entries; their number increases

rapidly as the number of input logic variables increases. LRM has the provision to

make the UDP definition more compact. The symbol “?” can be used to signify all

the possible values – that is, 0, 1, or x. Figure 9.25 shows the elaborate AND gate

UDP of Figure 9.23 made compact in this manner. Wherever possible, one can

use the symbol “b” to signify “0” or “1” values and reduce the table size further.

294 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

Primitive udp_and (out, in1, in2);

Output out; //UDP of an AND gate defined fully

Input in1, in2;
Table

// In1 In2 Out

0 0: 0;
0 1: 0;
1 0: 0;
1 1: 1;
X 0: 0;
X 1: X;
X X: X;
0 X: 0;
1 X: X;

Endtable

Endprimitive

Figure 9.23 A more exhaustive definition of the two2-input AND gate UDP of Figure 9.21.

module tst_udp_and();

reg in1,in2; wire out;

udp_and uand(out,in1,in2);

initial begin in1=1'b0;in2=1'b0; end

always begin

 #2 in1=1'b0;in2=1'b1;

 #2 in1=1'b1;in2=1'b0;

 #2 in1=1'b1;in2=1'b1;

 end

initial $monitor($time ,"in1 = %b ,in2 = %b ,out = %b ",in1,in2,out);

initial #18 $stop;

endmodule

Simulation results

//# 0in1 = 0 , in2 = 0 , out = 0

//# 2in1 = 0 , in2 = 1 , out = 0

//# 4in1 = 1 , in2 = 0 , out = 0

//# 6in1 = 1 , in2 = 1 , out = 1

//# 8in1 = 0 , in2 = 1 , out = 0

//# 10in1 = 1 , in2 = 0 , out = 0

//# 12in1 = 1 , in2 = 1 , out = 1

//# 14in1 = 0 , in2 = 1 , out = 0

//# 16in1 = 1 , in2 = 0 , out = 0

Figure 9.24 A test bench for the UDP module of Figure 9.23 and the simulation results.

USER-DEFINED PRIMITIVES (UDP) 295

Figure 9.25 The UDP of Figure 9.22 made compact using the symbol “?”.

9.4.3 Instantiation of an UDP

UDPs are instantiated in the same manner as gate primitives (see the test bench in

Figure 9.24). It is further illustrated here through an example.

Example 9.13

The full adder accepts three input bits and outputs two bits – a sum bit and a carry

bit. Figure 9.26 shows UDPs for the sum and the carry bits as well as a full adder

module using them. Figure 9.27 shows a test-bench for the Full Adder as well as

the simulation results.

primitive udpsum(sum, in1,in2,carryi);

output sum;

input in1, in2, carryi;

table

// in1 in2 carryi: sum

 0 0 0: 0;

 1 1 0: 0;

 0 1 1: 0;

 1 0 1: 0;

 1 0 0: 1;

 0 1 0: 1;

 0 0 1: 1;

 1 1 1: 1;

endtable

endprimitive

continued

Primitive udp_and_b (out, in1, in2);

Output out; // UDP of an AND gate defined compactly

Input in1, in2;
Table

// In1 In2 Out

? 0: 0;
0 ?: 0;
x X x
1 1: 1;

Endtable

Endprimitive

296 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

continued

primitive udpcar(caro,in1,in2,cari); // This udp is for carryout

output caro; input in1, in2, cari;

table

// in1 in2 cari caro

 0 0 ? : 0 ;

 0 ? 0 : 0 ;

 ? 0 0 : 0 ;

 b 1 1 : 1 ;

 1 b 1 : 1 ;

 1 1 b : 1 ;

endtable

endprimitive

module fa (car_o, sum_o, in1, in2, car_i);

input in1, in2, car_i; output car_o, sum_o;

udpcar aa(car_o,in1,in2,car_i);

udpsum bb(sum_o, in1,in2,car_i);

endmodule

Figure 9.26 A full adder module with the sum and carry bits generated through UDPs.

module fa_tst;

reg [2:0] a;wire c,s;integer i;

fa cc(c,s,a[0],a[1],a[2]);

initial for(i=1;i<8;i=i+1)

begin

 a=i;

 #1 $display($time, "a=%b, cs=%b%b",a, c, s);

end

initial #10 $stop;

endmodule

Simulation results

1a=001, cs=01

2a=010, cs=01

3a=011, cs=10

4a=100, cs=01

5a=101, cs=10

6a=110, cs=10

7a=111, cs=11

Figure 9.27 A test bench for the full adder module of Figure 9.26 and the simulation results

for the same.

USER-DEFINED PRIMITIVES (UDP) 297

Observations:

With three inputs and three states for each input (0, 1, and x), the full table of

definition has 27 entries. Such definitions become cumbersome as the number

of inputs increase to even moderate values – say 4 or 5.

Only the entries essential to the definition of the primitive are included here.

Others which lead to x output are left out intentionally. Thus with the carry

primitive if any two inputs have x values, the output car_o too has x value.

Hence such a row has not been specified.

“?” and “b” have been used in the primitive definition to make the tables more

compact

9.4.4 Combinational UDP and Function

Definition-wise, UDP and function are similar, though their formats differ (i.e., a

UDP definition is in the form of a table while the function definition is as a

sequence of procedural assignments). UDPs are stand-alone-type primitives and

can be instantiated in any module. In contrast, a function is defined within a

module; it cannot be accessed anywhere outside the module of definition.

9.4.5 Sequential UDPs

Any sequential circuit has a set of possible states. When it is in one of the

specified states, the next state to be taken is described as a function of the input

logic variables and the present state [Wakerly]. A positive or a negative going

edge or a simple change in a logic variable can trigger the transition from the

present state of the circuit to the next state. A sequential UDP can accommodate

all these. The definition still remains tabular as with the combinational UDP. The

next state can be specified in terms of the present state, the values of input logic

variables and their transitions. The definition differs from that of a combinational

UDP in two respects:

The output has to be defined as a reg. If a change in any of the inputs so

demands, the output can change.

Values of all the input variables as well as the present state of the output can

affect the next state of the output. In each row the input values are entered in

different fields in the same sequence as they are specified in the input port list.

It is followed by a colon (:). The value of the present state is entered in the

next field which is again followed by a colon (:). The next state value of the

output occupies the last field. A semicolon (;) signifies the end of a row

definition (see the examples below).

298 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

As can be seen from the UDPs considered so far, its definition apparently calls

for the use of a large number of tabular statements; it is all the more true of the

sequential UDPs. Some shorthand notations are possible to make the UDP table

more compact. All the notations that can be used are given in Table 9.1. Judicious

selection and use of the symbols can make the tables compact.

Two examples of sequential UDPs are considered here – one being level-

sensitive and the other edge-sensitive.

Example 9.14 A UDP for a D Latch

Figure 9.28 shows a UDP for a D latch (and a test bench for the same). It is an

example of a level sensitive sequential UDP. The tabular description for the latch

has been made succinct with the use of symbols – and ?. Any undefined input

combination results in x value for the output; hence the output has not been

separately defined for the x value of input in the table. Repeated use of the

symbol ? has made the UDP table compact. The three rows of the table signify the

following:

1. When clk = 1, if din = 0, the next state (qn) is also at 0 whatever be the

value of present state (qp).

2. When clk = 1, if din = 1, the next state (qn) is also at 1 whatever be the

value of present state (qp).

3. When clk = 0, the output (next state) does not change even if din changes.

Simulation results are shown in Figure 9.29.

Table 9.1 Symbols for UDP tabular rows

Symbol Significance Restrictions of use

B or b 0 and 1 values Only in the input or current state fields

? 0, 1 or ,x value Only in the input or current state fields

– No change Only in the output field of sequential UDP

(mn)
Change of value from m to

n
Only in the input field. m & n can be 0, 1, x, b, or

?

* Same as (??)

r Same as (01)

f Same as (10)

p Rise from 0 or x to x or 1

n Fall from 1 or x to x or 0

Only in the input field

USER-DEFINED PRIMITIVES (UDP) 299

primitive dlatch(q,din,clk);

output q; input din,clk; reg q;

table

// din clk qp qn

 0 1 : ? : 0; // If clk is at 1 state, the output

 1 1 : ? : 1; //follows the input. If clk is at 0

 ? 0 : ? : -; // state, the output remains frozen

endtable

endprimitive

module dlatch_tst;

wire q; reg din,clk;

dlatch ll(q,din,clk);

initial

begin

 clk=1'b1;din=1'b0;

 repeat (2)begin #4 din=1'b1; #4 din=1'b0; end

 clk=1'b0;repeat (2)begin #4 din=1'b1; #4 din=1'b0; end

 $stop;

end

initial $monitor($time ,"clk = %b, din = %b, q = %b ",clk,din,q);

endmodule

Figure 9.28 A D-latch module described as a level-sensitive UDP and a test bench for it.

0clk = 1, din = 0, q = 0

4clk = 1, din = 1, q = 1

8clk = 1, din = 0, q = 0

12clk = 1, din = 1, q = 1

16clk = 0, din = 0, q = 0

20clk = 0, din = 1, q = 0

24clk = 0, din = 0, q = 0

28clk = 0, din = 1, q = 0

Figure 9.29 Simulation results of running the test bench for the UDP of Figure 9.28.

300 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

Example 9.15 A UDP for an Edge-Triggered Flip-Flop

Figure 9.30 shows the UDP definition of a positive edge-triggered flip-flop with a

clear facility. In the table, (01) signifies the 0-to-1 transition edge of the clk – that

is, its positive edge. Other edge transitions too can be interpreted in a similar

manner. The simulation results are shown in Figure 9.31. From the simulation

results, one can see that as long as the Clear input is low, data input is latched in at

the positive going edge of the clock. But if the Clear input is high, its effect

prevails and the flip-flop output remains low and does not respond to changes in

the input data line.

primitive dff_pos(q,din,clk,clr);

output q;

input din,clk,clr;

reg q;

//initial q = 1'b0;

table

// din clk clr qp qn Whatever be the present

 0 (01) 0: ?: 0; // state of the output, at the

 1 (01) 0: ?: 1; // positive edge of clk input

 ? (10) 0: ?: -; // value is latched and

 (??) ? 0: ?: -; // output made equal to

 ? ? 1: ?: 0; // that if clr = 0. IF clr=1,

 ? ? *: ?: 0; // q .is made 0.

endtable

endprimitive

module dff_pos_tst;

wire q;

reg din,clk,clr;

dff_pos ll(q,din,clk,clr);

initial

begin

 clr=1'b0;din=1'b0;clk=1'b0;#3din=1'b1;

 repeat (2)begin #4 din=1'b1; #4 din=1'b0; end

 clr=1'b1;repeat (2) begin#4 din=1'b1; #4 din=1'b0; end

 $stop;

end

always #2 clk=~clk;

initial $monitor($time ,"clr=%b, clk = %b, din = %b, q = %b ",clr,clk,din,q);

endmodule

Figure 9.30 An UDP for an edge-triggered flip-flop with clear facility: A test bench is also

included in the figure.

USER-DEFINED PRIMITIVES (UDP) 301

0clr=0, clk = 0, din = 0, q = 0

2clr=0, clk = 1, din = 0, q = 0

3clr=0, clk = 1, din = 1, q = 0

4clr=0, clk = 0, din = 1, q = 0

6clr=0, clk = 1, din = 1, q = 1

8clr=0, clk = 0, din = 1, q = 1

10clr=0, clk = 1, din = 1, q = 1

11clr=0, clk = 1, din = 0, q = 1

12clr=0, clk = 0, din = 0, q = 1

14clr=0, clk = 1, din = 0, q = 0

15clr=0, clk = 1, din = 1, q = 0

16clr=0, clk = 0, din = 1, q = 0

18clr=0, clk = 1, din = 1, q = 1

19clr=1, clk = 1, din = 0, q = 0

20clr=1, clk = 0, din = 0, q = 0

22clr=1, clk = 1, din = 0, q = 0

23clr=1, clk = 1, din = 1, q = 0

24clr=1, clk = 0, din = 1, q = 0

26clr=1, clk = 1, din = 1, q = 0

27clr=1, clk = 1, din = 0, q = 0

28clr=1, clk = 0, din = 0, q = 0

30clr=1, clk = 1, din = 0, q = 0

31clr=1, clk = 1, din = 1, q = 0

32clr=1, clk = 0, din = 1, q = 0

34clr=1, clk = 1, din = 1, q = 0

Figure 9.31 Simulation results of running the test bench for the UDP of Figure 9.30.

There can be situations where an edge sensitive entry in a UDP table clashes with

a level-sensitive entry. In such situations of conflict, the level-sensitive entry

dominates and decides the next state. The UDP in Figure 9.29 is sensitive to the

level changes in one input (clr) and the edge in the other (clk). One can also have

UDPs sensitive only to the edges in the inputs.

Observations:

Only one edge transition can be specified in one line of the UDP definition.

All other inputs are to be defined as state levels.

If one edge of an input is used to specify a transition in the output, the output

transition has to be defined for all possible edges of all the inputs.

A sequential UDP specifies the next state in terms of the present state and

inputs. If necessary, one can specify an initial state and avoid ambiguity in

302 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES

operation at start. The initial declaration can be used here. Such an initial

statement has to be a single procedural assignment. It can assign a 1(1’b1), a

0(1’b0), or an x value to the output reg of the UDP.

9.4.6 Sequential UDPs and Tasks

Sequential UDPs and tasks are functionally similar. Tasks are defined inside

modules and used inside the module of definition. They are not accessible to other

modules. In contrast, sequential UDPs are like other primitives and modules.

They can be instantiated in any other module of a design.

9.4.7 UDP Instantiation with Delays

Outputs of UDPs also can take on values with time delays. The delays can be

specified separately for the rising and falling transitions on the output. For

example, an instantiation as

udp_and_b # (1, 2) g1(out, in1, in2);

can be used to instantiate the UDF of Figure 9.25 for carry output generation.

Here the output transition to 1 (rising edge) takes effect with a time delay of 1 ns.

The output transition to 0 (falling edge) takes effect with a time delay of 2 ns. If

only one time delay were specified, the same holds good for the rising as well as

the falling edges of the output transition.

9.4.8 Vector-Type Instantiation of UDP

UDP definitions are scalar in nature. They can be used with vectors with proper

declarations. For example, the full-adder module fa in Figure 9.26 can be

instantiated as an 8-bit vector to form an 8-bit adder. The instantiation statement

can be

fa [7:0] aa(co, s, a, b, {co[6:0],1’b0});

s (sum), co (carry output), a (first input), and b(second input) are all 8-bit vectors

here. The vector type of instantiation makes the design description compact;

however, it may not be supported by some simulators.

9.5 EXERCISES

 1. Define half-adder and full-adder as tasks and prepare a 32-bit adder using

them. Test it through a suitable test bench.

 2. Form a UDP for an A-O-I gate and test it through a test bench.

EXERCISES 303

 3. Form a UDP for a 3-to-1 mux and test it through a test bench.

 4. b0, b1, and b2 represent the three bits of a mod-8 counter. The counter is to

count at the positive edge of a clock input. Form UDPs for b0, b1, and b2;

instantiate them in a module to form a counter. Test the counter using a test

bench.

 5. A 3-bit number is to advance through the following cyclic sequence:

 0 – 3 – 5 – 4 – 1 – 0 – 3. . .

 Form UDPs for the 3 bits; form the sequencer module by instantiating the

UDPs. Test the module through a test bench.

 6. Form a microcontroller core as follows:

Have a set of 4 registers designated r1, r2, r3, and r4.

Define a set of 6 algebraic / logic operations – Add, 1’s complement,

NAND, EXOR, left shift, and right shift

Have an 8-bit instruction opcode as ssddpaaa. Here ss, dd and aaa

specify the source address, the destination address and the 3-bit code

for the algebraic/logic opreration, respectively. P is a single-bit

mode selector – if p = 0, data are to be transferred from source to the

destination; if p = 1, the algebraic/logic operation is to be done.

Define each of the operations above as a function or as a task.

 Realize the ALU functions as UDPs. Realize the whole module using the

case statement. For example, 01111101 stands for taking data from r1 and

r3, adding them and putting the result in r1. Use r1 to store the result. Have

a separate status register with carry bit and zero bit: set them whenever

necessary. Write a test bench for the microcontroller, and test each of the

instructions and instruction sequences.

 7. Consider Figure 9.12: Shift the statement r[32] = c[32]; ahead by one line.

Include a $display statement in both cases: Simulate the test bench.

Explain any difference.

305

10

SWITCH LEVEL MODELING

10.1 INTRODUCTION

In today’s environment the MOS transistor is the basic element around which a

VLSI is built. Designers familiar with logic gates and their configurations at the

circuit level may choose to do their designs using MOS transistors. Verilog has

the provision to do the design description at the switch level using such MOS

transistors, which is the theme of the present chapter. Switch level modeling

forms the basic level of modeling digital circuits. The switches are available as

primitives in Verilog; they are central to design description at this level. Basic

gates can be defined in terms of such switches. By repeated and successive

instantiation of such switches, more involved circuits can be modeled – on the

same lines as was done with the gate level primitives in Chapters 4 and 5.

Designers familiar with logic gates, digital functional blocks, and their

interplay can successfully carry out a complete VLSI design without any

involvement at the switch level. Hence the switch level design was deferred to the

present chapter.

10.2 BASIC TRANSISTOR SWITCHES

Consider an NMOS transistor of the depletion type. When used in a digital circuit,

it can be in one of three modes:

VG < VS where VG and VS are the gate and source voltages with respect to the

drain: The transistor is OFF and offers very high impedance across the source

and the drain. It is in the z state.

VG VS: The transistor is in the active region. It presents a resistance between

the source and the drain. The value depends on the technology. Such a

resistive state of the transistor can be modeled in Verilog. A transistor in this

mode can be represented as a resistance in Verilog – as pull1 or pull0

depending on whether the drain is connected to supply1 or source is

connected to supply0.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

306 SWITCH LEVEL MODELING

VG > VS: The transistor is fully turned on. It presents very low resistance (0

) between the source and drain.

An enhanced-mode NMOS transistor also has the above three modes of

operation. It is OFF when VG VS. It is moderately ON or in the active region

when VG is slightly greater than VS, representing a resistive (pull1 or

pull0) mode of operation. When VG is sufficiently greater than VS, the

transistor is in the on state representing very low (0) resistance. Similar

modes are possible for the PMOS transistor also. The modes and the voltage

levels for each are summarized in Table 10.1.

The table is more for information and not of direct relevance to design

description in Verilog. Whenever a switch primitive is present in a design,

necessary biasing will be done automatically. The designer need not worry about

it – at least at this stage.

10.2.1 Basic Switch Primitives

Different switch primitives are available in Verilog. Consider an nmos switch. A

typical instantiation has the form

nmos (out, in, control);

nmos – a keyword – represents an NMOS transistor functioning as a switch.

The switch has three terminals (see Figure 10.1) – in, out, and control. When the

control input is at 1 (high) state, the switch is on. It connects the input lead to the

output side and offers zero impedance. When the control input is low, the switch

is OFF and output is left floating (z state). If the control is in the z or the x

state, output may take corresponding values. Table 10.2 summarizes the input /

output combinations. In the table the symbol “L” stands for 0 or z state. The

symbol H stands for the 1 or z state.

The keyword pmos represents a PMOS transistor functioning as a switch.

The PMOS switch has three terminals (see Figure 10.2). A typical instantiation of

the switch has the form

Table 10.1 Operating voltages for different modes of operation of MOS switches

NMOS PMOS
Mode

Depletion Enhancement Depletion Enhancement

VD – VS for normal operation

(Range: 1.5V to 5V)

Positive Positive Negative Negative

OFF (z) state Negative 0 Positive Positive

Resistive state

(pull1,

pull0)

 0 Mildly

positive
 0 Mildly

negative

Range of

VG – VS

for

ON state (0) Positive Fully positive Negative Fully negative

BASIC TRANSISTOR SWITCHES 307

in out

control

in out

control

Figure 10.1 An NMOS switch with

terminals.

Figure 10.2 A PMOS switch with

terminals.

pmos (out, in, control);

When the control is at 1 (high) state, the switch is off. Output is left floating.

When control is at 0 (low) state, the switch is on, input is connected to output, and

output is at the same state as input. For other input values, output is at other

values. The output values for all possible input and control values are shown in

Table 10.3. The symbols L and H have the same significance as in Table 10.2.

Observations:

When in the on state, the switch makes its output available at the same

strength as the input. There is only one exception to it: When the input is of

strength supply, the output is of strength strong. It is true of supply1

as well as supply0.

When instantiating an nmos or a pmos switch, a name can be assigned to the

switch. But the name is not essential. (The same is true of the other primitives

discussed in the following sections as well.)

The nmos and pmos switches function as unidirectional switches.

Table 10.2 Output values of an

nmos switch for different

values of signal and control

inputs

Table 10.3 Output values of a

pmos switch for different

values of signal and control

inputs

Control (input)

0 1 X z

0 Z 0 L L

1 Z 1 H H

X Z X X X(D
at

a)

in
p

u
t

z z z z z

Control (input)

0 1 X z

0 Z 0 L L

1 Z 1 H H

X Z X X X(D
at

a)

in
p

u
t

z z z z z

308 SWITCH LEVEL MODELING

10.2.2 Resistive Switches

nmos and pmos represent switches of low impedance in the on-state. rnmos and

rpmos represent the resistive counterparts of these respectively. Typical

instantiations have the form

rnmos (output1, input1, control1);

rpmos (output2, input2, control2);

With rnmos if the control1 input is at 1 (high) state, the switch is ON and

functions as a definite resistance. It connects input1 to output1 through a

resistance. When control1 is at the 0 (low) state, the switch is OFF and leaves

output1 floating. The set of output values for all combinations of input1 and

control1 values remain identical to those of the nmos switch given in Table 10.2.

The rpmos switch is ON when control2 is at 0 (low) state. It inserts a

definite resistance between the input and the output signals but retains the signal

value. The output values for different input values remain identical to those in

Table 10.3 for the pmos switch.

Observations:

Because rpmos and rnmos are resistive switches, they reduce the signal

strength when in the on state. The reduced strength is mostly one level below

the original strength. The only exceptions are small and hi-z. For these

the strength and the state remain unaltered (see Table 10.4).

The rpmos and rnmos switches function as unidirectional switches; the

signal flow is from the input to the output side.

Table 10.4 Output-side strength levels for different

input-side strength values of rnmos, rpmos, and rcmos

switches

Input strength Output strength

Supply – drive Pull – drive

Strong – drive Pull – drive

Pull – drive Weak – drive

Weak – drive Medium – capacitive

Large – capacitive Medium – capacitive

Medium – capacitive Small – capacitive

Small – capacitive Small – capacitive

High impedance High impedance

BASIC TRANSISTOR SWITCHES 309

10.2.3 pullup and pulldown

A MOS transistor functions as a resistive element when in the active state.

Realization of resistance in this form takes less silicon area in the IC as compared

to a resistance realized directly. pullup and pulldown represent such resistive

elements. A typical instantiation here has the form

pullup (x);

Here the net x is pulled up to the supply1 through a resistance. Similarly,

the instantiation

pulldown(y);

pulls y down to the supply0 level through a resistance. The pullup and

pulldown primitives can be used as loads for switches or to connect the unused

input ports to VCC or GND, respectively. They can also form loads of switches in

logic circuits. The default strengths for pullup and pulldown are pull1 and

pull0 respectively. One can also specify strength values for the respective nets.

For example,

pullup (strong1) (x)

specifies a resistive pullup of net x to supply1. One can also assign names to

the pullup and pulldown primitives. Thus

pullup (strong1) rs(x)

represents an instantiation of pullup designated rs having strength strong1.

Difference between tri and pullup or pulldown is to be understood

clearly. pullup is a functional element; it represents a resistive connection to

supply1. In contrast tri1 is a type of net; in the absence of an assignment, it

remains connected to supply1. A similar difference exists between pulldown

and tri0. The example below brings out the differences.

Example 10.1

Figure 10.3 shows two simple circuits that are apparently identical: Figure 10.3 (a)

has the net o1 declared as tr1 and is pulled up in case it is left open. With the

circuit in Figure 10.3(b), o2 is a wire type of net; it has a resistive element

connecting it to supply1. Figure 10.4 shows a module incorporating both the

circuits and a test bench for them. Note that the module instantiates the primitive

bufif1 for the controlled buffer (discussed in Chapter 4). The test bench has

specific assignments to the two input signals which bring out the difference in

contention resolution. For identical input signal values, the outputs o1 and o2 can

differ in certain cases.

310 SWITCH LEVEL MODELING

Figure 10.3 Two circuits to demonstrate the difference between tri1 and pullup.

At t = 0, all the inputs are at x state; o1 is also at x state: But o2=1 because of

the pullup.

At t = 1, all the switches are turned off; o1 and o2 are at 1 state.

At t = 2, all the switches are on; the outputs follow the inputs and both of

them are at 1 state.

At t = 3, ctt1 & ctp1 are on; ctt2 & ctp2 are off; o1=a1=1 but o2=1 since its

value is the result of contention resolution between b1 at weak0 & the

stronger pp at pull1.

At t = 4, all switches are on; all inputs are at 0; o1=0 but o2=1 since the

stronger pull1 prevails over the weaker 0's of b1 & b2.

module swt_aa (o1,o2, a1,a2,b1,b2,c1,c2);

output o1,o2; input a1,a2,b1,b2,c1,c2;

wire o2; tri1 o1;

bufif1 ctt1(o1,a1,c1), ctt2(o1,a2,c2);

bufif1 (weak1, weak0) ctp1(o2,b1,c1), ctp2(o2,b2,c2);

pullup pp(o2);

endmodule

module swt_aa_tb;

reg [5:0] rx; wire o1,o2, a1,a2,b1,b2,c1,c2;

assign {a1,a2,b1,b2,c1,c2} = rx;

swt_aa aa(o1,o2, a1,a2,b1,b2,c1,c2);

initial begin

continued

c2

c1

ctt2

ctt1

Supply1

a2

a1 o1

(a)

c2

c1

ctp2

ctp1

Supply1

b2

b1 o2

(b)

BASIC TRANSISTOR SWITCHES 311

continued

 #1 rx=6'o00;

 #1 rx=6'o77;

 #1 rx=6'o42;

 #1 rx=6'o03;

 #1 $stop;

 end

initial $monitor("time=%0d, c1=%b, o1=%b, a1=%b, a2=%b, c2=%b, o2=%b,

b1=%b, b2=%b",$time, c1,o1,a1,a2,c2,o2,b1,b2);

endmodule

#t c1 o1 a1 a2 c2 o2 b1 b2

#0 x x x x x 1 x x

#1 0 1 0 0 0 1 0 0

#2 1 1 1 1 1 1 1 1

#3 1 1 1 0 0 1 0 0

#4 1 0 0 0 1 1 0 0

Figure 10.4 Design module for the circuits of Figure 1.3 and its test bench.

Example 10.2 CMOS inverter

A CMOS inverter is formed by connecting an nmos and a pmos switch in series

across the supply (see Figure 10.5). The output terminals are joined together to

form the common output. Similarly, the input is used as the common control input

to both the switches. Referring to the figure, we can see the following:

Supply0 (a)

Supply1 (b)

outin

Qn

Qp

Figure 10.5 A CMOS inverter formed by connecting an NMOS and a PMOS set of

transistors in series across the supply.

312 SWITCH LEVEL MODELING

When the input is low (0 V), transistor Qn is off. But Qp is on. supply1 is

connected to the output. Hence the output is high.

When the input is high (5 V), transistor Qp is off. But Qn is on. supply0 is

connected to the output. Hence the output is low.

The inverter operation is clear from the above. The design description for the

corresponding CMOS inverter is shown in Figure 10.6. The leads a and b are

declared as nets – supply0 and supply1 respectively; i.e., they are connected

to ground and VCC respectively. The two instantiations together describe the

inverter operation.

Observations:

Under steady-state operation of the CMOS inverter, only Qp or Qn is ON at a

time. Hence the inverter does not draw any quiescent current from the supply.

Current is drawn only to charge the internal capacitor associated with the

transistors during the transition.

The input and output sides of the switches refer to the signal flow directions

and not that of the current flow. Thus for the NMOS switch under the ON

condition, current flows from out to supply0. But the signal from a (at

supply0) is made available at out.

Example 10.3 CMOS NOR gate

A CMOS nor gate with two inputs is shown in Figure 10.7. It employs four

transistors.

When only in1 is high, Qn1 is ON pulling out to suppy0. Output is zero.

Qp2 is also on. But since in2 is low, Qp1 is off. Hence no current can be

drawn from supply1.
When only in2 is high, Qn2 is ON pulling out to suppy0. Output is zero. Qp1

is also on. But since in1 is low, Qp2 is off. Hence no current can be drawn

from supply1.

module inv (in, out);
output out;
input in;
supply0 a;
supply1 b;
nmos (out, a, in);
pmos (out, b, in);
endmodule

Figure 10.6 design description of a CMOS inverter formed by connecting an NMOS

transistor and a PMOS transistor in series.

BASIC TRANSISTOR SWITCHES 313

Supply0

Supply1

out

in1
Qn1

Qp1

in2

Qn2

Qp2

a

c

b

Figure 10.7 A 2 input CMOS NOR gate.

When both in1 and in2 are low, Qn1 and Qn2 are OFF. Qp1 and Qp2 are ON

and out is connected to supply1. But no current is drawn from the supply.

When both in1 and in2 are high, Qn1 and Qn2 are on. Out is grounded at c. Since

Qp1 and Qp2 are off, no current is drawn from supply1. The design description for

the NOR gate is shown in Figure 10.8. It has four instantiations – two of pmos
and two of nmos, respectively.

module npnor_2(out, in1, in2);
output out;
input in1, in2;
supply1 a;
supply0 c;
wire b;
pmos(b, a, in2), (out, b, in1);
nmos (out, c, in1), (out, c, in2) ;
endmodule

Figure 10.8 design description of a CMOS NOR gate.

Observations:

A three-input NOR gate has three NMOS transistors in parallel on the ground

side and three PMOS transistors in series on the VCC side. Although the

number of inputs can be increased in this manner, circuit operation is not

satisfactory for more than two or three inputs [Bogart].

NAND gate is formed by connecting the NMOS transistors in series on the

ground side and the PMOS transistors in parallel on the VCC side (NAND is

the dual of NOR).

314 SWITCH LEVEL MODELING

Because NAND and NOR are universal gates, all other logic gates can be

realized in terms of them.

Example 10.4 NMOS Inverter with Pull up Load

Figure 10.9 shows an NMOS inverter. Q1 is the NMOS transistor. Q2 properly

biased, forms an active resistance and is the load on Q1. The design description for

the inverter is shown in Figure 10.10. When in = 0, Q1 is OFF and out is pulled up

and is at state 1. When in = 1, Q1 is ON and out is pulled down to 0. A test bench

and the results of simulating the test bench are also included in the figure.

Observations:

When Q1 is ON (in = 1), the gate has a standing current; contrast this with

CMOS inverter in Example 10.2, where the quiescent current is always zero.

The output is available as strong0.

When Q1 is OFF, the standing current is zero. But the output is available as

pull1. Thus there is a difference in the strengths of the two states.

If necessary, a different strength value can be assigned to pullup.

Supply0 (a)

out

in Q1

Q2

V
CC

Figure 10.9 An NMOS inverter with an active pull up load.

BASIC TRANSISTOR SWITCHES 315

module NMOSinv(out,in);

output out;input in;supply0 a;

pullup (out);

nmos(out,a,in);

endmodule

module tst_nm_in();

reg in;wire out;

NMOSinv nmv(out,in);

initial

in =1'b1;

always

#3 in =~in;

initial $monitor($time , " in = %b, output = %b ",in,out);

initial #30 $stop;

endmodule

Figure 10.10 Design description of an NMOS inverter gate: A test bench for the inverter

and the simulation results are also shown in the figure.

Example 10.5 An NMOS Three Input NOR Gate

Figure 10.11 shows a three-input NMOS NOR gate with Q4 – properly biased –

forming a resistive pullup load. Output b is high when all the inputs – in1, in2 and

in3 are low – keeping the respective mos transistors – Q1, Q2, and Q3 – off. If

any one of the three inputs goes high, the corresponding NMOS transistor turns

ON and the output b is pulled down to zero. When output is in 1 state, it has

strength pull1. When in the zero state, it has strength strong0. The design

description for the gate is shown in Figure 10.12. Simulation results are given in

Figure 10.13.

316 SWITCH LEVEL MODELING

Supply0

in1 Q1 in2 Q
2

Q4

a

b

Q3in3

V
CC

Figure 10.11 An NMOS NOR gate with active pull up.

module nor3NMOS(in1,in2,in3,b);

output b;

input in1,in2,in3;

supply0 a; wire b;

nmos(b,a,in1),(b,a,in2),(b,a,in3);

pullup(b);

endmodule

module tst_nor3NMOS();

reg in1,in2,in3;wire b;

nor3NMOS nn(in1,in2,in3,b);

initial

begin

in1=1'b1;in2=1'b1;in3=1'b1;

end

always #2 in1=~in1;

always #3 in2=~in2;

always #5 in3=~in3;

initial $monitor($time , "in1 = %b , in2 = %b , in3 = %b , output = %b

",in1,in2,in3,b);

initial #24 $stop;

endmodule

module (b, in1, in2, in3);

output b;

input in1, in2, in3;

supply0 a;

wire b;

nmos (b, a, in1), (b, a, in2), (b, a, in3) ;

pullup (b) ;

endmodule

Figure 10.12 Design description of an NMOS NOR gate with active pull up.

BASIC TRANSISTOR SWITCHES 317

0in1 = 1 , in2 = 1 , in3 = 1 , output = 0

2in1 = 0 , in2 = 1 , in3 = 1 , output = 0

3in1 = 0 , in2 = 0 , in3 = 1 , output = 0

4in1 = 1 , in2 = 0 , in3 = 1 , output = 0

5in1 = 1 , in2 = 0 , in3 = 0 , output = 0

6in1 = 0 , in2 = 1 , in3 = 0 , output = 0

8in1 = 1 , in2 = 1 , in3 = 0 , output = 0

9in1 = 1 , in2 = 0 , in3 = 0 , output = 0

10in1 = 0 , in2 = 0 , in3 = 1 , output = 0

12in1 = 1 , in2 = 1 , in3 = 1 , output = 0

14in1 = 0 , in2 = 1 , in3 = 1 , output = 0

15in1 = 0 , in2 = 0 , in3 = 0 , output = 1

16in1 = 1 , in2 = 0 , in3 = 0 , output = 0

18in1 = 0 , in2 = 1 , in3 = 0 , output = 0

20in1 = 1 , in2 = 1 , in3 = 1 , output = 0

21in1 = 1 , in2 = 0 , in3 = 1 , output = 0

22in1 = 0 , in2 = 0 , in3 = 1 , output = 0

Figure 10.13 Results of running the test bench in Figure 10.12.

Observations:

When any of the inputs is high, the corresponding transistor is ON and the

gate has a standing current. The standing current is zero only when all the

three inputs are at zero state and Q1, Q2, and Q3 are off. The standing current

makes the power dissipation in the device much higher than that for its CMOS

counterpart.

Adding transistors in parallel can increase the number of inputs.

NAND gate can be formed by connecting the NMOS transistors controlled by

the inputs in series. However, NOR remains the preferred universal gate

element with NMOS logic.

One can use a pmos-type switch at the top with a pulldown type of load to

the ground. It forms a PMOS inverter (see Figure 10.14). The different logic

gates of PMOS technology can be built with it. Here again, due to the

standing current, the power consumption of the device will be much higher

than that of its CMOS counterpart.

For any logic function the nmos or the pmos gate uses a much smaller

number of transistors than does the CMOS gate. Despite this CMOS logic

family stands out due to two reasons:-

Lowest power consumption

Uniformity in the element patterns

318 SWITCH LEVEL MODELING

out

in Q1

Q2

V
CC

Figure 10.14 A PMOS inverter with active pull down load.

The advantages of CMOS technology often far outweigh the apparent

complexity of the larger number of devices required on a per gate basis. Hence

CMOS has proved to be much more popular.

10.3 CMOS SWITCH

A CMOS switch is formed by connecting a PMOS and an NMOS switch in

parallel – the input leads are connected together on the one side and the output

leads are connected together on the other side. Figure 10.15 shows the switch so

formed. It has two control inputs:

 N_control turns ON the NMOS transistor and keeps it ON when it is in the 1

state.

 P_control turns ON the PMOS transistor and keeps it ON when it is in the 0

state.

in out

N_control

P_control

Figure 10.15 A CMOS switch formed by connecting a PMOS transistor and an NMOS

transistor in parallel.

CMOS SWITCH 319

The CMOS switch is instantiated as shown below.

cmos csw (out, in, N_control, P_control);

Significance of the different terms is as follows:

cmos:The keyword for the switch instantiation

 csw: Name assigned to the switch in the instantiation

 out: Name assigned to the output variable in the instantiation

 in: Name assigned to the input variable in the instantiation

 N_control: Name assigned to the control variable of the NMOS transistor in

the instantiation

 P_control: Name assigned to the control variable of the PMOS transistor in

the instantiation

Example 10.6 CMOS Switch – 1

Being a parallel combination of a PMOS and an NMOS switch, the CMOS switch

can be realized by instantiating these to form a parallel switch. Design description

of such a switch is shown in Figure 10.16 along with a test bench. The controls for

the NMOS and the PMOS sides are separate in the primitive. The (partial)

simulation results are shown in Figure 10.17.

module CMOSsw(out,in,n_ctr,p_ctr);

output out; input in,n_ctr,p_ctr;

nmos gn(out,in,n_ctr);

pmos gp(out,in,p_ctr);

endmodule

module tst_CMOSsw();

reg in,n_ctr,p_ctr; wire out;

CMOSsw cmsw(out,in,n_ctr,p_ctr);

initial begin in=1'b0;n_ctr=1'b1;p_ctr=~n_ctr; end

always #5 in =~in;

always begin #3 n_ctr=~n_ctr; #0p_ctr =~n_ctr; end

initial $monitor($time , "in = %b , n_ctr = %b , p_ctr = %b , output = %b

",in,n_ctr,p_ctr,out);

initial #39 $stop;

endmodule

Figure 10.16 Design description of a CMOS switch formed by paralleling a pair of NMOS

and PMOS switches.

320 SWITCH LEVEL MODELING

0in = 0 , n_ctr = 1 , p_ctr = 0 , output = 0

3in = 0 , n_ctr = 0 , p_ctr = 1 , output = z

5in = 1 , n_ctr = 0 , p_ctr = 1 , output = z

6in = 1 , n_ctr = 1 , p_ctr = 0 , output = 1

9in = 1 , n_ctr = 0 , p_ctr = 1 , output = z

10in = 0 , n_ctr = 0 , p_ctr = 1 , output = z

12in = 0 , n_ctr = 1 , p_ctr = 0 , output = 0

Figure 10.17 Partial results of simulating the test bench for the CMOS switch in

Figure 10.16.

Example 10.7 CMOS Switch – 2

In normal use of a CMOS switch, the same control line drives the gates of the

PMOS and the NMOS switches (as shown in Figure 10.18). With this change the

switch becomes more compact for description as well. The module for the

compact switch is shown in Figure 10.19; the figure also includes a test bench for

it. The design module uses an instantiation of the NOT gate for generating

P_control from con – the control input. The (partial) simulation results are in

Figure 10.20.

in out

N_control

P_control

Figure 10.18 A CMOS switch with a single control line.

module CMOSsw1(out,in,con);

output out; input in,con; wire p_ctr;

not gn(p_ctr,con);

cmos gc(out,in,con,p-ctr);

endmodule

continued

CMOS SWITCH 321

continued

module tst_CMOSsw1();

reg in,con; wire out;

CMOSsw1 cmsw(out,in,con);

initial begin in=1'b0;con=1'b1; end

always #5 in =~in;

always #3 con=~con;

initial $monitor($time , "in = %b , con = %b , output = %b " ,in,con,out);

initial #40 $stop;

endmodule

Figure 10.19 Design description of a CMOS switch with a single control input.

0in = 0 , con = 1 , output = 0

3in = 0 , con = 0 , output = x

5in = 1 , con = 0 , output = x

6in = 1 , con = 1 , output = 1

9in = 1 , con = 0 , output = x

10in = 0 , con = 0 , output = x

12in = 0 , con = 1 , output = 0

Figure 10.20 Partial results of simulating the test bench for the CMOS switch in

Figure 10. 19.

Example 10.8 A RAM Cell

Figure 10.21 shows a basic ram cell with facilities for writing data, storing data,

and reading data. When switch sw2 is on, qb – the output of inverter g1 – forms

the input to the inverter g2 and vice versa. The g1-g2 combination functions as a

latch and freezes the last state entry before sw2 turns on. The step-by-step

function of the cell is as follows (see the waveforms in Figure 10.22):

When wsb (write/store) is high, switch sw1 is ON, and switch sw2 OFF.

With sw1 on, input Din is connected to the input of gate g1 and remains so

connected.

When wsb goes low, din is isolated, since sw1 is OFF. But sw2 is ON and

the data remains latched in the latch formed by g1-g2. In other words the

data Din is stored in the RAM cell formed by g1-g2.

When RD (Read) goes active (=1), the latched state is available as output Do.

Reading is normally done when the latch is in the stored state.

322 SWITCH LEVEL MODELING

D i

n

wsb

sw1

sw2

sw3

g1

g2
Do

RD

q

qq

qb

Figure 10.21 Basic RAM cell in block diagram form.

The design description for the ram cell as well as a test bench for it is given in

Figure 10.23. It instantiates a csw module which is a basic CMOS switch with a

single control line. If necessary, the not gate can be separately defined as a

CMOS gate module and instantiated. Note that the output of gate g2 – qq- has

been declared as a trireg type of net. It is to ensure that the q2 output is stored

when sw2 is OFF. It avoids any error during transition – that is, sw2 turning off

with a delay compared to that of sw1. The (partial) simulation results are in

Figure 10.24. A full-fledged memory can be built using the ram cell. The

memory address decoders are to form the enable signals to the write and read

control signals here.

D i

n

wsb

Do

RD

qq

Figure 10.22 Waveforms of different signals in the operation of the basic RAM cell of

Figure 10.21.

CMOS SWITCH 323

module ram_cell(do,din,wsb,rd);

output do; input din,wsb,rd; wire sb; wire q,qq; tri do;

csw sw1(q,din,wsb),sw2(q,qq,sb),sw3(do,q,rd);

not n1(sb,wsb),n2(qb,q),n3(qq,qb);

endmodule

module csw(out,in,n_ctr);

output out; input in,n_ctr; wire p_ctr;

assign p_ctr =~n_ctr;

cmos csw(out,in,n_ctr,p_ctr);

endmodule

module tst_ramcell();

reg din,wsb,rd; wire do;

ram_cell mc(do,din,wsb,rd);

initial begin din=1'b0;wsb=1'b0;rd=1'b0; end

always #10 din =~din;

always begin #3wsb=1'b1; #8wsb=1'b0; end

always begin #2 rd=1'b1; #5 rd =1'b0; end

initial $monitor ($time," rd= %b ,wsb = %b ,din = %b ,do = %b ",rd,wsb,din,do);

initial #40 $stop;

endmodule

Figure 10.23 Design description of a basic RAM cell.

0 rd= 0 ,wsb = 0 ,din = 0 ,do = z

2 rd= 1 ,wsb = 0 ,din = 0 ,do = x

3 rd= 1 ,wsb = 1 ,din = 0 ,do = 0

7 rd= 0 ,wsb = 1 ,din = 0 ,do = z

9 rd= 1 ,wsb = 1 ,din = 0 ,do = 0

10 rd= 1 ,wsb = 1 ,din = 1 ,do = 1

11 rd= 1 ,wsb = 0 ,din = 1 ,do = 1

14 rd= 0 ,wsb = 1 ,din = 1 ,do = z

16 rd= 1 ,wsb = 1 ,din = 1 ,do = 1

20 rd= 1 ,wsb = 1 ,din = 0 ,do = 0

21 rd= 0 ,wsb = 1 ,din = 0 ,do = z

Figure 10.24 Partial results of simulating the test bench for the CMOS switch in Figure

10.23.

324 SWITCH LEVEL MODELING

Example 10.9 An Alternate RAM Cell Realization

Figure 10.25 shows an alternate and apparently simpler version of the ram cell

(ram_1). The two inverters are connected permanently in a back-to-back fashion.

Their output strength levels are pull1 and pull0. Din can be of strength

strong. Hence when the data write switch (sww) is turned ON, Din prevails and

forces q to its own state. The condition is latched and remains so after switch sww
is turned OFF. Another data can be written again by turning ON switch sww after

making the new data available at Din. Data can be read out of the latch by turning

on the switch – swr. It has the control line RD.

The module of the ram_1 cell is shown in Figure 10.26; the figure also

includes a test bench. The design uses two instantiations of the not gate with

strength pull1 and pull0. The switches sww and swr are realized through

instantiations of the CMOS switch modules csw. (Alternately, the same can be

defined as a function inside the ram1 module and used as such.) Partial

simulation results are shown in Figure 10.27. By adding address decoding and

clock, the cell can be used as the basis for forming a full-fledged ram.

D i

n

WR

sww

swr

g1

g2
Do

RD

q

qb

Figure 10.25 An alternate version of the RAM cell in block diagram form.

module ram1(do,din,wr,rd);

output do; input din,wr,rd; wire qb,q; tri do;

scw sww(q,din,wr),swr(do,q,rd);

not(pull1,pull0)n1(qb,q),n2(q,q);

endmodule

module scw(out,in,n_ctr);

output out; input in,n_ctr; wire p_ctr;

assign p_ctr =~n_ctr;

cmos sw(out,in,n_ctr,p_ctr);

endmodule

continued

CMOS SWITCH 325

continued

//test-bench

module tst_ram1();

reg din,wr,rd; wire do;

ram1 mm(do,din,wr,rd);

initial begin din=1'b0;wr=1'b0;rd=1'b0; end

always #10 din =~din;

always begin #3wr=1'b1; #8wr=1'b0; end

always begin #2 rd=1'b1; #5 rd =1'b0; end

initial $monitor ($time," rd= %b ,wr = %b ,din = %b ,do = %b ",rd,wr,din,do);

initial #40 $stop;

endmodule

Figure 10.26 Design description of the RAM cell of Figure 10.24.

0 rd= 0 ,wr = 0 ,din = 0 ,do = z

2 rd= 1 ,wr = 0 ,din = 0 ,do = x

3 rd= 1 ,wr = 1 ,din = 0 ,do = 0

7 rd= 0 ,wr = 1 ,din = 0 ,do = z

9 rd= 1 ,wr = 1 ,din = 0 ,do = 0

10 rd= 1 ,wr = 1 ,din = 1 ,do = 1

Figure 10.27 Partial results of simulating the test bench for the CMOS switch in Figure

10.26.

Example 10.10 A Dynamic Shift Register

Figure 10.28 shows three successive stages of a dynamic shift register. It is

operated through a two-phase clock system – 1 and 2. Each stage has a CMOS

inverter. Successive stages are given input through CMOS switches (sw1, sw2,

etc.). 1 and 2 are symmetric clock waveforms in anti-phase. Two successive

stages together form one storage element.

When 2 is ON AND 1 is OFF. Din is input to stage 1 through switch swd.

sw1 and sw3 are OFF and sw2 is ON. State of stage 2 (attained when 1 was

high last) is coupled as input to stage 3 through switch sw2, and stage 3 takes

up the new state.

In the next half cycle, 1 is ON and 2 is OFF. sw1 and sw3 are ON and sw2

is OFF. State of stage 1 (attained when 2 was high last) is coupled as input

to stage 2 through switch sw1 and Do takes up the new state from stage3

through sw3.

326 SWITCH LEVEL MODELING

dout
din swd

V
CC

sw1 sw3sw2x1 x3x2y1 y3y2

1 12 2

Figure 10.28 The basic functional unit of a dynamic shift register.

The data in the input line are latched and shifted right on successive clock

cycles. The stages together act as a shift register stage. The design description of

a shift-register module with a two-phase clock is shown in Figure 10.29 along with

a test-bench for the same. The two-phase clock and switches are defined as

functions. These are repeatedly called to realize the shift register. Figure 10.30

shows partial simulation results.

The shift register can be modified to suit a variety of needs:

Dynamic logic incorporating NAND / NOR gates.

Dynamic RAM with row and column select lines and refresh functions.

A shift register to function as a right- or a left-shift-type shift register; a

direction select bit can be used to alter the shift direction.

module shreg1(dout,din,phi1);

output dout;//tested ok on 22nd Non 2001

input din,phi1;

wire phi2;

trireg[3:0] x,y;

trireg dout;

assign phi2=~phi1;

cmos switch0(x[0],din,phi1,phi2), switch1(x[1],y[0],phi2,phi1),

switch2(x[2],y[1],phi1,phi2), switch3(x[3],y[2],phi2,phi1),

switch4(dout,y[3],phi1,phi2);

cell cc0(y[0],x[0]), cc1(y[1],x[1]), cc2(y[2],x[2]), cc3(y[3],x[3]);

endmodule

module cell(op,ip);

output op;

input ip;

continued

CMOS SWITCH 327

continued

supply1 pwr;

supply0 gnd;

nmos(op,gnd,ip);

pmos(op,pwr,ip);

endmodule

module tst_shreg1;

reg din,phi1;

wire dout;

shreg1 shr(dout,din,phi1);

initial {din,phi1}=2'B00;

always

begin

 #1 din=1'b1; #2 din=1'b1; #2 din=1'b0;

 #2 din=1'b0; #2 din=1'b0; #2 din=1'b1;

 #2 din=1'b1;

end

always # 2 phi1=~phi1;

initial $monitor($time," din= %b, dout= %b, phi1= %b", din,dout,phi1);

endmodule

Figure 10.29 Design description of the dynamic shift register of Figure 10.28.

0 din= 0, dout= x, phi1= 0

1 din= 1, dout= x, phi1= 0

2 din= 1, dout= x, phi1= 1

4 din= 1, dout= x, phi1= 0

5 din= 0, dout= x, phi1= 0

6 din= 0, dout= x, phi1= 1

8 din= 0, dout= x, phi1= 0

10 din= 0, dout= 1, phi1= 1

11 din= 1, dout= 1, phi1= 1

12 din= 1, dout= 1, phi1= 0

14 din= 1, dout= 0, phi1= 1

16 din= 1, dout= 0, phi1= 0

18 din= 0, dout= 1, phi1= 1

20 din= 0, dout= 1, phi1= 0

Figure 10.30 Partial results of running the test bench in Figure 10.29.

328 SWITCH LEVEL MODELING

10.4 BI-DIRECTIONAL GATES

The gates discussed so far (nmos, pmos, rnmos, rpmos, rcmos) are all

unidirectional gates. When turned ON, the gate establishes a connection and

makes the signal at the input side available at the output side. Verilog has a set of

primitives for bi-directional switches as well. They connect the nets on either side

when ON and isolate them when OFF. The signal flow can be in either direction.

None of the continuous-type assignments at higher levels dealt with so far has a

functionality equivalent to the bi-directional gates. There are six types of bi-

directional gates.

10.4.1 tran and rtran

The tran gate is a bi-directional gate of two ports. When instantiated, it connects

the two ports directly. Thus the instantiation

tran (s1, s2);

connects the signal lines s1 and s2. Either line can be input, inout or

output. rtran is the resistive counterpart of tran.

10.4.2 tranif1 and rtranif1

tranif1 is a bi-directional switch turned ON/OFF through a control line. It is in

the ON-state when the control signal is at 1 (high) state. When the control line is

at state 0 (low), the switch is in the OFF state. A typical instantiation has the form

tranif1 (s1, s2, c);

Here c is the control line. If c=1, s1 and s2 are connected and signal transmission

can be in either direction. rtranif1 is the resistive counterpart of tranif1. It

is instantiated in an identical manner.

10.4.3 tranif0 and rtranif0

tranif0 and rtranif0 are again bi-directional switches. The switch is OFF if

the control line is in the 1 (high) state, and it is ON when the control line is in the 0

(low) state. A typical instantiation has the form

tranif0 (s1, s2, c);

With the above instantiation, if c = 0, s1 and s2 are connected and signal

transmission can be in either direction. If c = 1, the switch is OFF and s1 and s2

are isolated from each other. rtranif0 is the resistive counterpart of tranif0.

BI-DIRECTIONAL GATES 329

Observations:

Any instantiation of a bi-directional switch of the above types can be given a

name. But a name is not essential. It is true of the other switches also.

With the bi-directional switches the signal on either side can be of input,

output, or inout type. They can be nets or appearing as ports in the

module. But the type declaration on the two sides has to be consistent.

The connections to the bi-directional terminals of each of the bi-directional

switches have to be scalars or individual bits of vectors and not vector

themselves.

In the above instantiation s1 can be an input port in a module. In that case, s2
has to be a net forming an input to another instantiated module or circuit

block. s2 can be of output or inout type also. But it cannot be another

input port.

 s1 and s2 – both cannot be output ports.

 s1 and s2 – both can be inout ports.

With tran, tranif1, and tranif0 bi-directional switches if the input

signal has strength supply1 (supply0), the output side signal has strength

strong1 (strong0). For all other strength values of the input signal, the

strength value of the output side signal retains the strength of the input side

signal.

With rtran, rtranif1 and rtranif0 switches the output side signal

strength is less than that of the input side signal. The strength reduction is on

the lines shown in Table 10.4 for rnmos, rpmos, and rcmos switches.

Features of all the bi-directional switches are shown summarized in Table 10.5.

Example 10.11 Bus Switching

Figure 10.31 shows the circuit of a single-data line bus with the possibility of two-

way data transfer; the module bus_tran in Figure 10.32 is the Verilog description

of the circuit at the switch level. c is a tran-type switch with the possibility of

connecting a and b. ar and br are registers which can be switched ON to the lines

br

ac

ba

swa

ar

swb

swc

bcc

Figure 10.31 A circuit to demonstrate two-way signal transfer.

330 SWITCH LEVEL MODELING

Table 10.5 Different bi-directional switches and their features

Type of

Bi-directional

switch

Typical

instantiation

Condition to be

ON

Remarks

tran (a, b); Always ON (if

instantiated)

Acts essentially as a buffer

2 port rtran (a, b); – do – Acts essentially as a buffer with

reduction in the strength of the signal

tranif1 (a,

b, c);

ON if c = 1 Acts as a buffer if ON. Otherwise

provides isolation

tranif0 (a,

b, c);

ON if c = 0 – do –

rtranif1

(a, b, c);
ON if c = 1 Acts as a buffer if ON. Otherwise

provides isolation; signal strength on

the output side is lower than that on

the input side

3 port

rtranif0

(a, b, c);
ON if c = 0 – do –

module bus_tran(a,b,c);

inout a,b; input c; wire a,b,c;

tranif1 gg (a,b,c);

endmodule

module bus_tst;

reg ar,br,ac,bc,c;wire a,b;

bufif1 swa(a,ar,ac), swb(b,br,bc);

bus_tran bs(a,b,c);

initial begin

 $display("t\tar\tac\ta\tc\tb\tbc\tbr");

 #1 {ar,ac,c,bc,br}=5'b01100; repeat(3) #1 ar=~ar;

 #1 {ar,ac,c,bc,br}=5'b00110; repeat(3) #2 br=~br;

 #1 {ar,ac,c,bc,br}=5'b11010; repeat(3) #1 ar=~ar;

 repeat(3) #2 br=~br;

 #1 $stop;

 end

initial $monitor("%0d\t%b\t%b\t%b\t%b\t%b\t%b\t%b",$time,ar,ac,a,c,b,bc,br);

endmodule

Figure 10.32 Design and test modules for the circuit of Figure 10.31.

BI-DIRECTIONAL GATES 331

a and b. Two-way signal transmission is demonstrated through the test bench in

the figure; the simulation results reproduced in Figure 10.33 bring out the

following:

Up to 4 ns, switch swa is ON, swb is OFF, and swc is ON. Data in ar – ar
toggles 3 times and is available on a and b.

During 5 ns to 11 ns, switch swa is OFF, swb is ON, and swc is ON. Data in

br – br toggles 3 times and is available on b and a.

During 1 2ns to 21 ns, switch swc is ON, swa and swb are OFF; a follows ar
while b follows br.

#t ar ac a c b bc br

#0 x x x x x x x

#1 0 1 0 1 0 0 0

#2 1 1 1 1 1 0 0

#3 0 1 0 1 0 0 0

#4 1 1 1 1 1 0 0

#5 0 0 0 1 0 1 0

#7 0 0 1 1 1 1 1

#9 0 0 0 1 0 1 0

#11 0 0 1 1 1 1 1

#12 1 1 1 0 0 1 0

#13 0 1 0 0 0 1 0

#14 1 1 1 0 0 1 0

#15 0 1 0 0 0 1 0

#17 0 1 0 0 1 1 1

#19 0 1 0 0 0 1 0

#21 0 1 0 0 1 1 1

Figure 10.33 Simulation results with the test bench for the circuit in Figure 10.31.

Example 10.12 Another RAM Cell

Figure 10.34 shows a single RAM cell. It can be instantiated in vector form to

form a full-fledged ram. a_d is the decoded address line. When active, it turns on

the bi-directional switch g3 and establishes a two-way connection between net

ddd and net q. g1 and g2 together form a latch in feedback fashion. When g3 is

OFF, the latch stores the state it was last in. It is connected to ddd through g3 by

activating a_d for writing and reading. The design description for the RAM is

shown in Figure 10.35. The simulation results are (partially) reproduced in Figure

10.36. The following are possible after such selection and connection:

332 SWITCH LEVEL MODELING

When wr = 1, cmos gate g4 turns ON; the data at the input port di (with

strength strong0 / strong1) are connected to q through ddd. It forces the

latch to its state – since q has strength pull0 / pull1 only – di prevails

here. This constitutes the write operation.

When rd = 1, cmos gate g5 turns ON. The net ddd is connected to the output

net do. The data stored in the latch are made available at the output port do.

This constitutes the read operation.

wr tranif1

g3 g1 g2

do

rd

qqb

cmos

g4

cmos

g5

di

ddd

a_d

Figure 10.34 Circuit of a RAM cell,in block diagram form.

module ram_cell1(do,di,wr,rd,a_d);

output do; input di,wr,rd,a_d; wire ddd,q,qb,wrb,rdb;

not(rdb,rd),(wrb,wr);

not(pull1,pull0)(q,qb),(qb,q);

tranif1 g3(ddd,q,a_d);

cmos g4(ddd,di,wr,wrb),g5(do,ddd,rd,rdb);

endmodule

//test bench

module tst_ramcell1();

reg din,wr,rd,a_d; wire do;

ram_cell1 rmc1(do,din,wr,rd,a_d);

initial begin a_d=1'b0;din=1'b0;wr=1'b0;rd=1'b0; end

always #3a_d=1'b1;

always #10 din =~din;

always begin #3wr=1'b1; #8 wr=1'b0; end

always begin #2 rd=1'b1; #5 rd =1'b0; end

initial $monitor ($time," rd= %b ,wr = %b ,din = %b ,a_d = %b ,do = %b

",rd,wr,din,a_d,do);

initial #40 $stop;

endmodule

Figure 10.35 Design description of the RAM cell of Figure 10.34.

TIME DELAYS WITH SWITCH PRIMITIVES 333

0 rd= 0 ,wr = 0 ,din = 0 ,a_d = 0 ,do = z

2 rd= 1 ,wr = 0 ,din = 0 ,a_d = 0 ,do = z

3 rd= 1 ,wr = 1 ,din = 0 ,a_d = 1 ,do = 0

7 rd= 0 ,wr = 1 ,din = 0 ,a_d = 1 ,do = z

9 rd= 1 ,wr = 1 ,din = 0 ,a_d = 1 ,do = 0

10 rd= 1 ,wr = 1 ,din = 1 ,a_d = 1 ,do = 1

11 rd= 1 ,wr = 0 ,din = 1 ,a_d = 1 ,do = 1

14 rd= 0 ,wr = 1 ,din = 1 ,a_d = 1 ,do = z

16 rd= 1 ,wr = 1 ,din = 1 ,a_d = 1 ,do = 1

20 rd= 1 ,wr = 1 ,din = 0 ,a_d = 1 ,do = 0

21 rd= 0 ,wr = 1 ,din = 0 ,a_d = 1 ,do = z

Figure 10.36 Partial results of simulating the test bench for the CMOS switch in Figure

10.35.

10.5 TIME DELAYS WITH SWITCH PRIMITIVES

Propagation delays can be specified for switch primitives on the same lines as was

done with the gate primitives in Chapter 5. For example, an NMOS switch

instantiated as

nmos g1 (out, in, ctrl);

has no delay associated with it. The instantiation

nmos (delay1) g2 (out, in, ctrl);

has delay1 as the delay for the output to rise, fall, and turn OFF. The instantiation

nmos (delay_r, delay_f) g3 (out, in, ctrl);

has delay_r as the rise-time for the output. delay_f is the fall-time for the output.

The turn-off time is zero. The instantiation

nmos (delay_r, delay_f, delay_o) g4 (out, in, ctrl);

has delay_r as the rise-time for the output. delay_f is the fall-time for the output

delay_o is the time to turn OFF when the control signal ctrl goes from 0 to 1.

Delays can be assigned to the other uni-directional gates (rcmos, pmos, rpmos,

cmos, and rcmos) in a similar manner. Bi-directional switches do not delay

transmission – their rise- and fall-times are zero. They can have only turn-on and

turn-off delays associated with them. tran has no delay associated with it.

tranif1 (delay_r, delay_f) g5 (out, in, ctrl);

334 SWITCH LEVEL MODELING

represents an instantiation of the controlled bi-directional switch. When control

changes from 0 to 1, the switch turns on with a delay of delay_r. When control

changes from 1 to 0, the switch turns off with a delay of delay_f.

transif1 (delay0) g2 (out, in, ctrl);

represents an instantiation with delay0 as the delay for the switch to turn on when

control changes from 0 to 1, with the same delay for it to turn off when control

changes from 1 to 0. When a delay value is not specified in an instantiation, the

turn-on and turn-off are considered to be ideal that is, instantaneous. Delay values

similar to the above illustrations can be associated with rtranif1, tranif0,

and rtranif0 as well.

10.6 INSTANTIATIONS WITH STRENGTHS AND DELAYS

In the most general form of instantiation, strength values and delay values can be

combined. For example, the instantiation

nmos (strong1, strong0) (delay_r, delay_f, delay_o) gg (s1, s2, ctrl) ;

means the following:

It has strength strong0 when in the low state and strength strong1when
in the high state.

When output changes state from low to high, it has a delay time of delay_r.

When the output changes state from high to low, it has a delay time of

delay_f.

When output turns-off it has a turn-off delay time of delay _o.

rnmos, pmos, and rpmos switches too can be instantiated in the general form in

the same manner. The general instantiation for the bi-directional gates too can be

done similarly.

10.7 STRENGTH CONTENTION WITH TRIREG NETS

As was explained in Chapter 5, nets declared as trireg can have capacitive

storage. Such storage can be assigned one of three strengths – large, medium,

or small. Driving such a net from different sources can lead to contention; the

relative strength levels of the sources also have a say in the signal level taken by

the net. The contention resolution is brought out here through an illustrative

example. A similar procedure of analysis can be followed in other cases as well.

STRENGTH CONTENTION WITH TRIREG NETS 335

Example 10.13

Figure 10.37 shows a circuit where a set of switches connect nets in series to a

signal source. Strengths have been assigned to the nets and a test bench to bring

out contention shown in Figure 10.38. The thicker line representation of net a3 in

Figure 10.37 signifies that the capacitive storage strength of net a3 is stronger than

that of net a2. The progress of simulation is depicted in Figure 10.39 showing the

switch status and corresponding signal values at different times. Simulation

results are shown in Figure 10.40. One can see that whenever a2 and a3 are

connected (but isolated from a1), the stronger a3 prevails.

Observations:

When a net is connected to a single signal source through intervening switches

and capacitive nets, the source decides the value of the signal on the net.

When 2 capacitive nets are connected, in case of a contention the stronger one

prevails.

When a signal source and a capacitive net drive another net, in case of a

contention the signal value is dictated by the stronger of the two (see

Table 5.5).

Source1 a1 sw2sw1

c2c1

a3a2

Figure 10.37 A simple circuit to demonstrate contention resolution with trireg nets.

module demo_1;

trireg(large)a3; trireg(small)a2; wire a1; reg c1,c2,b;

buf(strong1,strong0) source1(a1,b);

tranif1 sw1(a2,a1,c1), sw2(a3,a2,c2);

initial begin

 $display("t\ta1\tc1\ta2\tc2\ta3");

 #0 {c1,c2,b}=3'b111; #1 {c1,c2,b}=3'b011; #1 {c1,c2,b}=3'b001;

 #1 {c1,c2,b}=3'b000; #1 {c1,c2,b}=3'b100; #1 {c1,c2,b}=3'b000;

 #1 {c1,c2,b}=3'b010; #1 {c1,c2,b}=3'b000; #1 {c1,c2,b}=3'b100;

 #1 {c1,c2,b}=3'b000; #1 {c1,c2,b}=3'b010; #1 {c1,c2,b}=3'b000;

 #1 {c1,c2,b}=3'b001; #1 {c1,c2,b}=3'b101; #1 {c1,c2,b}=3'b111;

 #1 $stop;

 end

initial $monitor("%0d\t%b\t%b\t%b\t%b\t%b",$time,a1,c1,a2,c2,a3);

endmodule

Figure 10.38 A test bench for the circuit in Figure 10.37.

336 SWITCH LEVEL MODELING

t = 0
1 11

t = 3
0 11

t = 4
0 10

t = 5
0 10

t = 6
0 11

t = 7
0 11

t = 8
0 10

t = 10
0 11

t = 11
0 11

t = 12
1 11

t = 13
1 11

t = 14
1 11

t = 15
0 00

t = 16
0 00

Source1 a1 sw2sw1

c2c1

a3a2

1 11
t = 2

Figure 10.39 Changes in signal values at different times in Example 10.13 as the status of

switches changes.

EXERCISES 337

#t a1 c1 a2 c a3

#0 1 1 1 1 1

#1 1 0 1 1 1

#2 1 0 1 0 1

#3 0 0 1 0 1

#4 0 1 0 0 1

#5 0 0 0 0 1

#6 0 0 1 1 1

#7 0 0 1 0 1

#8 0 1 0 0 1

#9 0 0 0 0 1

#10 0 0 1 1 1

#11 0 0 1 0 1

#12 1 0 1 0 1

#13 1 1 1 0 1

#14 1 1 1 1 1

Figure 10.40 Results of the simulation-run with the test bench in Figure 10.38.

10.8 EXERCISES

 1. Implement NAND, AND, OR GATES using MOS switches; test it with a

suitable test-bench.

 2. Implement a pseudo-NMOS 4-input NOR logic gate. Write a test bench and

test it.

 3. Implement a dynamic logic NAND gate for 4 inputs; the pullup is to be a

precharge transistor, and the pulldown is to be an evaluation transistor, with

the output being precharged in precharge phase of the clock. The output

should be available during the evaluation phase. Write a test bench and test

the switch level dynamic gate.

 4. Implement a 4-to-1 MUX using CMOS transmission gates.

 5. Build a dynamic 2-to-4 NOR gate based decoder and a dynamic 2-to-4

NAND gate-based decoder using NMOS switches and PMOS switches.

 6. Implement a one-bit full adder using CMOS logic and test it using a test

bench.

 7. Implement a 4-bit look-ahead adder using CMOS logic and test it with a test

bench.

 8. Implement a 4-bit barrel shifter using NMOS switches.

338 SWITCH LEVEL MODELING

 9. Form an edge-triggered flip-flop; using it, form an 8-bit port as shown in

Figure 10.40. Form a latch and modify it to provide two flags – data input

flag (DIF) and data output flag (DOF). Normally, Wr and Rd are low; old

state is retained. If Wr goes high, Di bits are loaded into the port at the next

clock pulse. DIF flag is set. DOF is at zero state. If RD goes high, Do bits

are loaded into the port at the next clock pulse. DOF Flag is set. DIF is at

zero state. Design the port module; test it with a test bench.

Di
Do

RdWr

Clk

(a)

Rb
DOF

DIF

WrClk

Clk

Sb

Rd(b)

Figure 10.40 Figure for Exercise 9.

339

11

SYSTEM TASKS, FUNCTIONS, AND

COMPILER DIRECTIVES

11.1 INTRODUCTION

A number of facilities in Verilog relate to the management of simulation; starting

and stopping of simulation, selectively monitoring the activities, testing the design

for timing constraints, etc., are amongst them. Although a variety of such

constructs is available in Verilog for such activities [IEEE], we discuss the leading

ones and illustrate their use through representative example.

11.2 PARAMETERS

Often designers keep debugged modules for reuse. Such modules call for

flexibility on two counts:

They should be adaptable to designs conforming to different technologies.

Timing parameters used for testing should be flexible.

They should have a scalable feature; that is, bus width, register size, etc.,

should be flexible.

The parameter constructs facilitate such flexibility. Constants signifying

timing values, ranges of variables, wires, etc., can be specified in terms of assigned

names. Such assigned names are called parameters. The parameter values can be

specified and changed to suit the design environment or test environment. Such

changes are effected and frozen at instantiation. The assigned values cannot

change during testing or synthesis. In this respect a parameter is different from a

net or a variable.

Two types of parameters are of use in modules:

Parameters related to timings, time delays, rise and fall times, etc., are

technology-specific and used during simulation. Parameter values can be

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

340 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

assigned or overridden with the keyword “specparam” preceding the

assignments.

Parameters related to design, bus width, and register size are of a different

category. They are related to the size or dimension of a specific design; they

are technology-independent. Assignment or overriding is with assignments

following the keyword “defparam”.

The two types of parameters are treated differently in Verilog. The former

type is discussed here and the latter type is discussed in Section 11.4.

11.2.1 Timing-Related Parameters

The constructs associated with parameters are discussed here through specific

design or test modules.

Example 11.1

The half-adder module of in Figure 4.24 is reconsidered here in Figure 11.1. Gate

delays of the type discussed in Chapter 5 have been added to all output transitions

of the sum bit (s) as well as the carry bit (ca). Simulation results are partially

reproduced in Figure 11.2. The following observations are in order here:

 a=0 and b=0 at start of simulation. Because of the transition times, the outputs

remain indecisive at the x state.

module ha_1(s,ca,a,b);

input a,b; output s,ca;

xor #(1,2) (s,a,b);

and #(3,4) (ca,a,b);

endmodule

//test-bench

module tstha_1();

reg a,b; wire s,ca;

ha_1 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.1 Module of a half-adder with delays assigned to the output transitions; a test

bench is also included in the figure.

PARAMETERS 341

0 a = 0 , b = 0 ,out carry = x , outsum = x

2 a = 0 , b = 0 ,out carry = x , outsum = 0

4 a = 0 , b = 0 ,out carry = 0 , outsum = 0

5 a = 1 , b = 0 ,out carry = 0 , outsum = 0

6 a = 1 , b = 0 ,out carry = 0 , outsum = 1

10 a = 0 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 1 ,out carry = 0 , outsum = 1

17 a = 1 , b = 1 ,out carry = 0 , outsum = 0

18 a = 1 , b = 1 ,out carry = 1 , outsum = 0

Figure 11.2 Partial results of simulating the test bench in Figure 11.1.

The sum bit falls down to 0 state with the specified delay of 2 ns. The carry

bit falls down to 0 state with its specified delay of 4 ns.

 a=1 and b=0 at 5 ns. The sum bit rises to the 1 state at 6 ns (with the

specified delay of 1 ns).

 a=0 and b=1 at 10 ns. But the sum and carry bits remain unchanged.

 a=b=1 at 15 ns. The sum bit falls down to 0 state at 17 ns (with the specified

fall delay of 2 ns). The carry bit rises to the 1 state at 18 ns (with the specified

rise time delay of 3 ns).

Subsequent output transitions too can be explained in a similar manner.

11.2.2 Parameter Declarations and Assignments

Declaration of parameters in a design as well as assignments to them can be

effected using the keyword “Parameter.” A declaration has the form

parameter alpha = a, beta = b;

where

parameter is the keyword,

 alpha and beta are the names assigned to two parameters and

a, b are values assigned to alpha and beta, respectively.

In general a and b can be constant expressions. The parameter values can be

overridden during instantiation but cannot be changed during the run-time. If a

parameter assignment is made through the keyword “localparam,” its value

cannot be overridden.

342 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

Observations:

As mentioned earlier, parameters are constants which can be altered

during compilation but not during runtime.

A Parameter can be signed or unsigned in nature; it can be an integer

or a real number.

Its nature – signed or not, real or integral type as well as range – can be

specified at the time of declaration or decided by default based on

assignment.

 Examples

parameter a = 3; // a is a positive integer

parameter b = - 3; // b is a signed integer

parameter c = 3.0, d = 3.0e2; //c and d are unsigned real numbers.

In all the above cases the parameter type and range are decided by

default.

parameter integer e = 3; /* e is declared to be an integer type of

 parameter and assigned the value 3. */

parameter real f = 3.0; /* f is declared to be a real unsigned real

 number and assigned the value 3. */

In the last two cases the parameter type is declared explicitly and

remains so.

Whenever a parameter value is overridden during instantiation (as in

some of the cases discussed below), type, signed/unsigned, etc., remain

unchanged.

Example 11.2

The half-adder module in Figure 11.1 has been modified and shown in

Figure 11.3. The rise and fall times of the primitive gate instantiation are assigned

identifier names. Specific numeric values are assigned to them through a separate

parameter declaration statement. The numerical values assigned are the same as

those assigned in Example 11.1 above. The simulation results are identical to

those in Figure 11.2.

The scheme of Figure 11.3 has an apparent advantage compared to that of

Figure 11.1. Different rise and fall times, time delays, etc., need not be fully

specified in the design or its test bench. Values can be assigned separately through

parameter declaration as done here. Numeric values can be changed by assigning

the required values to the parameters afresh: It avoids the unpleasant task of

scanning the module file and changing the numerical values all through.

PARAMETERS 343

module ha_2(s,ca,a,b);

input a,b; output s,ca;

parameter dl1r=1,dl2f=2,dl3r=3,dl4f=4;

xor #(dl1r,dl2f) (s,a,b);

and #(dl3r,dl4f) (ca,a,b);

endmodule

//test-bench

module tstha_2();

reg a,b; wire s,ca;

ha_2 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.3 The half-adder module of Figure 11.1 with the time delays assigned through

parameter declarations.

Example 11.3

Figure 11.4 shows the half-adder module with the test bench being modified. The

rise and fall times are specified separately in the test bench. They override the

values specified in the half-adder module itself. The time delay values are

specified within the instantiation statement. Four numbers are specified there;

they override the first four parameters declared in the module instantiated and in

the same order. Specifically, the numbers 4, 3, 2, and 1 are assigned to the

parameters dl1r, dl2f, dl3, and dl4f, respectively. The simulation results are given

in Figure 11.5. The quantities representing delayed response are shown in bold

italics. Thus the change in a at 5 ns causes the sum bit to get set with a delay of

dlir (4 ns here)–that is, at 9 ns. As pointed out earlier, the 4 ns delay value for dl1r
has been specified in the test bench at instantiation, and it overrides the value of

1 ns assigned in the module definition. Subsequent changes to s and c too can be

explained in a similar manner. The overriding illustrated here can be done

separately for each instantiation in a module or in different modules.

344 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module ha_2(s,ca,a,b);

input a,b; output s,ca;

parameter dl1r=1,dl2f=2,dl3r=3,dl4f=4;

xor #(dl1r,dl2f) (s,a,b);

and #(dl3r,dl4f) (ca,a,b);

endmodule

//test-bench

module tstha_3();

reg a,b; wire s,ca;

ha_2 #(4,3,2,1) hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.4 The half-adder module of Figure 11.3 with the time delay values reassigned

from the test bench.

0 a = 0 , b = 0 ,out carry = x , outsum = x

1 a = 0 , b = 0 ,out carry = 0 , outsum = x

3 a = 0 , b = 0 ,out carry = 0 , outsum = 0

5 a = 1 , b = 0 ,out carry = 0 , outsum = 0

9 a = 1 , b = 0 ,out carry = 0 , outsum = 1

10 a = 0 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 1 ,out carry = 0 , outsum = 1

17 a = 1 , b = 1 ,out carry = 1 , outsum = 1

18 a = 1 , b = 1 ,out carry = 1 , outsum = 0

20 a = 0 , b = 0 ,out carry = 1 , outsum = 0

21 a = 0 , b = 0 ,out carry = 0 , outsum = 0

25 a = 1 , b = 0 ,out carry = 0 , outsum = 0

29 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.5 Results of simulating the test bench in Figure 11.4.

Example 11.4

Figure 11.6 shows the half adder module considered above and its test bench with

one change in the test bench. The module instantiation has three numbers

representing three time delays. They override the first three parameters (dl1r, dl2f,

and dl3r, respectively) as declared in the instantiation. All other parameters (only

dl4f here) remain unchanged. The simulation results are given in Figure 11.7. The

PARAMETERS 345

numerals pertaining to the delayed changes are shown in bold italics in the figure.

The fall time of ca for its 0 to 1 transition (specified by dl4f) in the instantiated

module can be seen to be unchanged at 4 ns – as is evident from the line

representing the values of variables at 24 ns in Figure 11.7.

module ha_2(s,ca,a,b);

input a,b; output s,ca;

parameter dl1r=1,dl2f=2,dl3r=3,dl4f=4;

xor #(dl1r,dl2f) (s,a,b);

and #(dl3r,dl4f) (ca,a,b);

endmodule

//test-bench

module tstha_4();

reg a,b; wire s,ca;

ha_2 #(4,3,2) hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.6 The half-adder module with only some of the time delays assigned afresh from

the test bench.

0 a = 0 , b = 0 ,out carry = x , outsum = x

3 a = 0 , b = 0 ,out carry = x , outsum = 0

4 a = 0 , b = 0 ,out carry = 0 , outsum = 0

5 a = 1 , b = 0 ,out carry = 0 , outsum = 0

9 a = 1 , b = 0 ,out carry = 0 , outsum = 1

10 a = 0 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 1 ,out carry = 0 , outsum = 1

17 a = 1 , b = 1 ,out carry = 1 , outsum = 1

18 a = 1 , b = 1 ,out carry = 1 , outsum = 0

20 a = 0 , b = 0 ,out carry = 1 , outsum = 0

24 a = 0 , b = 0 ,out carry = 0 , outsum = 0

25 a = 1 , b = 0 ,out carry = 0 , outsum = 0

29 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.7 Results of simulating the test bench in Figure 11.6.

346 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

The numbers specified in the test bench will be automatically assigned to the

parameters in the instantiated module – in the same order as they are defined in the

parameter statement. With such an implicit approach one cannot do an assignment

to a selected set of parameters. For example, dl4f cannot be assigned a different

value directly.

Example 11.5

The test bench in the module of Figure 11.4 has been modified and the modified

module shown in Figure 11.8. The parameters dl1r, dl2f, dl3r, and dl4f are

assigned values through the defparam statement. Each parameter, whose value

has to be overridden, has to be specified hierarchically. One can also follow the

approach here to assign values to parameters in different instantiated modules.

Such values can be assigned to all the desired parameters at one place in the

manner done here through a defparam construct. Simulation results are identical

to those of Figure 11.5.

module ha_2(s,ca,a,b);

input a,b; output s,ca;

parameter dl1r=1,dl2f=2,dl3r=3,dl4f=4;

xor #(dl1r,dl2f) (s,a,b);

and #(dl3r,dl4f) (ca,a,b);

endmodule

//test-bench

module tstha_5();

reg a,b; wire s,ca;

defparam hh.dl1r=4,hh.dl2f=3,hh.dl3r=2,hh.dl4f=1;

ha_2 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.8 Use of defparam for assignment of values to specific parameters.

Example 11.6

The half-adder module of Figure 11.4 has been reproduced in Figure 11.9 with one

change; the parameter assignments are done with constant expressions on the right

ride. Note that the parameters appearing in a constant expression have to be

PARAMETERS 347

defined (value assigned) prior to such use. The expressions here are such that the

numerical values of dl1r, dl2f, dl3r, and dl4f are the same as those in Example

11.2. The simulation results too are the same.

module ha_6(s,ca,a,b);

input a,b; output s,ca;

parameter dl1r=1,dl2f=dl1r+1,dl3r=3,dl4f=dl2f*2;

xor #(dl1r,dl2f) (s,a,b);

and #(dl3r,dl4f) (ca,a,b);

endmodule

//test-bench

module tstha_6();

reg a,b; wire s,ca;

ha_6 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.9 Illustration of the use of constant expressions for parameter assignments.

11.2.3 Type Declarations for Parameters

Examples 11.2 to 11.6 above do not have any type declaration statements for the

parameters dl1r, dl2f, dl3r, and dl4f. However, integer value assignments are

made to each of them; implicitly they are taken as integers by the simulator. But

in general one can use constant expressions on the right-hand side of the

assignments. With the module of Figure 11.9, consider the parameter assignment

statement

parameter dl1r =1, dl2f =dl1r + 1, dl3r =3 , dl4f = dl2f*2;

As mentioned earlier, all four parameters are automatically taken as integers by the

simulator. If the above statement is modified as

parameter dl1r =1, dl2f =dl1r + 1.0, dl3r =3 , dl4f = dl2f*2;

the parameter types will be radically different. dl1r and dl3r will be treated as

integers but dl2f and hence dl4f will be treated as real. However, the numerical

values assigned will remain unaltered and hence the simulation results too will be

the same.

348 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

11.3 PATH DELAYS

The time delays discussed so far (from Chapter 5 onwards) are all delays

associated with individual operations or activities in a module. They refer to basic

circuit elements in a design – at the microlevel itself. These are called “distributed

delays” in LRM. Verilog has the provision to specify and check delays associated

with total paths – from any input to any output of a module. Such paths and delays

are at the chip or system level. They are referred to as “module path delays.”

Constructs available make room for specifying their paths and assigning delay

values to them – separately or together.

11.3.1 Specify Blocks

Module paths are specified and values assigned to their delays through specify

blocks. They are used to specify rise time, fall time, path delays pulse widths, and

the like. A “specify” block can have the form shown in Figure 11.10.

specify

specparam rise_time = 5, fall_time = 6;

 (a =>b) = (rise_time, fall_time);
 (c => d) = (6, 7);
endspecify

Figure 11.10 Structure of a specparam block

The block starts with the keyword “specify” and ends with the keyword

“endspecify”. Specify blocks can appear anywhere within a module. The

block can have two types of statements:

One type starts with the keyword specparam and assigns numerical values

to timing parameters declared elsewhere. The specparam statements can

appear within a module or within a specify block. (In earlier versions of the

LRM its presence was restricted to the specify blocks.) The right sides of the

assignments can be constants or constant expressions involving such

parameters already assigned.

The second type specifies paths and assigns values to time delays to them.

Details of different possibilities for such paths are discussed later.

A specify block can have only the above types of assignments. Circuit

function assignments, assignments to module parameters, etc., are not permitted

within it.

PATH DELAYS 349

11.3.2 Module Paths

Module paths can be specified in different ways inside a specify block. The

simplest has the form

A*>B

Here “A” is the source and “B” the destination. The source can be an input or an

inout port. The destination can be output or an inout port. The symbol

combination “*>” specifies the path from the source to the destination. It

encompasses all the possible paths from A to B. If A and B are scalars, it signifies

a single path.

If A is a vector and B is a scalar, it signifies all the paths from every bit of A
to the scalar B. Thus if A is a 4-bit-wide vector, 4 paths are specified.

If A is a scalar and B is a vector, it signifies all the paths from A to every bit

of the vector B. Thus if B is an 8-bit vector, it signifies all 8 possible paths.

If both A and B are vectors, it signifies all the possible paths from every bit of

the vector A to every bit of the vector B; thus if A is a 4-bit vector and B is an

8-bit vector, it signifies 4 × 8 = 32 possible paths; a total of 32 delay values

(all being equal to each other) are implied here.

Figure 11.11(a) illustrates a case of all possible paths from a 2-bit vector A to

another 2-bit vector B; the specification implies 4 paths. A statement of the type

C => D

signifies only all the parallel paths. Here C and D have to be vectors of the same

size. The path specified signifies transmission from every bit of vector C to the

corresponding bit of vector D. In this sense the path description is more restrictive

than that of A*>B above. Figure 11.11(b) illustrates a case of all possible parallel

paths from a 2-bit vector C to another 2-bit vector D; the specification implies a

total of 2 paths only.

C[0]

C[1]

D[0]

D[1]B[1]

B[0]

A[1]

A[0]

p
2

p
1

p
4

p
3

p
2

p
1

(b)(a) A *> B C => D

Figure 11.11 Illustration of the difference between the operators *> and =>.

350 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

Example 11.7

The module in Figure 11.12 specifies path delays from the input pins a and b to

the output pins s and ca. The delay values are assigned within a specify block.

The assignment

(a,b *> s) =1;

implies that

The propagation delay from input a to output s is 1 ns and

The propagation delay from input b to the output s is also 1 ns.

Further the delay value is 1 ns for the change in the state of s from 0 to 1 as

well as from 1 to 0.

Similarly the statement

(a,b *> ca) = 2;

implies that the delay from a to ca as well as that from b to ca is 2 ns; further, it

holds for any transition in ca. The simulation results are reproduced in Figure

11.13. The values specific to the delayed changes are shown in bold italics. The

module ha_7(s,ca,a,b);

input a,b; output s,ca;

specify

 (a,b*>s)=1;

 (a,b*>ca)=2;

endspecify

xor (s,a,b);

and (ca,a,b);

endmodule

//test-bench

module tstha_7();

reg a,b; wire s,ca;

ha_7 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.12 A module to demonstrate use of path delay assignments.

PATH DELAYS 351

0 a = 0 , b = 0 ,out carry = x , outsum = x

1 a = 0 , b = 0 ,out carry = x , outsum = 0

2 a = 0 , b = 0 ,out carry = 0 , outsum = 0

5 a = 1 , b = 0 ,out carry = 0 , outsum = 0

6 a = 1 , b = 0 ,out carry = 0 , outsum = 1

10 a = 0 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 1 ,out carry = 0 , outsum = 1

16 a = 1 , b = 1 ,out carry = 0 , outsum = 0

17 a = 1 , b = 1 ,out carry = 1 , outsum = 0

20 a = 0 , b = 0 ,out carry = 1 , outsum = 0

22 a = 0 , b = 0 ,out carry = 0 , outsum = 0

25 a = 1 , b = 0 ,out carry = 0 , outsum = 0

26 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.13 Simulation results of the test bench in Figure 11.12.

results can be seen to be consistent with the delay specifications. If the

propagation delay values are the same in all the cases, the same could have been

specified as

specify

 (a, b *> s, ca) = 1;
endspecify

Example 11.8

The module of Figure 11.12 has been slightly modified and reproduced in Figure

11.14. The delay values are specified as parameters and the parameters assigned

values through respective specparam statements. Further, the specparam

statement

specparam dl2 = dl1 +1;

uses a constant expression involving previously specified parameter values on the

right side.

The delay paths and the values assigned to them are identical to those in

Example 11.7 above. The simulation results too are identical to those in Figure

11.13.

352 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module ha_8(s,ca,a,b);

input a,b; output s,ca;

specify

 specparam dl1=1;

 specparam dl2=dl1+1;

 (a,b*>s)=dl1;

 (a,b*>ca)=dl2;

endspecify

xor (s,a,b);

and (ca,a,b);

endmodule

//test-bench

module tstha_8();

reg a,b; wire s,ca;

ha_8 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.14 Illustration of specparam with path delays.

Example 11.9

In the half-adder module of Figure 11.15 the rise and fall times at the output have

been specified separately; effectively the specifications are the same as those for

Example 11.1; but here they are at the chip level in contrast to those in Example

11.1, where they are at the gate level. The simulation results are shown in Figure

11.16; the values that pertain to the delayed response are shown in bold italics in

the figure.

module ha_9(s,ca,a,b);

input a,b; output s,ca;

specify

 (a,b*>s) = (1,2);

 (a,b*>ca) = (3,4);

endspecify

xor (s,a,b);

and (ca,a,b);

endmodule

continued

PATH DELAYS 353

continued

//test-bench

module tstha_9();

reg a,b; wire s,ca;

ha_9 hh(s,ca,a,b);

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial #30 $stop;

endmodule

Figure 11.15 Use of specify block to specify out rise and fall times separately for pin-to-pin

delays.

0 a = 0 , b = 0 ,out carry = x , outsum = x

2 a = 0 , b = 0 ,out carry = x , outsum = 0

4 a = 0 , b = 0 ,out carry = 0 , outsum = 0

5 a = 1 , b = 0 ,out carry = 0 , outsum = 0

6 a = 1 , b = 0 ,out carry = 0 , outsum = 1

10 a = 0 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 1 ,out carry = 0 , outsum = 1

17 a = 1 , b = 1 ,out carry = 0 , outsum = 0

18 a = 1 , b = 1 ,out carry = 1 , outsum = 0

20 a = 0 , b = 0 ,out carry = 1 , outsum = 0

24 a = 0 , b = 0 ,out carry = 0 , outsum = 0

25 a = 1 , b = 0 ,out carry = 0 , outsum = 0

26 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.16 Simulation results of the test bench in Figure 11.15.

Example 11.10

Figure 11.17 shows the module of Figure 6.20 modified with an additional group

delay specification. The block

specify

 (a => d) = 1;
endspecify

354 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module alu_1 (d, co, a, b, f,cci);

output [3:0] d; output co; wire[3:0]d; input cci; input [3 : 0] a, b;

input [1 : 0] f; //F IS A 2 BIT FUNCTION SELECT INPUT

specify

 (a=>d)=1;

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?

 {1'bz,a^b}:{1'bz,~a}));

endmodule

//test-bench

module tst_alu1();

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co;

alu_1 aa(d,co,a,b,f,cci);

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end

always begin

 #2 cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #2 cci =1'b1;f=2'b00;a=4'h8;b=4'hf;

 #2 cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #2 cci =1'b0;f=2'b01;a=4'h3;b=4'h7;

 #2 cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #2 cci =1'b1;f=2'b10;a=4'h3;b=4'h3;

 #2 cci =1'b1;f=2'b11;a=4'hf;b=4'hc;

 end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci

,a,b,f,d,co);

endmodule

Figure 11.17 Illustration of the use of group delay with an ALU module.

0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= 0

1 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

2 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0

4 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 1

5 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1

6 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 0

7 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0

8 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1101 ,co= 1

9 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1

Figure 11.18 Partial simulation results of the test bench in Figure 11.17.

PATH DELAYS 355

signifies a group delay. It implies that any change in any bit of vector a
propagates to the corresponding bit of vector d with a delay of 1 ns. The delay is

the same for rise or fall in the bits of vector d. Partial results of simulation are

shown in Figure 11.18. The values related to the delayed response are shown in

bold italics in the figure. The following points are noteworthy here:

No propagation delay has been specified for the changes in the input vector b
or input ci affecting the outputs d or co. Hence all such transitions are

instantaneous.

The propagation delay from a to d has been described as a parallel path delay.

Thus any change in a bit of vector a propagates to the corresponding bit of

vector d with a delay of 1 ns; but the propagation to the other bits of d is

without any delay. Thus the delays associated with the carry bit are zero:

those with the sum bits are 1 ns each. Addition operation has been specified

up to 6 ns in the test bench (since f = 0 up to 6 ns). At time 4 ns the input

values are

a=1000

b=1111 and

ci = 1

The corresponding output values are

d = 1000 and

co =1.

One can see that co attains the final value without any time delay; but every

bit of d attains the final value with a delay of 1 ns. The delays considered

here are hypothetical and hence need neither be realistic nor consistent with

practical circuits.

Example 11.11

The module of Figure 11.17 has been modified and shown in Figure 11.19.

Propagation delays have been specified for the changes in the input vector a as

well as the vector b affecting the output vector d. All delays affect in a parallel

manner. Thus a change in a[2] will transmit to d[2] with a 1 ns delay. But if it

affects d[3], the same propagates at the same time step (instantaneously);

changes in b vector too affects d in a similar manner. Partial results of

simulation are reproduced in Figure 11.20; the values that relate to the delayed

changes are shown in italics; they can be seen to conform to the parallel delay

specifications.

356 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module alu_2 (d, co, a, b, f, cci);

output [3:0] d; output co; wire[3:0]d; input cci; input [3 : 0] a, b;

input [1 : 0] f;

specify

 (a,b=>d)=1;

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?

 {1'bz, a^b}:{1'bz,~a}));

endmodule

//test-bench

module tst_alu2();

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co;

alu_2 aa(d,co,a,b,f,cci);

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end

always begin

 #2 cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #2 cci =1'b1;f=2'b00;a=4'h8;b=4'hf;

 #2 cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #2 cci =1'b0;f=2'b01;a=4'h3;b=4'h7;

 #2 cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #2 cci =1'b1;f=2'b10;a=4'h3;b=4'h3;

 #2 cci =1'b1;f=2'b11;a=4'hf;b=4'hc;

 end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci

,a,b,f,d,co);

endmodule

Figure 11.19 Illustration of assignment of multiple group delays through a specify block.

0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= 0

1 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

2 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0

4 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 1

5 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1

6 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1000 ,co= 0

7 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0

8 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =0001 ,co= 1

9 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1

Figure 11.20 Simulation results with the test bench in Figure 11.19.

PATH DELAYS 357

Example 11.12

The module in Figure 11.19 has been modified as shown in Figure 11.21. The

statement (within the specify block)

(a , b => d) =(1 , 2);

implies that

All parallel transmission from the input pins of a and b vectors have

propagation delays.

The propagation delay for the rise of d is 1 ns while that for the fall of d is

2 ns.

Propagation to the noncorresponding bits of output vector d is effected

without any delay.

Figure 11.22 shows the partial simulation results. The values in bold italics in

the figure relate to the delayed changes.

module alu_3 (d, co, a, b, f,cci);

output [3:0] d; output co; wire[3:0]d; input cci;

input [3 : 0] a, b; input [1 : 0] f;//F IS A 2 BIT FUNCTION SELECT INPUT

specify

 (a,b=>d)=(1,2);

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?

 {1'bz,a^b}:{1'bz,~a}));

endmodule

//test-bench

module tst_alu3();

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co;

alu_3 aa(d,co,a,b,f,cci);

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end

always begin

 #3 cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #3 cci =1'b1;f=2'b00;a=4'h8;b=4'hf;

 #3 cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #3 cci =1'b0;f=2'b01;a=4'h3;b=4'h7;

 #3 cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #3 cci =1'b1;f=2'b10;a=4'h3;b=4'h3;

 #3 cci =1'b1;f=2'b11;a=4'hf;b=4'hc;

 end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci

,a,b,f,d,co);

endmodule

Figure 11.21 Module to illustrate assignment of different group delays for rise and fall

times using a specify block.

358 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= 0

2 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

4 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0

6 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 1

7 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1001 ,co= 1

8 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1

9 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1000 ,co= 0

10 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 0

11 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0

12 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =0001 ,co= 1

13 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1101 ,co= 1

14 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1

Figure 11.22 Results of simulating the test bench in Figure 11.21.

Example 11.13

The module of Figure 11.23 has a set of two propagation delay specifications in

the specify block – the first one specifies a parallel group delay from the input

vectors to the output vector as in the previous example. The second

(a , b , cci *> co) = 1;

implies that any transmission in any of the pins of ports a or b or the pin cci
propagates to co with a delay of 1 ns. It is the same for rise as well as fall in the

status of the output pin. Figure 11.24 shows part of the simulation results; the

values in italics pertain to the delayed response.

module alu_4 (d, co, a, b, f,cci);

output [3:0] d; output co; wire[3:0]d; input cci; input [3 : 0] a, b;

input [1 : 0] f; //F

specify

 (a,b=>d)=(1,2);

 (a,b,cci*>co)=1;

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?

 {1'bz,a^b}:{1'bz,~a}));

endmodule

continued

PATH DELAYS 359

continued

//test-bench

module tst_alu4();

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co;

alu_4 aa(d,co,a,b,f,cci);

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end

always begin

 #3 cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #3 cci =1'b1;f=2'b00;a=4'h8;b=4'hf;

 #3 cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #3 cci =1'b0;f=2'b01;a=4'h3;b=4'h7;

 #3 cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #3 cci =1'b1;f=2'b10;a=4'h3;b=4'h3;

 #3 cci =1'b1;f=2'b11;a=4'hf;b=4'hc;

 end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci

,a,b,f,d,co);

endmodule

Figure 11.23 A module to illustrate combining of assignments of individual and group

delays of the pin-to-pin type.

0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= x

1 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= 0

2 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

4 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0

6 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 0

7 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1001 ,co= 1

8 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1

9 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1000 ,co= 1

10 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 0

11 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0

Figure 11.24 Results of simulating the test bench in Figure 11.23.

11.3.3 Conditional Pin-to-Pin Delays

The pin to pin path of a signal may change depending on the value of another

signal; in turn the number of circuit elements in the alternate path may differ.

Conditional selection and assignment of path delays facilitates simulation in such

cases.

360 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

Example 11.14

The specify block in the module of Figure 11.25 is

specify

if(f==2'b00)(a=>d)=1;
 if(f >2'b00)(a=>d)=2;
 (b,cci*>co)=1;
endspecify

It has three propagation statements. The statement

b ,cci *> c0 =1;

is similar to the corresponding one in the previous example. It implies that all

transitions to co – if due to changes in any pin of ports a and b or the pin cci –

take place with a delay of 1 ns. But the propagation delays associated with

changes in the output port d are dependent on the defined functions. For the case

module alu_5 (d, co, a, b, f,cci);

output [3:0] d; output co; wire[3:0]d; input cci; input [3 : 0] a, b;

input [1 : 0] f;

specify

 if(f==2'b00)(a=>d)=1;

 if(f >2'b00)(a=>d)=2;

 (b,cci*>co)=1;

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?

 {1'bz,a^b}:{1'bz,~a}));

//test-bench

module tst_alu5();

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co;

alu_5 aa(d,co,a,b,f,cci);

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end

always begin

 #3 cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #3 cci =1'b1;f=2'b00;a=4'h8;b=4'hf;

 #3 cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #3 cci =1'b0;f=2'b01;a=4'h3;b=4'h7;

 #3 cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #3 cci =1'b1;f=2'b10;a=4'h3;b=4'h3;

 #3 cci =1'b1;f=2'b11;a=4'hf;b=4'hc;

 end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci

,a,b,f,d,co);

endmodule

Figure 11.25 Illustration of conditional assignments for delay values through a specify

block.

PATH DELAYS 361

0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= x

1 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

4 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0

6 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 0

7 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1

9 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 1

10 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 0

11 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0

Figure 11.26 Results of simulating the test bench in Figure 11.25.

of addition (f=2’00) the propagation delay is 1 ns. For all other types of functions

it is 2 ns. Similar conditional propagation delays can be defined separately for

each of the functions of the ALU. Figure 11.26 shows the simulation results

partially; the values pertaining to the delayed response are in bold italics in the

figure.

Observations:

A simple condition was used in Example 11.14 to illustrate conditional assignment

to delay values. In a general case a conditional expression can be more involved

with different logical operations performed in tandem, with the following

restrictions:

The expression can involve any logical reduction operation.

All bit-wise logical operations can be used.

If a conditional expression evaluates to multiple bits, the least significant bit

decides the delay.

Example 11.15

The half-adder of Figure 11.3 has been slightly modified and is shown in Figure

11.27. The propagation delays for rise and fall are kept the same here for

simplicity. However, the test bench has two instantiations of the module. The

propagation delays are assigned one set of values for the instantiation h1 and

another for the instantiation h2. The alternate assignments are made through a

defparam statement. The access to the parameters is by suitably specifying the

hierarchy. Note that if the parameters had been specified through a specify block,

and specparam assignment, such an alteration at the time of instantiation, is not

feasible. The simulation results are reproduced partially in Figure 11.28; the

figures in bold italics relate to the delayed changes.

362 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module ha_a(s,ca,a,b);

input a,b; output s,ca; parameter dl1r=1,dl3r=3;

xor #(dl1r) (s,a,b);

and #(dl3r) (ca,a,b);

endmodule

//test-bench

module tstha_a();

reg a,b; wire s,ca;

ha_a h1(s1,ca1,a,b);

ha_a h2(s2,ca2,a,b);

defparam

 h1.dl1r=2,

 h1.dl3r=1,

 h2.dl1r=2,

 h2.dl3r=2;

initial begin a=0;b=0; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,ca1 = %b , s1 = %b,ca2 = %b , s2 =

%b " ,a,b,ca1,s1,ca2,s2);

initial #30 $stop;

endmodule

Figure 11.27 Illustration of Multiple instantiations with assignment of different time delays.

0 a = 0 , b = 0 ,ca1 = x , s1 = x,ca2 = x , s2 = x

1 a = 0 , b = 0 ,ca1 = 0 , s1 = x,ca2 = x , s2 = x

2 a = 0 , b = 0 ,ca1 = 0 , s1 = 0,ca2 = 0 , s2 = 0

5 a = 1 , b = 0 ,ca1 = 0 , s1 = 0,ca2 = 0 , s2 = 0

7 a = 1 , b = 0 ,ca1 = 0 , s1 = 1,ca2 = 0 , s2 = 1

10 a = 0 , b = 1 ,ca1 = 0 , s1 = 1,ca2 = 0 , s2 = 1

15 a = 1 , b = 1 ,ca1 = 0 , s1 = 1,ca2 = 0 , s2 = 1

16 a = 1 , b = 1 ,ca1 = 1 , s1 = 1,ca2 = 0 , s2 = 1

17 a = 1 , b = 1 ,ca1 = 1 , s1 = 0,ca2 = 1 , s2 = 0

Figure 11.28 Results of simulating the test bench in Figure 11.27.

Example 11.16

The half-adder module of Figure 11.15 is modified and shown in Figure 11.29.

The specify block has the rise- and fall-time values at output specified. The

“minimum, typical, maximum” format has been used here for the time delay

PATH DELAYS 363

values specified. The test bench uses typical delay values (2 ns and 4 ns for s and

3 ns and 7 ns for ca, respectively) by default. The simulation results are shown in

Figure 11.30: The values representing delayed response are in bold italics. Testing

with minimum or maximum delay values can be carried out in the normal manner.

module ha_c(s,ca,a,b);

input a,b; output s,ca;

specify

 (a,b*>s)=(1:2:3, 2:4:6);

 (a,b*>ca)=(1:3:5, 5:7:9);

endspecify

xor (s,a,b);

and (ca,a,b);

endmodule

//test-bench

module tstha_c();

reg a,b; wire s,ca;

ha_c hh(s,ca,a,b);

initial begin a=0;b=0; #100 $stop; end

always begin #15 a=1;b=0; #15 a=0;b=1; #15 a=1;b=1; #15 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

endmodule

Figure 11.29 Illustration of specifying minimum, typical, and maximum values for path

delays in a specify block.

0 a = 0 , b = 0 ,out carry = x , outsum = x

4 a = 0 , b = 0 ,out carry = x , outsum = 0

7 a = 0 , b = 0 ,out carry = 0 , outsum = 0

15 a = 1 , b = 0 ,out carry = 0 , outsum = 0

17 a = 1 , b = 0 ,out carry = 0 , outsum = 1

30 a = 0 , b = 1 ,out carry = 0 , outsum = 1

45 a = 1 , b = 1 ,out carry = 0 , outsum = 1

48 a = 1 , b = 1 ,out carry = 1 , outsum = 1

49 a = 1 , b = 1 ,out carry = 1 , outsum = 0

60 a = 0 , b = 0 ,out carry = 1 , outsum = 0

67 a = 0 , b = 0 ,out carry = 0 , outsum = 0

75 a = 1 , b = 0 ,out carry = 0 , outsum = 0

77 a = 1 , b = 0 ,out carry = 0 , outsum = 1

90 a = 0 , b = 1 ,out carry = 0 , outsum = 1

Figure 11.30 Results of simulating the test bench in Figure 11.29.

364 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

11.3.4 Edge-Sensitive Paths

Behavior level modules can have signal paths activated following an edge in a

different signal. Verilog has the provision to specify such delays during

simulation. They can be specified in a variety of ways. The path may get

activated following a positive edge or a negative edge in a signal. The path delay

may be specified for rise or fall in the output or for positive or negative polarity

transitions separately. The delay assignment can be made conditional on an

expression; such a path specification is an “edge sensitive state dependent path”.

Example 11.17

The D flip-flop module of Figure 7.27 has been modified and is shown in Figure

11.31. The specify block specifies the delay from di to do following a negative

edge of clock. The simulation results are partially reproduced in Figure 11.32; the

flip-flop is to latch the input data di at the negative-going edges of the clock – that

is, at the 6th ns, 12th ns, etc. The latching is delayed by 1 ns as demanded by the

specified delay and takes effect at the 7th ns, 13th ns, etc.

module dff_p(do,di,clk);

output do; input di,clk;

specify

 (negedge clk *>(do:di)) =1;

endspecify

reg do;

initial do=1'b0;

always@(negedge clk) do=di;

endmodule

//test-bench

module tst_dff_pbeh();

reg di,clk; wire do;

dff_p d1(do,di,clk);

initial begin clk=0;di=1'b0; #35 $stop; end

always #3clk=~clk;

always #5 di=~di;

initial $monitor($time,"clk=%b,di=%b,do=%b",clk,di,do);

endmodule

Figure 11.31 A module to illustrate edge-sensitive path delay and its test bench.

PATH DELAYS 365

0clk=0,di=0,do=x

1clk=0,di=0,do=0

3clk=1,di=0,do=0

5clk=1,di=1,do=0

6clk=0,di=1,do=0

7clk=0,di=1,do=1

9clk=1,di=1,do=1

10clk=1,di=0,do=1

12clk=0,di=0,do=1

13clk=0,di=0,do=0

Figure 11.32 Partial results of simulating the test bench in Figure 11.31.

Example 11.18

The module in Figure 11.33 is a slightly modified version of that in Figure 8.20.

The specify block specifies the input to output delay following a positive edge of

clock; further it is effective only when clr and pr are inactive. The path specified

here is an “edge-sensitive state-dependent path”. Partial simulation results are in

Figure 11.34.

module dff_aa(q,qb,di,clk,clr,pr);

output q,qb; input di,clk,clr,pr;

reg q;

assign qb=~q;

specify

 if(!clr && !pr) (posedge clk *> (q:di))=1;

endspecify

always@(posedge clk)

 begin if(clr)q = 1'b0; else if(pr) q = 1'b1; else q=di; end

endmodule

//test-bench

module dff_aa_tst();

reg di,clk,clr,pr; wire q,qb;

dff_aa dd(q,qb,di,clk,clr,pr);

initial begin clr=1'b1;pr=1'b0;clk=1'b0;di=1'b0; #100 $stop;

end

always #3 clk=~clk;

always begin

 # 4 di =~di; # 3 di =~di; # 3 di =~di; # 6 di =~di;

continued

366 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

continued

 # 6 di =~di; # 3 di =~di; # 2 di =~di;

 end

initial begin #5 pr=1'b1; #5 pr=1'b0; #35 pr=1'b1; #25 pr=1'b1; end

initial #25 clr=1'b0;

initial $monitor($time , "clk = %b , clr = %b , pr = %b , di = %b , q =

%b ", clk,clr,pr,di,q);

endmodule

Figure 11.33 A module to illustrate delay assignment for an edge-sensitive state-dependent

path.

t clk clr pr di q

0 0 1 0 0 x

3 1 1 0 0 0

4 1 1 0 1 0

5 1 1 1 1 0

6 0 1 1 1 0

7 0 1 1 0 0

9 1 1 1 0 0

10 1 1 0 1 0

12 0 1 0 1 0

15 1 1 0 1 0

16 1 1 0 0 0

18 0 1 0 0 0

21 1 1 0 0 0

22 1 1 0 1 0

24 0 1 0 1 0

t clk clr pr di q

25 0 0 0 0 0

27 1 0 0 1 0

28 1 0 0 1 1

30 0 0 0 1 1

31 0 0 0 0 1

33 1 0 0 0 1

34 1 0 0 1 0

36 0 0 0 1 0

37 0 0 0 0 0

39 1 0 0 0 0

42 0 0 0 0 0

43 0 0 0 1 0

45 1 0 1 1 1

48 0 0 1 1 1

Figure 11.34 Partial results of simulating the test bench in Figure 11.33.

Observations:

Until the 25th nanosecond, the clr input is active and the flip-flop remains

reset. The pr signal is high from the 5th to the 10th ns; but since the clr has

priority, the flip-flop remains reset. The delay specified is not relevant.

After the 45th ns, pr is active and the flip-flop remains set. Clk and di are not

relevant.

Only in the 25th to the 45th ns interval the flip-flop responds to di at the

positive-going edge of the clock; it happens at the 28th and 34rd ns.

Specifically, 27th ns and 33rd ns represent positive going edges of the clock.

Changes in di preceding them get reflected as changes in do with a delay of 1

ns–that is, at 28th ns and 34rd ns, respectively.

PATH DELAYS 367

11.3.5 Pulse Filtering and its Control

All transitions on an input pin with less than a specified module path delay are

termed “pulses.” Normally, when a module path delay is specified, all pulses are

ignored; that is, the simulator does not take cognizance of such narrow transitions.

However, response to such narrow pulses can be specified through specparam

in a specify block. A statement

specparam PATHPULSE$ (x , y) = (a, b);

implies the following concerning the module pulse path from x to y:

Ignore all pulses of width less than a ns. a is referred to as the “rejection

limit” for the pulse path.

Take cognizance of all the pulses wider than b ns. Note that the specification

has relevance only if the delay value for the pulse path (specified in the

specify block) is larger than b.

For all pulses of width value between a and b, the output is in error and in x

state.

The PATHPULSE$ specification is governed by the following:

It has to appear within a specify block as a specparam assignment as shown

above.

It specifies the limits for the path pulse-error limit as well as reject limit for

the specified path.

A statement as

specparam PATHPULSE$ = (a, b);

implies that a and b are the error and reject limits for the pulse widths for all

the paths specified within the specify block; the simulator checks for the pulse

width and if it is between a and b values, the output goes to x state.

A set of statements

Specparam PATHPULSE$ (x, y) = (a, b);

Specparam PATHPULSE$ = (c, d);

implies that for the path from x to y a and b are the error and reject limits,

respectively; further, for all other pulse paths within the specify block, the

limits for error and rejection are c and d, respectively. If only one limit is

specified as

Specparam PATHPULSE$ =a;

a is taken as the error limit as well as reject limit for the concerned paths.

368 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

Example 11.19

The module in Figure 11.35 is the half-adder module of earlier examples. A pin-

to-pin delay of 4 ns is specified from a and b inputs to the sum bit s and the carry

bit ca. Further a PATHPULSE limit of 3 ns is specified; hence any pulse of width

less than 3 ns will be ignored by the simulator. Simulation results are shown in

Figure 11.36. The following may be noted in this connection:

During the interval of 8 ns – 10 ns the input a is at zero. It represents a pulse

input. It is ignored and the sum bit does not revert to zero during the

corresponding delayed interval of 12 ns – 14 ns. Similar response is repeated

for the change in a to zero during the interval 28 ns – 30 ns.

During the interval 14 ns – 15 ns, input b goes high. The same pulse, being

narrower than the specified limit of 3 ns, is ignored. Neither the sum bit s nor

the carry bit ca is affected.

At 34 ns, b goes to 1 and remains so up to 37 ns; it is treated as a pulse and

ignored by the simulator.

module ha_pt(s,ca,a,b);

input a,b; output s,ca;

specify

 (a,b*>s,ca) =4;

 specparam pathpulse$ = 3;

endspecify

xor (s,a,b);

and (ca,a,b);

endmodule

//test-bench

module tstha_pt();

reg a,b; wire s,ca;

ha_pt hh(s,ca,a,b);

initial begin a=0;b=0; #50 $stop;end

initial begin #4 a=1;b=0; #4 a=0;b=0; #2 a=1;b=0; #4 a=1;b=1; #1 a=1;b=0;

 #4 a=1;b=1; #4 a=1;b=0; #1 a=1;b=0; #4 a=0;b=0; #2 a=1;b=0;

 #4 a=1;b=1; #3 a=1;b=0; #4 a=1;b=1; #4 a=1;b=0; #1 a=1;b=0;

 end

initial $monitor($realtime , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

endmodule

Figure 11.35 A module to illustrate the use of the PATHPULSE limit.

PATH DELAYS 369

0 a = 0 , b = 0 ,out carry = x , outsum = x

4 a = 1 , b = 0 ,out carry = 0 , outsum = 0

8 a = 0 , b = 0 ,out carry = 0 , outsum = 1

10 a = 1 , b = 0 ,out carry = 0 , outsum = 1

14 a = 1 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 0 ,out carry = 0 , outsum = 1

19 a = 1 , b = 1 ,out carry = 0 , outsum = 1

23 a = 1 , b = 0 ,out carry = 1 , outsum = 0

27 a = 1 , b = 0 ,out carry = 0 , outsum = 1

28 a = 0 , b = 0 ,out carry = 0 , outsum = 1

30 a = 1 , b = 0 ,out carry = 0 , outsum = 1

34 a = 1 , b = 1 ,out carry = 0 , outsum = 1

37 a = 1 , b = 0 ,out carry = 0 , outsum = 1

41 a = 1 , b = 1 ,out carry = 0 , outsum = 1

45 a = 1 , b = 0 ,out carry = 1 , outsum = 0

49 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.36 Results of simulating the test bench in Figure 11.35.

Example 11.20

The module in Figure 11.37 is a slightly modified version of that in Figure 11.35.

Here 2 ns is specified as the error limit and 3 ns as the rejection limit for all

module path pulses. The test bench remains unchanged. The following can be

observed with the simulation results shown in Figure 11.38:

In the interval 8ns – 10ns as well as the interval 28 ns –30 ns the input a goes

down and remains at the 0 state. These represent pulse widths less than the

reject limit but more than the error limit. Hence an error is indicated and the

output goes to x state in the corresponding intervals 12 ns – 14 ns and 32 ns –

34 ns, respectively. Ca remains unaltered as expected.

In the interval 14 ns –15 ns, b is at the 1 state. Because the pulse width is less

than the error limit, the pulse is ignored. Neither s nor ca responds to it.

module ha_ptt(s,ca,a,b);

input a,b; output s,ca;

specify

 (a,b*>s,ca) =4;

 specparam PATHPULSE$ = (2,3);

endspecify

xor (s,a,b);

and (ca,a,b);

continued

370 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

continued

endmodule

//test-bench

module tstha_ptt();

reg a,b; wire s,ca;

ha_ptt hh(s,ca,a,b);

initial begin a=0;b=0; #50 $stop;end

initial begin

 #4 a=1;b=0; #4 a=0;b=0; #2 a=1;b=0; #4 a=1;b=1; #1 a=1;b=0;

 #4 a=1;b=1; #4 a=1;b=0; #1 a=1;b=0; #4 a=0;b=0; #2 a=1;b=0;

 #4 a=1;b=1; #3 a=1;b=0; #4 a=1;b=1; #4 a=1;b=0; #1 a=1;b=0;

 end

initial $monitor($realtime , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

endmodule

Figure 11.37 Module to illustrate error limit and rejection limit with PATHPULSE.

0 a = 0 , b = 0 ,out carry = x , outsum = x

4 a = 1 , b = 0 ,out carry = 0 , outsum = 0

8 a = 0 , b = 0 ,out carry = 0 , outsum = 1

** Warning: D:/chap11/chap_11/ha_ptt.v.txt(5): path pulse error on net

tstha_ptt.s

Time: 10 ns Iteration: 1 Instance: /tstha_ptt/hh

10 a = 1 , b = 0 ,out carry = 0 , outsum = 1

12 a = 1 , b = 0 ,out carry = 0 , outsum = x

14 a = 1 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 0 ,out carry = 0 , outsum = 1

19 a = 1 , b = 1 ,out carry = 0 , outsum = 1

23 a = 1 , b = 0 ,out carry = 1 , outsum = 0

27 a = 1 , b = 0 ,out carry = 0 , outsum = 1

28 a = 0 , b = 0 ,out carry = 0 , outsum = 1

** Warning: D:/chap11/chap_11/ha_ptt.v.txt(5): path pulse error on net

tstha_ptt.s

Time: 30 ns Iteration: 1 Instance: /tstha_ptt/hh

30 a = 1 , b = 0 ,out carry = 0 , outsum = 1

32 a = 1 , b = 0 ,out carry = 0 , outsum = x

34 a = 1 , b = 1 ,out carry = 0 , outsum = 1

37 a = 1 , b = 0 ,out carry = 0 , outsum = 1

38 a = 1 , b = 0 ,out carry = 1 , outsum = 0

41 a = 1 , b = 1 ,out carry = 0 , outsum = 1

45 a = 1 , b = 0 ,out carry = 1 , outsum = 0

49 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.38 Results of simulating the test bench in Figure 11.37.

MODULE PARAMETERS 371

The module in Figure 11.37 was modified and the PULSEPATH$ assignment

is removed. The default value of 4 ns is the reject as well as the error limit here.

Simulation results obtained with the modified module are shown in Figure 11.39.

One can see that all pulses of width less than 4 ns (in the intervals 8 ns – 10 ns and

28 ns – 30 ns for a; 14 ns – 15 ns and 34 ns – 37 ns for b) are ignored by the

design module.

0 a = 0 , b = 0 ,out carry = x , outsum = x

4 a = 1 , b = 0 ,out carry = 0 , outsum = 0

8 a = 0 , b = 0 ,out carry = 0 , outsum = 1

10 a = 1 , b = 0 ,out carry = 0 , outsum = 1

14 a = 1 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 0 ,out carry = 0 , outsum = 1

19 a = 1 , b = 1 ,out carry = 0 , outsum = 1

23 a = 1 , b = 0 ,out carry = 1 , outsum = 0

27 a = 1 , b = 0 ,out carry = 0 , outsum = 1

28 a = 0 , b = 0 ,out carry = 0 , outsum = 1

30 a = 1 , b = 0 ,out carry = 0 , outsum = 1

34 a = 1 , b = 1 ,out carry = 0 , outsum = 1

37 a = 1 , b = 0 ,out carry = 0 , outsum = 1

41 a = 1 , b = 1 ,out carry = 0 , outsum = 1

45 a = 1 , b = 0 ,out carry = 1 , outsum = 0

49 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.39 Results of simulating the test bench in Figure 11.37 with the PATHPULSE

specification in the module ha_ptt deleted.

11.4 MODULE PARAMETERS

Module parameters are associated with size of bus, register, memory, ALU, and so

on. They can be specified within the concerned module but their value can be

altered during instantiation. The alterations can be brought about through

assignments made with defparam. Such defparam assignments can appear

anywhere in a module.

The rules of assigning values for the module parameters, deciding their size,

type, etc., are all similar to those of specify parameters discussed in Section

11.2.

Example 11.21

The module of Figure 11.23 has been modified and shown in Figure 11.40. The

parameter msb specifies the ALU size –– consistently in the input and the output

372 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

vectors of the ALU. The size assignment has been made separately through the

assignment statement

parameter msb = 3;

With the test bench in Figure 11.23 the simulation results are identical to those of

Figure 11.24. The ALU size can be scaled up to any value by reassigning a value

to msb during instantiation.

module alu_6 (d, co, a, b, f,cci);

parameter msb=3;

output [msb:0] d; output co; wire[msb:0]d;

input cci; input [msb : 0] a, b; nput [1 : 0] f;

specify

 (a,b=>d)=(1,2);

 (a,b,cci*>co)=1;

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?

 {1'bz,a^b}:{1'bz,~a}));

endmodule

Figure 11.40 The ALU module in Figure 11.23 with its size declared as a parameter.

Example 11.22

Figure 11.41 shows a design where the ALU module of Figure 11.40 has been

retained and the test bench of Figure 11.23 included; the test bench has been

altered whenever the parameter msb is assigned a different value (=7) which

overrides the assignment in the instantiation. The simulation results are shown in

Figure 11.42 from the 15th ns.

module alu_6 (d, co, a, b, f,cci);

parameter msb=3;

output [msb:0] d; output co; wire[msb:0]d; input cci;

input [msb : 0] a, b; input [1 : 0] f;

specify (a,b=>d)=(1,2); (a,b,cci*>co)=1; endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?

 {1'bz,a^b}:{1'bz,~a}));

endmodule

//test-bench

module tst_alu7();

defparam aa.msb=7; parameter nl=7;

reg [nl:0]a,b; reg[1:0] f; reg cci; wire[nl:0]d; wire co;

continued

SYSTEM TASKS AND FUNCTIONS 373

continued

alu_6 aa(d,co,a,b,f,cci);

initial begin cci=1'b0; f=2'b00;a=8'h00;b=8'h00; #30 $stop;end

always begin

#3 cci =1'b0;f=2'b00;a=8'h01;b=8'h00; #3 cci =1'b1;f=2'b00;a=8'h08;b=8'h0f;

#3 cci =1'b1;f=2'b01;a=8'h02;b=8'h01; #3 cci =1'b0;f=2'b01;a=8'h23;b=8'h27;

#3 cci =1'b1;f=2'b01;a=8'h23;b=8'h23; #3 cci =1'b1;f=2'b10;a=8'h23;b=4'h23;

#3 cci =1'b1;f=2'b11;a=8'h2f;b=8'h2c;

 end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci

,a,b,f,d,co);

endmodule

Figure 11.41 An ALU module with its size being redefined during instantiation

15 cci = 1 , a= 00100011 ,b = 00100011 ,f = 01 ,d =11111100 ,co= 1

16 cci = 1 , a= 00100011 ,b = 00100011 ,f = 01 ,d =11111100 ,co= 0

17 cci = 1 , a= 00100011 ,b = 00100011 ,f = 01 ,d =00000000 ,co= 0

18 cci = 1 , a= 00100011 ,b = 00000011 ,f = 10 ,d =00000000 ,co= 0

19 cci = 1 , a= 00100011 ,b = 00000011 ,f = 10 ,d =00100000 ,co= z

21 cci = 1 , a= 00101111 ,b = 00101100 ,f = 11 ,d =00100000 ,co= z

22 cci = 1 , a= 00101111 ,b = 00101100 ,f = 11 ,d =11110000 ,co= z

23 cci = 1 , a= 00101111 ,b = 00101100 ,f = 11 ,d =11010000 ,co= z

24 cci = 0 , a= 00000001 ,b = 00000000 ,f = 00 ,d =11010000 ,co= z

25 cci = 0 , a= 00000001 ,b = 00000000 ,f = 00 ,d =11010001 ,co= 0

26 cci = 0 , a= 00000001 ,b = 00000000 ,f = 00 ,d =00000001 ,co= 0

27 cci = 1 , a= 00001000 ,b = 00001111 ,f = 00 ,d =00000001 ,co= 0

28 cci = 1 , a= 00001000 ,b = 00001111 ,f = 00 ,d =00011001 ,co= 0

29 cci = 1 , a= 00001000 ,b = 00001111 ,f = 00 ,d =00011000 ,co= 0

Figure 11.42 Results of simulating the test bench in Figure 11.41.

11.5 SYSTEM TASKS AND FUNCTIONS

Verilog has a number of System Tasks and Functions defined in the LRM. They

are for taking output from simulation, control simulation, debugging design

modules, testing modules for specifications, etc. A “$” sign preceding a word or a

word group signifies a system task or a system function. Some of the system tasks

and functions have been extensively used in the earlier chapters. Some others with

the potential for common use are described and illustrated here. The complete list

is available in the LRM.

374 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

11.5.1 Output Tasks

A number of system tasks are available to output values of variables and selected

messages, etc., on the monitor. Out of these $monitor and $display tasks

have been extensively used in the preceding chapters. These and related tasks are

discussed below.

11.5.2 Display Tasks

The $display task, whenever encountered, displays the arguments in the desired

format; and the display advances to a new line. $write task carries out the

desired display but does not advance to the new line. For both the format is

identical to that of scanf and printf in C language [Gottfried]. The features are

briefly outlined here:

The arguments are displayed in the same order as they appear in the display

statement.

The arguments can be variables, an expression involving variables, or quoted

strings.

The strings are output as such except the escape sequences. An escape

sequence starts with the character \ or the character %.

“\” signifies one of a set of special characters in Table 11.1.

“%m” signifies that the hierarchical name of the particular argument is to be

displayed (see Example 11.23).

“%” followed by a character – as given in Table 11.2 – specifies the format

for display of the following argument or an aspect of the following argument.

If the format for the display of an argument is not specified, a default format is

assumed. It is binary for $displayb and $writeb, octal for $displayo

and $writeo, decimal for $displayd and $writed, hex for

$displayh and $writeh.

If any argument is in the form of an expression, it is evaluated and the result

displayed or written; it is sized automatically. With decimal numbers the

leading zeros are suppressed. Insertion of a “0” character (zero digit) between

the “%” symbol and the radix overrides the automatic sizing.

Table 11.1 Escape sequences

Sequence Implication

\n Display to advance to a new line.

\t Insert a tab in the display.

\\ Insert a ‘\’ character in the display.

\” Insert the double quote character ‘”’ in the display.

\aaa Insert an ASCII character specified by the octal number “aaa”, in the display.

%% Inset the character ‘%’ in the string displayed

SYSTEM TASKS AND FUNCTIONS 375

Table 11.2 Format for display of arguments

Character

combination
Implication

%h or %H Display in hex format

%d or %D Display in decimal format

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%l or %L Display library binding information

%v or %V Display net signal strength

%s or %S Display as a string

%t or %T Display in current time format

%u or %U Unformatted 2-value data

%z or %Z Unformatted 4-value data

%f or %F Display real in decimal format

%g or %G Display real in exponential or decimal format, whichever is shorter

Example 11.23

The module in Figure 11.31 has been modified and shown in Figure 11.43. A

$display (“%m”) has been added to the test bench as well as to the design

module itself. Partial simulation results are also included in the figure. The task

displays the hierarchical name of the module it is in. Thus when encountered in

the test-bench, the hierarchical name of the test bench – namely

“tst_dff_p_b.d1”– is displayed.

The task is useful to identify the “parentage” of the module when a design has

a number of instantiations and values are not clearly traceable to sources. Note

that the task does not require an argument to be tagged to it.

module dff_p(do,di,clk);

output do; input di,clk;

specify

 (negedge clk *>(do:di)) =1;

endspecify

reg do;

initial do=1'b0;

always@(negedge clk) do=di;

initial $display ("%m");

endmodule

continued

376 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

continued

//test-bench

module tst_dff_p_b();

reg di,clk; wire do;

dff_p d1(do,di,clk);

initial begin clk=0;di=1'b0; #35 $stop;end

always #3clk=~clk;

always #5 di=~di;

initial $display ("%m");

initial $monitor($time,"clk=%b,di=%b,do=%b",clk,di,do);

endmodule

Simulation results (shown partially)

tst_dff_p_b.d1

tst_dff_p_b

0clk=0,di=0,do=x

1clk=0,di=0,do=0

3clk=1,di=0,do=0

5clk=1,di=1,do=0

Figure 11.43 A module and its test bench to illustrate the use of “%m” in the display task:

The simulation results are also shown partially.

Example 11.24

The 4-to-16 decoder considered in Chapter 4 has repeated nested instantiations.

The module listing is reproduced in Figure 11.44. The test bench is omitted; a

“$display (“%m”)” statement is included in the 2-to-4 decoder module (dec2_4a_).

Whenever it is instantiated, its hierarchical name is displayed. The simulation

results are reproduced in Figure 11.45. The 3-to-8 decoder module is instantiated

twice (as g3 and g4) in the 4-to-16 decoder module. In turn, these (g3 and g4)

instantiate the 2-to-4 decoders twice (as g1 and g2). The hierarchical names are

displayed in the simulation run as can be seen from Figure 11.45.

module dec3_8a(pp,q,enn);

output[7:0]pp; input[2:0]q; input enn; wire qq; wire[7:0]p;

not(qq,q[2]);

dec2_4a g1(.a(p[3:0]),.b(q[1:0]),.en(qq));

dec2_4a g2(.a(p[7:4]),.b(q[1:0]),.en(q[2]));

and g3_8_7(pp[7],p[7],enn), g3_8_6(pp[6],p[6],enn),

g3_8_5(pp[5],p[5],enn), g3_8_4(pp[4],p[4],enn), g3_8_3(pp[3],p[3],enn),

g3_8_2(pp[2],p[2],enn), g3_8_1(pp[1],p[1],enn), g3_8_0(pp[0],p[0],enn);

endmodule

continued

SYSTEM TASKS AND FUNCTIONS 377

continued

module dec2_4a (a,b,en);

output [3:0] a; input [1:0]b; input en; wire [1:0]bb;

not(bb[1],b[1]),(bb[0],b[0]);

and(a[0],en,bb[1],bb[0]),(a[1],en,bb[1],b[0]),

(a[2],en,b[1],bb[0]),(a[3],en,b[1],b[0]);

initial $display ("%m");

endmodule

test-bench

module dec4_16_tba;

wire[15:0]m;

wire l,m,n;

reg[3:0]n;

dec4_16a gg(m,n);

endmodule

Figure 11.44 A 4-to-16 decoder module with a “$display ("%m");” statement

inserted to display hierarchy.

//# dec4_16_tba.gg.g3.g1

//# dec4_16_tba.gg.g3.g2

//# dec4_16_tba.gg.g4.g1

//# dec4_16_tba.gg.g4.g2

Figure 11.45 Results of simulating the module in Figure 11.44.

Example 11.25 Display of Strength

Figure 11.46 shows the module of Figure 5.33 along with its test bench. Through

the $monitor task the strength of the output variable o is displayed. Simulation

results are shown in Figure 11.47. The strength of o is consistent with the signal

status in each case:

Whenever i1 = i2 = 0, o =0 and has a strength of pull0 (represented as

pu0).

Whenever i1 = 0 and i2 = 1, o = x and has a strength of pullx (represented

as pux).

Whenever i1 = 1 and i2 = 0, strong1 dominates over pull0; output is at 1

state and of strength strong1 (represented as st1).

Whenever i1 = 1 and i2 = 1, o = 1; strong1 dominates and decides the

strength (represented as st1).

378 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module strng_1(o,i1,i2);

input i1,i2; output o; //wire o

buf(strong1 ,pull0)g1(o,i1);

buf(pull1,pull0)g2(o,i2);

endmodule

//TEST BENCH

module tst_strng_1;

reg i1,i2;

strng_1 cc(o,i1,i2);

initial begin i1 =0;i2 =0; #40 $stop; end

always begin #4 i1 = 0;i2 = 1; #4 i1 =1; i2 =0; #4 i1 =1 ;i2 = 1; end

initial $monitor($time ," i1 = %b ,i2 = %b ,o = %b(strength of o = %v) "

,i1,i2,o,o);

endmodule

Figure 11.46 A module set to illustrate display of strength levels.

0 i1 = 0 ,i2 = 0 ,o = 0(strength of o = Pu0)

4 i1 = 0 ,i2 = 1 ,o = x(strength of o = PuX)

8 i1 = 1 ,i2 = 0 ,o = 1(strength of o = St1)

12 i1 = 1 ,i2 = 1 ,o = 1(strength of o = St1)

16 i1 = 0 ,i2 = 1 ,o = x(strength of o = PuX)

20 i1 = 1 ,i2 = 0 ,o = 1(strength of o = St1)

24 i1 = 1 ,i2 = 1 ,o = 1(strength of o = St1)

28 i1 = 0 ,i2 = 1 ,o = x(strength of o = PuX)

32 i1 = 1 ,i2 = 0 ,o = 1(strength of o = St1)

36 i1 = 1 ,i2 = 1 ,o = 1(strength of o = St1)

Figure 11.47 Results of simulating the test bench in Figure 11.46.

11.5.3 $strobe Task

When a variable or a set of variables is sampled and its value displayed, the

$strobe task can be used; it senses the value of the specified variables and

displays them. The form of specifying arguments is identical to that of the

$display task. The $strobe task is executed as the last activity in the

concerned time step. It is useful to check for specific activities and debug

modules.

SYSTEM TASKS AND FUNCTIONS 379

Example 11.26

The module of Figure 7.27 is reproduced in Figure 11.48 with the addition of a

$strobe command. Simulation results are shown (partially) in Figure 11.49.

The $monitor task ensures that all specified items are displayed when any of

them changes. The $strobe task is activated at the specified time of 9 ns and

the values of concerned arguments are displayed.

module dff_c(do,di,clk);

output do; input di,clk;

specify

 (negedge clk *>(do:di)) =1;

endspecify

reg do;

initial do=1'b0;

always@(negedge clk) do=di;

endmodule

//test-bench

module tst_dff_cbeh();

reg di,clk; wire do;

dff_c d1(do,di,clk);

initial begin clk=0;di=1'b0; #35 $stop; end

always

#3clk=~clk;

always #5 di=~di;

initial $monitor($time,"clk=%b,di=%b,do=%b",clk,di,do);

initial #9 $strobe ("at time %t, di=%b, do=%b",$time, di, do);

endmodule

Figure 11.48 A module set to illustrate the use of $strobe task.

0clk=0,di=0,do=x
1clk=0,di=0,do=0
3clk=1,di=0,do=0
5clk=1,di=1,do=0
6clk=0,di=1,do=0
7clk=0,di=1,do=1
at time 9, di=1, do=1
9clk=1,di=1,do=1
10clk=1,di=0,do=1
12clk=0,di=0,do=1

Figure 11.49 Partial results of simulating the test bench in Figure 11.48.

380 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

11.5.4 $monitor Task

The $monitor task has been used extensively in the examples so far. The form

of specifying arguments is identical to that of the $display task.

Observations:

Only one $monitor task can be active at any time.

$monitor task is activated and displays the arguments specified whenever

any of the arguments changes. This excludes $time, $stime, and

$realtime tasks.

$monitoroff and $monitoron are two additional tasks allied to the

$monitor task; they are useful to enable and disable the monitoring activity.

$monitoroff turns off the monitoring at the specified time, while

$monitoron turns it on at the specified time.

Example 11.27

Figure 11.50 shows the half-adder module considered earlier; $monitoroff and

$monitoron tasks have been included in the test bench. Monitoring is turned off

at 30 ns, turned on at 60 ns and again turned off at 90 ns. The simulation results

are shown in Figure 11.51. Monitoring activity can be seen to continue up to the

26th ns. At the next time step of any change in the module variables– that is, at the

30th ns–it stops; it resumes at 60 ns and continues up to 86 ns.

module ha_1(s,ca,a,b);

input a,b; output s,ca;

xor #(1,2) (s,a,b);

and #(3,4) (ca,a,b);

endmodule

//test-bench

module tstha_e();

reg a,b; wire s,ca;

ha_1 hh(s,ca,a,b);

initial begin a=0;b=0; #100 $stop; end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $monitor($time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial begin #30 $monitoroff; #30 $monitoron; #30 $monitoroff; end

endmodule

Figure 11.50 A module set to illustrate the use of $monitoroff and $monitoron

tasks.

SYSTEM TASKS AND FUNCTIONS 381

0 a = 0 , b = 0 ,out carry = x , outsum = x

2 a = 0 , b = 0 ,out carry = x , outsum = 0

4 a = 0 , b = 0 ,out carry = 0 , outsum = 0

5 a = 1 , b = 0 ,out carry = 0 , outsum = 0

6 a = 1 , b = 0 ,out carry = 0 , outsum = 1

10 a = 0 , b = 1 ,out carry = 0 , outsum = 1

15 a = 1 , b = 1 ,out carry = 0 , outsum = 1

17 a = 1 , b = 1 ,out carry = 0 , outsum = 0

18 a = 1 , b = 1 ,out carry = 1 , outsum = 0

20 a = 0 , b = 0 ,out carry = 1 , outsum = 0

24 a = 0 , b = 0 ,out carry = 0 , outsum = 0

25 a = 1 , b = 0 ,out carry = 0 , outsum = 0

26 a = 1 , b = 0 ,out carry = 0 , outsum = 1

60 a = 0 , b = 0 ,out carry = 1 , outsum = 0

64 a = 0 , b = 0 ,out carry = 0 , outsum = 0

65 a = 1 , b = 0 ,out carry = 0 , outsum = 0

66 a = 1 , b = 0 ,out carry = 0 , outsum = 1

70 a = 0 , b = 1 ,out carry = 0 , outsum = 1

75 a = 1 , b = 1 ,out carry = 0 , outsum = 1

77 a = 1 , b = 1 ,out carry = 0 , outsum = 0

78 a = 1 , b = 1 ,out carry = 1 , outsum = 0

80 a = 0 , b = 0 ,out carry = 1 , outsum = 0

84 a = 0 , b = 0 ,out carry = 0 , outsum = 0

85 a = 1 , b = 0 ,out carry = 0 , outsum = 0

86 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.51 Results of simulating the test bench in Figure 11.50.

11.5.5 $stop and $finish Tasks

The $stop task suspends simulation. The compiled design remains active;

simulation can be resumed through commands available in the simulator. In
contrast $finish stops simulation, closes the simulation environment, and

reverts to the operating system.

11.5.6 $random Function

A set of random number generator functions are available as system functions.
One can start with a seed number (optional) and generate a random number
repeatedly. Such random number sequences can be fruitfully used for testing.

382 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

Example 11.28

The module of Figure 11.17 is reproduced in Figure 11.52 – with a modification in

the test bench. The values assigned to the input vectors a and b are decided by the

successive output values of the $random function. The first of the lot is decided

by the seed number (4 here). The simulation results are reproduced in Figure 11.53.

module alu_8 (d, co, a, b, f,cci);

output [3:0] d; output co; wire[3:0]d; input cci;

input [3 : 0] a, b; input [1 : 0] f;

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)?

 {1'bz,a^b}:{1'bz,~a}));

endmodule

//test-bench

module tst_alu8();

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co;

alu_8 aa(d,co,a,b,f,cci);

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end

always begin

#2 cci =1'b0;f=2'b00;{a,b}=$random(4);

#2 cci =1'b1;f=2'b00;{a,b}=$random; #2 cci =1'b1;f=2'b01;{a,b}=$random;

#2 cci =1'b0;f=2'b01;{a,b}=$random; #2 cci =1'b1;f=2'b01;{a,b}=$random;

#2 cci =1'b1;f=2'b10;{a,b}=$random; #2 cci =1'b1;f=2'b11;{a,b}=$random;

 end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci

,a,b,f,d,co);

endmodule

Figure 11.52 A module to illustrate the use of the system function $random.

0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0
4 cci = 1 , a= 0010 ,b = 0100 ,f = 00 ,d =0111 ,co= 0
6 cci = 1 , a= 1000 ,b = 0001 ,f = 01 ,d =0111 ,co= 0
8 cci = 0 , a= 0000 ,b = 1001 ,f = 01 ,d =0111 ,co= 1
10 cci = 1 , a= 0110 ,b = 0011 ,f = 01 ,d =0011 ,co= 0
12 cci = 1 , a= 0000 ,b = 1101 ,f = 10 ,d =1101 ,co= z
14 cci = 1 , a= 1000 ,b = 1101 ,f = 11 ,d =0111 ,co= z
16 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0
18 cci = 1 , a= 0110 ,b = 0101 ,f = 00 ,d =1100 ,co= 0
20 cci = 1 , a= 0001 ,b = 0010 ,f = 01 ,d =1111 ,co= 1
22 cci = 0 , a= 0000 ,b = 0001 ,f = 01 ,d =1111 ,co= 1
24 cci = 1 , a= 0000 ,b = 1101 ,f = 01 ,d =0011 ,co= 1
26 cci = 1 , a= 0111 ,b = 0110 ,f = 10 ,d =0001 ,co= z
28 cci = 1 , a= 0011 ,b = 1101 ,f = 11 ,d =1100 ,co= z

Figure 11.53 Results of simulating the test bench in Figure 11.52.

FILE-BASED TASKS AND FUNCTIONS 383

Observations:

If the seed is not changed with every simulation, the same sequence of random

numbers is generated.

If the seed is changed, the values in the random number sequence too change.

If the seed is not specified, the $random function uses a default seed and

generates the random number.

Only the lowest 8 bits of the random number generated are used to assign

values to a and b here.

11.6 FILE-BASED TASKS AND FUNCTIONS

LRM has the provision to accommodate and integrate design and test modules

kept in different files. It makes room for structuring the design in an elegant

manner and developing it with a “cross-functional” approach. Different facilities

are specified in the LRM. That to output results to a file is discussed here as a

specific case.

To carry out any file-based task, the file has to be opened, reading, writing,

etc., completed and the file closed. The keywords for all file-based tasks start with

the letter f to distinguish them from the other tasks. A typical sequence of

activities to write to a file can be as shown in Table 11.3.

Observations:

The listing lines used need not be contiguous but have to be in the same

sequence.

All the system tasks to output information can be used to output to a file.

$display, $strobe, $monitor, etc., are of this category. The

Table 11.3 A typical (partial) sequence of a file-based operation

Line in module listing Significance

Integer fileno; fileno is declared as an integer

…..

fileno = $fopen(“info.txt”); A file with a name ‘info.txt’ is opened. The

value of fileno signifies the same

…..

$fdisplay(fileno, “string”, arguments); The arguments are displayed as specified

….

$fclose(fileno); The file is closed

…..

384 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

respective keywords to output to the file are $fdisplay, $fstrobe,

$fmonitor, respectively.

The first field of the task statement is an argument – the file descriptor. The

subsequent fields are identical to the corresponding nonfile tasks.

The specified file will be opened and sustained in the directory of the

executable file of the simulator.

Example 11.29

The half-adder module is reproduced in Figure 11.54 along with an associated test

bench. The test bench uses a file “ha_f_rslt.txt.” The file is opened and assigned

the name “info.” Later the $fmonitor task writes values of specified variables

into the opened file. On completion of simulation, the file is closed automatically.

One could also have closed the file beforehand through the “$close(info)” task.

The contents of file ha_f_rslt.txt are reproduced in Figure 11.55.

module ha_1(s,ca,a,b);

input a,b; output s,ca;

xor #(1,2) (s,a,b);

and #(3,4) (ca,a,b);

endmodule

//test-bench

module tstha_f();

integer info; reg a,b; wire s,ca;

ha_1 hh(s,ca,a,b);

initial begin

 a=0;b=0;

 info=$fopen("ha_f_rslt.txt");

 end

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end

initial $fmonitor(info,$time , " a = %b , b = %b ,out carry = %b , outsum = %b "

,a,b,ca,s);

initial begin #30 $display(info); #0 $stop; end

endmodule

Figure 11.54 A module set to illustrate writing into a file.

COMPILER DIRECTIVES 385

// 0 a = 0 , b = 0 ,out carry = x , outsum = x

// 2 a = 0 , b = 0 ,out carry = x , outsum = 0

// 4 a = 0 , b = 0 ,out carry = 0 , outsum = 0

// 5 a = 1 , b = 0 ,out carry = 0 , outsum = 0

// 6 a = 1 , b = 0 ,out carry = 0 , outsum = 1

// 10 a = 0 , b = 1 ,out carry = 0 , outsum = 1

// 15 a = 1 , b = 1 ,out carry = 0 , outsum = 1

// 17 a = 1 , b = 1 ,out carry = 0 , outsum = 0

// 18 a = 1 , b = 1 ,out carry = 1 , outsum = 0

// 20 a = 0 , b = 0 ,out carry = 1 , outsum = 0

// 24 a = 0 , b = 0 ,out carry = 0 , outsum = 0

// 25 a = 1 , b = 0 ,out carry = 0 , outsum = 0

// 26 a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.55 Contents of the file ‘ha_f_rslt.txt’ after the test bench in Figure 11.54 is

simulated.

11.7 COMPILER DIRECTIVES

A number of compiler directives are available in Verilog. They allow for macros,

inclusion of files, and timescale-related parameters for simulation. All compiler

directives are preceded by the ‘`’ (accent grave) character. Representative

compiler directives are discussed here with illustrations.

11.7.1 `define Directive

The `define directive is for macro substitution. It substitutes the macro by a

defined text. Hence a macro name can be used in place of such a group of

characters in the listing wherever the group is to appear. Subsequently, the macro

name can be substituted during compilation by the actual text. The `define

directive is used to define and associate the desired text with the macro name.

The `define compiler directive can also be used to substitute a number by a

macro name. It allows for deciding bus-width, specific delay values, etc., at

compilation time.

Example 11.30

The ALU module in Figure 11.56 is a modified version of that considered earlier.

Three macro-names – namely add, subtract, and exor – are used in the module

listing. The `define directives assign values to them. Note that despite the

replacement the compiled file will remain unaltered.

386 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module alu_a (d, co, a, b, f,cci);

`define add 2'b00

`define subtract 2'b01

`define exor 2'b10

output [3:0] d; utput co; wire[3:0]d;

input cci; input [3 : 0] a, b; input [1 : 0] f;

assign {co,d}=(f==`add)?(a+b+cci):((f==`subtract)?(a-b):((f==`exor)?

{1'bz,a^b}:{1'bz,~a}));

endmodule

Figure 11.56 A module to illustrate the use of the `define directive.

11.7.2 Time-Related Tasks

A set of compiler directives and system tasks relate to the running time of

simulation as well as the delays in the concerned modules. A wide range of

timescales as well as precision levels are available for selection during simulation.

`timescale

The `timescale compiler directive allows the time scale to be specified for the

design. When a `timescale directive is encountered in a file, the same is valid

for all subsequent modules within the file. The `timescale directive has two

components: Figure 11.57 shows its form. A few examples are given below:

`timescale 1 ms/100 µs

implies that in the following design all the time values specified are in ms and

they have a precision of 100 µs. Thus

3, 3.0, 3.022 are all interpreted as 3 ms;

3.1, 3.12,3.199 are all interpreted as 3.1 ms; and

0.1, 0.12 are interpreted as 100 µs.

`timescale 10 ms/100 µs

implies that in the following design all the timescales are specified as

multiples of 10 ms with a precision of 100 µs. Thus

3 and 3.0 are interpreted as 30 ms;

3.022 is interpreted as 30.2 ms;

3.1 is interpreted as 31 ms;

3.12 is interpreted as 31.2 ms;

3.199 is interpreted as 31.9 ms;

0.1 is interpreted as 1 ms and

0.12 is interpreted as 1.2 ms.

COMPILER DIRECTIVES 387

`timescale a us / b ns

Specifies the unit of precision: it

can be s, ms, us, ns, ps, or fs

Specifies the unit of time scale: it

can be s, ms, us, ns, ps, or fs

Specifies the order of magnitude of

precision: it can be 1, 10, or 100

Specifies the order of magnitude of

time scale: it can be 1, 10, or 100

Figure 11.57 Form of specifying timescale: s, ms, us, ns, ps, and fs stand for seconds,

milliseconds, microseconds, picoseconds and femtoseconds, respectively.

`timescale 1 ms/1 ms

implies that in the following design all the time values specified are in ms and

they have a precision of 1 ms. Thus

3, 3.0, 3.022, 3.1, 3.12, 3.199 are all interpreted as 3 ms and

0.1, 0.12 are interpreted as 0 ms.

$timeformat

The timescale and the format for display can be changed during simulation with

the help of $timeformat task. The syntax for the task is explained in Figure

11.58. Whenever “µs” (microsecond) is to be specified for defining or changing

time scale, it is specified as “us.” Conventions for all other timescale values

(s, ms, ns, ps, and fs) remain unaltered.

$timeformat (-aa, bb, "cc", dd);

A negative number in the 0 to -15 range

signifying time unit: 0 stands for s, -1 for

0.1 s and so on; -15 implies femtosecond.

An integer specifying precision: it represents the

number of digits to the right of the decimal point

any convenient

s t r i n g t o b e

displayed as such

An integer specifying the

field width for the display

Figure 11.58 Syntax for $timeformat.

388 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

Simulation Time

Simulation time value can be obtained, displayed or used in specific expressions; a

limited amount of flexibility is available here: –

$time returns the value of simulation time as an integer.

$realtime returns the value of simulation time as a real number.

Default Timescale

If the time scale values are not specified in the source file, simulation is carried out

with the default values specified in the tool used for simulation. The default value

of time unit is taken as nanosecond in this book.

Example 11.31

Figure 11.59 shows two illustrative modules and a test bench instantiating both of

them. For all the modules the time unit is set at 1 µs and precision at 100 ns. The

simulation results are in Figure 11.60.

`timescale 1us /100ns
module show_1;
reg ai, bi; wire ao, bo;
show_2 aa(ao, ai);
show_3 bb(bo, bi);
initial $timeformat(-3, 5, "ms", 12);
initial $monitor("%m has ai=%b,ao=%b,bi=%b,bo=%b, at time
%t",ai,ao,bi,bo,$realtime);
always begin
 #3{ai,bi} =2'b00; #3{ai,bi} =2'b01;
 #3{ai,bi} =2'b10; #3{ai,bi} =2'b11;
 end
initial #12 $stop;
endmodule

`timescale 1us / 100ns
module show_3(bo,bi);
output bo; input bi; wire bo, bi;
not #1.2 (bo,bi);
endmodule

`timescale 1us / 100ns
module show_2(ao,ai);
output ao; input ai; wire ao, ai;
not #2 (ao,ai);
endmodule

Figure 11.59 A simple set of modules to illustrate the functioning of `timescale

compiler directive.

COMPILER DIRECTIVES 389

show_1 has ai=x,ao=x,bi=x,bo=x, at time 0.00000ms

show_1 has ai=0,ao=x,bi=0,bo=x, at time 0.00300ms

show_1 has ai=0,ao=x,bi=0,bo=1, at time 0.00420ms

show_1 has ai=0,ao=1,bi=0,bo=1, at time 0.00500ms

show_1 has ai=0,ao=1,bi=1,bo=1, at time 0.00600ms

show_1 has ai=0,ao=1,bi=1,bo=0, at time 0.00720ms

show_1 has ai=1,ao=1,bi=0,bo=0, at time 0.00900ms

Figure 11.60 Results of simulating the module set in Figure 11.59.

Observations:

All propagation to bo from bi take place with a delay of 1.2 µs as specified.

All propagation to ao from ai take place with a delay of 2 µs as specified.

The display format specifies time to be displayed in milliseconds with a

precision of 5 decimal places (second field of argument 5). Further, “ms” is to

be displayed after the time display to signify that the time is displayed in

milliseconds

Example 11.32

The module in Figure 11.59 has been modified and shown in Figure 11.61. “-3” in

the first field of time format has been changed to “-4.” It implies that the time

displayed is in 100 µs units. Simulation results are shown in Figure 11.62. A

number 0.042 there signifies 0.042 ×10-4 = 4.2 µs, since the time unit is specified

as -4 in the $timeformat task.

`timescale 1us /100ns

module show_a;

reg ai, bi; wire ao, bo;

show_b aa(ao, ai);

show_c bb(bo, bi);

initial $timeformat(-4, 5, " ", 12);

initial $monitor("%m has ai=%b,ao=%b,bi=%b,bo=%b, at time

%t",ai,ao,bi,bo,$realtime);

always begin

 #3 {ai,bi} =2'b00; #3 {ai,bi} =2'b01;

 #3 {ai,bi} =2'b10; #3 {ai,bi} =2'b11;

 end

continued

390 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

continued

initial #12 $stop;

endmodule

`timescale 1us / 100ns

module show_b(ao,ai);

output ao; input ai; wire ao, ai;

not #2 (ao,ai);

endmodule

`timescale 1us / 100ns

module show_c(bo,bi);

output bo;

input bi;

wire bo, bi;

not #1.2 (bo,bi);

endmodule

Figure 11.61 A modified version of the set of modules in Figure 11.59.

show_a has ai=x,ao=x,bi=x,bo=x, at time 0.00000

show_a has ai=0,ao=x,bi=0,bo=x, at time 0.03000

show_a has ai=0,ao=x,bi=0,bo=1, at time 0.04200

show_a has ai=0,ao=1,bi=0,bo=1, at time 0.05000

show_a has ai=0,ao=1,bi=1,bo=1, at time 0.06000

show_a has ai=0,ao=1,bi=1,bo=0, at time 0.07200

show_a has ai=1,ao=1,bi=0,bo=0, at time 0.09000

Figure 11.62 Results of simulating the set of modules in Figure 11.61.

Example 11.33

The module in Figure 11.59 is repeated in Figure 11.63: $realtime is replaced by

$time. Simulation results are in Figure 11.64. Time units displayed here are in

integers in contrast to those in Figure 11.61 where they are real numbers. Further,

the integers displayed are in “ms” (the “-3” field signifies this), shown with 5-digit

precision. Thus the delay of 1.2 µs for the transition in bo appears as only a 1 µs

delay (The lines ending with 0.00400 ms, 0.00700, ms etc., signify this.)

COMPILER DIRECTIVES 391

`timescale 1us /100ns

module show_aatb;

reg ai, bi; wire ao, bo;

show_aa aa1(ao, ai);

show_bb bb1(bo, bi);

initial $timeformat(-3, 5, "ms", 12);

initial $monitor("%m has ai=%b,ao=%b,bi=%b,bo=%b, at time

%t",ai,ao,bi,bo,$time);

always begin

 #3 {ai,bi} =2'b00; #3 {ai,bi} =2'b01;

 #3 {ai,bi} =2'b10; #3 {ai,bi} =2'b11;

 end

initial #12 $stop;

endmodule

`timescale 1us / 100ns

module show_bb(bo,bi);

output bo; input bi; wire bo, bi;

not #1.2 (bo,bi);

endmodule

`timescale 1us / 100ns

module show_aa(ao,ai);

output ao; input ai; wire ao, ai;

not #2 (ao,ai);

endmodule

Figure 11.63 A modified version of the set of modules in Figure 11.59.

show_aatb has ai=x,ao=x,bi=x,bo=x, at time 0.00000ms

show_aatb has ai=0,ao=x,bi=0,bo=x, at time 0.00300ms

show_aatb has ai=0,ao=x,bi=0,bo=1, at time 0.00400ms

show_aatb has ai=0,ao=1,bi=0,bo=1, at time 0.00500ms

show_aatb has ai=0,ao=1,bi=1,bo=1, at time 0.00600ms

show_aatb has ai=0,ao=1,bi=1,bo=0, at time 0.00700ms

show_aatb has ai=1,ao=1,bi=0,bo=0, at time 0.00900ms

show_aatb has ai=1,ao=1,bi=0,bo=1, at time 0.01000ms

show_aatb has ai=1,ao=0,bi=0,bo=1, at time 0.01100ms

Figure 11.64 Results of simulating the set of modules in Figure 11.63.

392 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

Example 11.34

Figure 11.65 shows another modification of Figure 11.59; the compiler directive

`timescale 1 us / 100 ns

preceding the module “show_3” has been replaced by the directive

`timescale 1 us / 1 us

here. The two designs are identical in all other respects. Here the time step is in

µs with a precision of 1 µs itself. A delay specified as 1.2 µs is taken as 1 µs by

the simulator. The simulation results in Figure 11.66 confirm this.

`timescale 1us /100ns

module show_bbb;

reg ai, bi; wire ao, bo;

show_2 aa(ao, ai);

show_3 bb(bo, bi);

initial $timeformat(-3, 5, "ms", 12);

initial $monitor("%m has ai=%b,ao=%b,bi=%b,bo=%b, at time

%t",ai,ao,bi,bo,$realtime);

always begin

 #3 {ai,bi} =2'b00; #3{ai,bi} =2'b01;

 #3 {ai,bi} =2'b10; #3{ai,bi} =2'b11;

 end

initial #12 $stop;

endmodule

`timescale 1us / 1us

module show_3(bo,bi);

output bo; input bi; wire bo, bi;

not #1.2 (bo,bi);

endmodule

`timescale 1us / 100ns

module show_2(ao,ai);

output ao;

input ai;

wire ao, ai;

not #2 (ao,ai);

endmodule

Figure 11.65 Another modified version of Figure 11.59.

HIERARCHICAL ACCESS 393

show_bbb has ai=x,ao=x,bi=x,bo=x, at time 0.00000ms

show_bbb has ai=0,ao=x,bi=0,bo=x, at time 0.00300ms

show_bbb has ai=0,ao=x,bi=0,bo=1, at time 0.00400ms

show_bbb has ai=0,ao=1,bi=0,bo=1, at time 0.00500ms

show_bbb has ai=0,ao=1,bi=1,bo=1, at time 0.00600ms

show_bbb has ai=0,ao=1,bi=1,bo=0, at time 0.00700ms

show_bbb has ai=1,ao=1,bi=0,bo=0, at time 0.00900ms

show_bbb has ai=1,ao=1,bi=0,bo=1, at time 0.01000ms

show_bbb has ai=1,ao=0,bi=0,bo=1, at time 0.01100ms

Figure 11.66 Results of simulating the set of modules in Figure 11.65.

11.8 HIERARCHICAL ACCESS

A Verilog design will normally have a module or two at the apex level. A number

of modules and UDPs will be instantiated within it. They can have other

instantiations within them. They can also have functions and tasks defined in them

and invoked repeatedly. In addition, begin–end and fork–join blocks too

may be present. All these represent identified functional blocks in a design.

Despite the variety here, one should have access to every variable, net as well as

named identity in a design. The access can be to sample and display the values, to

change specific parameters or disable selected blocks. Verilog has the provision to

access each such item in a unique and hierarchical manner. Due to its importance,

one has to understand the mode of deciding the hierarchical name and accessing

each item (Such accessing has been dealt with in passing in Sections 4.5.1 and

11.5.2.) We discuss it in more detail here through illustrative examples.

Example 11.35

Figure 11.67 shows a module and its simulation results. The function fad in the

module adds two integers a and b and returns the sum. The function has been

called twice – once within the block alpha and the second time within the block

beta. Each time the two numbers as well as the sum are displayed. Figure 11.68

shows the hierarchy of the blocks and the lineage for the variables concerned. The

function fad has been called within the block alpha. The variables within alpha
are accessed there as “fad.a,” “fad.b,” and “fad.fad,” and their values are

displayed. Similarly, they are called within block beta and displayed in the same

manner.

394 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module hier_a;

integer aa, bb, cc, pp, qq, rr;

initial

begin: alpha

 aa = 2; bb = 3;

 cc = fad(aa,bb);

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);

end

initial

begin: beta

 pp = 4;qq =6;

 rr = fad(pp,qq);

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);

end

function integer fad;

input [7:0] a, b;

fad = a + b;

endfunction

endmodule

fad.a = 2, fad.b = 3, fad.fad = 5

fad.a = 4, fad.b = 6, fad.fad = 10

Figure 11.67 A simple module to illustrate hierarchy and its simulation results.

fad.a, fad.b, fad.fad

hier_a

fad alpha beta

fad.a, fad.b, fad.fad

fad fad

Figure 11.68 Hierarchy of the blocks and module instantiation in Example 11.35.

HIERARCHICAL ACCESS 395

Example 11.36

Figure 11.69 shows the module of Example 11.35 with a $display statement

added within the function definition itself. Simulation results are also included in

the figure. The function fad has been called twice; both the times the values of the

variables a, b, and fad are accessed and displayed. Further, each time the same

quantities have been accessed using hierarchical names and displayed again.

module hier_b;

integer aa, bb, cc, pp, qq, rr;

initial

begin

 aa = 2; bb = 3;

 cc = fad(aa,bb);

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);

end

initial

begin

 pp = 4;qq =6;

 rr = fad(pp,qq);

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);

end

function integer fad;

input [7:0] a, b;

begin

 fad = a + b;

 $display("a = %0d, b = %0d, fad = %0d", a,b,fad);

end

endfunction

endmodule

a = 2, b = 3, fad = 5

fad.a = 2, fad.b = 3, fad.fad = 5

a = 4, b = 6, fad = 10

fad.a = 4, fad.b = 6, fad.fad = 10

Figure 11.69 A modified version of the module in Figure 11.67 and the simulation results.

Example 11.37

An additional display statement has been added to the module in Example 11.36

and shown in Figure 11.70. The variables aa and bb in the module have been

accessed from within the function fad. Such “parallel” accessing from one block

to another at the same level of hierarchy (see Figure 11.71) is possible in Verilog.

396 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module hier_c;

integer aa, bb, cc, pp, qq, rr;

initial

begin

 aa = 2; bb = 3;

 cc = fad(aa,bb);

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);

end

initial

begin

 pp = 4;qq =6;

 rr = fad(pp,qq);

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad);

end

function integer fad;

input [7:0] a, b;

begin

 fad = a + b;

 $display("hier_c.aa = %0d, hier_c.bb = %0d", hier_c.aa,hier_c.bb);

 $display("a = %0d, b = %0d, fad = %0d", a,b,fad);

end

endfunction

endmodule

hier_c.aa = 2, hier_c.bb = 3

a = 2, b = 3, fad = 5

fad.a = 2, fad.b = 3, fad.fad = 5

hier_c.aa = 2, hier_c.bb = 3

a = 4, b = 6, fad = 10

fad.a = 4, fad.b = 6, fad.fad = 10

Figure 11.70 The module in Figure 11.69 modified to illustrate “parallel” accessing.

hier_c

body of module

hier_c

hier_c.aa, hier_c.bb

fad

Figure 11.71 Parallel hierarchical accessing.

HIERARCHICAL ACCESS 397

Example 11.38

The module in Figure 11.72 is similar to that in Example 11.36. A task – tad –

defines the addition operation. It has been invoked to carry out the addition

operation. Variables for display have been specified hierarchically. Simulation

results are appended to the module in the figure.

module hier_d;

integer aa, bb, cc, pp, qq, rr;

initial

begin

 aa = 2; bb = 3;

 tad(aa,bb,cc);

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c);

end

initial

begin

 pp = 4;qq =6;

 tad(pp,qq,rr);

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c);

end

task tad;

input a, b;

output c;

integer a,b,c;

c = a + b;

endtask

endmodule

tad.a = 2, tad.b = 3, tad.c = 5

tad.a = 4, tad.b = 6, tad.c = 10

Figure 11.72 The module for Example 11.38 along its simulation results.

Example 11.39

The module in Figure 11.73 is a modified version of that in Figure 11.72. It is

similar to the module in Figure 11.69; tasks have been defined and used here

instead of functions.

398 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module hier_e;

integer aa, bb, cc, pp, qq, rr;

initial

begin

 aa = 2; bb = 3;

 tad(aa,bb,cc);

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c);

end

initial

begin

 pp = 4;qq =6;

 tad(pp,qq,rr);

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c);

end

task tad;

input a, b;

output c;

integer a,b,c;

begin

 c = a + b;

 $display("a = %0d, b = %0d, c = %0d",a,b,c);

end

endtask

endmodule

a = 2, b = 3, c = 5

tad.a = 2, tad.b = 3, tad.c = 5

a = 4, b = 6, c = 10

tad.a = 4, tad.b = 6, tad.c = 10

Figure 11.73 The module for Example 11.39 along with simulation results.

Example 11.40

The module in Figure 11.73 has been modified and shown in Figure 11.74. The

variables in the “parallel” module hier_f have been accessed from within the task

“tad,” hierarchically specifying the lineage. The accessing is similar to that in

Figure 11.71 carried out in a parallel manner.

HIERARCHICAL ACCESS 399

module hier_f;

integer aa, bb, cc, pp, qq, rr;

initial

begin

 aa = 2; bb = 3;

 tad(aa,bb,cc);

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c);

end

initial

begin

 pp = 4;qq =6;

 tad(pp,qq,rr);

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c);

end

task tad;

input a, b;

output c;

integer a,b,c;

begin

 c = a + b;

 $display("a = %0d, b = %0d, c = %0d",a,b,c);

 $display("hier_f.aa = %0d, hier_f.bb = %0d",hier_f.aa, hier_f.bb);

end

endtask

endmodule

a = 2, b = 3, c = 5

hier_f.aa = 2, hier_f.bb = 3

tad.a = 2, tad.b = 3, tad.c = 5

a = 4, b = 6, c = 10

hier_f.aa = 2, hier_f.bb = 3

tad.a = 4, tad.b = 6, tad.c = 10

Figure 11.74 The module for Example 11.40 along with simulation results.

Example 11.41

Figure 11.75 shows a module to add two octal numbers. It is done to further

illustrate the features of hierarchy. ha is a half-adder module in the figure. It has

been instantiated twice within the full-adder module fa. These two modules have

been instantiated in the main module hier_l to carry out the addition of the octal

numbers. hier_l has been instantiated in hier_ltst – the test bench for it. The

400 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module hier_l(cc2,s2,s1,s0,a2,a1,a0,b2,b1,b0);

input a2,a1,a0,b2,b1,b0;

output cc2,s2,s1,s0;

wire cc1,cc0;

ha aaa(s0,cc0,a0,b0);

fa faa1(s1,cc1,a1,b1,cc0);

fa faa2(s2,cc2,a2,b2,cc1);

//location 3

endmodule

module ha(s,c,a,b);

input a,b;

output s,c;

assign {c,s}={a&b,a^b};

//location 5

endmodule

module fa(sf,cf,af,bf,ci);

input af,bf,ci;

output sf,cf;

wire sf1,cc1,cc2;

ha fha1(sf1,cc1,af,bf);

ha fha2(sf,cc2,sf1,ci);

//location 4

or rr(cf,cc1,cc2);

endmodule

module hier_ltst;

reg a2,a1,a0,b2,b1,b0;

wire cc2,s2,s1,s0;

hier_l ddd(cc2,s2,s1,s0,a2,a1,a0,b2,b1,b0);

initial

begin

 #0 {a2,a1,a0,b2,b1,b0}=6'o34;

 $monitor("na = %0o, nb = %0o, ns =

%0o",{a2,a1,a0},{b2,b1,b0},{cc2,s2,s1,s0});

 #2 $stop;

end

//location 1

initial #1 $display("sum = %b%b",ddd.faa2.fha2.c,ddd.faa2.fha2.s);

endmodule

#na = 3, nb = 4, ns = 7

#sum = 01

Figure 11.75 A module to illustrate hierarchy and its simulation results.

HIERARCHICAL ACCESS 401

simulation results are also appended to the figure. Figure 11.76 shows the scheme

of instantiations of the modules. The hierarchy of instantiated modules is shown

in Figure 11.77. By way of illustration, the Sum and Carry bits of the half-adder

instantiation fha2 within the full-adder instantiation faa2 have been selected. The

module at the top is the test-bench hier_ltst. The hierarchical addresses of these

two bits, as “looked” from the module hier_ltst, are

ddd.faa2.fha2.c

and

ddd.faa2.fha2.s.

They have been accessed and their values displayed at the end in the figure as

sum = 01.

The same variables can be accessed at “location3” and displayed. The hierarchical

addresses to be used are

faa2.fha2.c

and

faa2.fha2.s.

“location4” is in the full-adder module fa. If accessed from there, the hierarchical

names to be used are

fha2.c and

fha2.s.

ha (sum bit)
a
b

s

c (carry bit)
af
bf

ci

cf

sf
fa

ha
a0

s0

fa

fa s2

s1

a2

a1
b1

b2

b0

cc2

cc1

cc0

faa2

faa1

aaa

(a) (b)

(d) (c)

bf
af

fha1

haha

fha2

cc1 cc2

rr
cf

sfsf1

ci

Figure 11.76 Scheme of instantiations of modules for Example 11.41. (a) Half-adder.

(b) Full-adder. (c) Full-adder. (d) Octal adder.

402 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

hier_htst

aaa (ha)

(ddd) hier_h

fha1(ha)

faa2 (fa)faa1 (fa)

fha2(ha) rr (or)

fha1(ha) fha2(ha) rr (or)

alpha

Figure 11.77 Hierarchy of instantiated modules in Example 11.41: The dashed lines pertain

to Example 11.42.

If the display statement is inserted at “location4,” the values of c and s will be

displayed wherever fa is instantiated. Referring to Figure 11.75, fa is instantiated

twice – first as faa1 and second as faa2. Hence these values will be displayed

twice.

Consider “location5” in the figure within the Half-adder module. The

variables can be accessed here directly with the names assigned to them – as “c”

and “s.” Their values will be displayed whenever the module is instantiated.

Example 11.42

The module hier_l has been altered slightly and shown in Figure 11.78. The

display statement has been inserted within a “begin–end” block called “alpha.”

As a block it is parallel to the instantiation ddd; the variables accessed for display

have been fully specified here as

hier_ntst.ddd. faa2.fha2.c and

hier_ntst.ddd.faa2.fha2.s.

The access path has been indicated separately in Figure 11.77. However, it

suffices to specify the variables as

ddd. faa2.fha2.c and

ddd.faa2.fha2.s.

HIERARCHICAL ACCESS 403

module hier_n(cc2,s2,s1,s0,a2,a1,a0,b2,b1,b0);

input a2,a1,a0,b2,b1,b0;

output cc2,s2,s1,s0;

wire cc1,cc0;

ha aaa(s0,cc0,a0,b0);

fa faa1(s1,cc1,a1,b1,cc0);

fa faa2(s2,cc2,a2,b2,cc1);

endmodule

module ha(s,c,a,b);

input a,b;

output s,c;

assign {c,s}={a&b,a^b};

endmodule

module fa(sf,cf,af,bf,ci);

input af,bf,ci;

output sf,cf;

wire sf1,cc1,cc2;

ha fha1(sf1,cc1,af,bf);

ha fha2(sf,cc2,sf1,ci);

or rr(cf,cc1,cc2);

endmodule

module hier_ntst;

reg a2,a1,a0,b2,b1,b0;

wire cc2,s2,s1,s0;

hier_n ddd(cc2,s2,s1,s0,a2,a1,a0,b2,b1,b0);

initial

begin

 #0 {a2,a1,a0,b2,b1,b0}=6'o34;

 $monitor("na = %0o, nb = %0o, ns =

%0o",{a2,a1,a0},{b2,b1,b0},{cc2,s2,s1,s0});

 #2 $stop;

end

initial

begin: alpha

//location1

 #1 $display("sum = %b%b",hier_ntst.ddd.faa2.fha2.c,ddd.faa2.fha2.s);

end

endmodule

Figure 11.78 A modified version of the module in Figure 11.75.

404 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

Observations:

Every entity in a design has a unique hierarchical name. Any entity can

be accessed from a location in a module, if the location is in the

hierarchical path.

An entity can be accessed from above or below in the hierarchy, if it can

be fully specified from the accessed location. As an example, consider

the module designated “a” in Figure 11.79. It has two blocks b and c
within it. Block d is within block b and block e is within block c. We

can see the following from the figure:

Module a can access quantities in any of the other instantiated

modules or blocks down the hierarchy.

Instantiated module b can access quantities within block d or module

a.

Block d can access quantities in b or a.

Quantities in parallel blocks can be accessed. For example, block b

can access those in block c as well as those in block e.

Access upwards beyond the parallel level is not possible. Thus an

item within the block c or e cannot be accessed from the block d.

Functions can be called hierarchically. Tasks too can be invoked

hierarchically.

Automatic tasks or functions cannot be accessed hierarchically.

a

ed

cb

Figure 11.79 A hierarchical scheme of instantiations and blocks.

11.9 GENERAL OBSERVATIONS

Facilities of the type discussed in this chapter enhance the flexibility of one’s

approach to simulation. With their mastery, simulation and presentation of results

can be made elegant. A great deal of useful information can be generated and used

as input to refine design.

EXERCISES 405

11.10 EXERCISES

 1. Consider the module “demux” of Example 8.1.

 a. Define a parameter del in the module and assign a value of 0.5 ns to it.

Obtain simulation results.

 b. Reassign the value to del as 0.8 from the test bench. Obtain simulation

results.

 c. If a signal line is selected, the delay is to be 0.5 ns. If not it is to be 1 ns.

Do the conditional assignments in the module. Obtain simulation results.

 d. Specify pin-to-pin delay from b to a of 1.2 ns. Let er and rf be the error

and rejection limits. Vary them in steps of 0.2 ns from 0.8 to 2.2 ns.

Obtain simulation results and comment on the same.

 2. Modify the OR gate realization of Example 8.14 to realize an AND gate.

Have a module parameter to decide the number of inputs and assign a value

of 4 to it. Change the value from the test bench to 8. Obtain simulation

results.

 3. Redo Example 8.15 by defining the input and output sizes to be module

parameters. How are the two sizes related?

 a. Assign a value of 12 to the input parameter from the test bench and obtain

simulation results. Repeat the same with a value of 16.

 b. Assign input values using $random system function repeatedly with

input size of 16 bits. Run the simulation for 20 successive values of the

$random function output.

 4. Modify the mod-n counter of Example 8.2 with n declared as a module

parameter. Assign different values to n from the test-bench. Obtain

simulation results.

 5. Consider Example 8.10 for memory loading; obtain a sequence of 8-bit

random numbers and load them into the memory. Change the for loop in

the module suitably.

 6. Consider the different examples in Chapters 4, 5, 6, and 7 where time delays

are present. Alter them by defining specify parameter and redo the

simulation.

 7. Consider the different examples in the Chapters 4, 5, 6, and 7 where register

sizes, input sizes, output sizes, or bus sizes are present. Alter them by

defining module parameters and redo the simulation.

 8. Complete Example 11.41 with proper insertions at the specified locations.

407

12

QUEUES, PLAS, AND FSMS

12.1 INTRODUCTION

Queues of the FIFO and the LIFO types form key blocks of many designs. They

are used in many applications as buffers and for storage [Heuring & Jordan].

Verilog has a set of system tasks to set up and use FIFO and LIFO types of

queues; adding to the queue and removing items from the queue are accomplished

through others. The tasks are discussed here and illustrated through examples.

Synthesized circuits of the illustrative examples in the book are all realized

with FPGAs. PLAs form a limited and more compact family. They are in wide

use at least by a segment of designers. The constructs in Verilog to model them

are explained through illustrative examples.

The long enduring importance of Finite State Machines (FSMs) is inherent

due to their basic nature. Verilog constructs are used to model and simulate FSMs.

12.2 QUEUES

Queues can be modeled and their status checked with the help of a few tasks

dedicated for the purpose; writing into a queue and reading from it are

accomplished through others. The statements to invoke the related tasks and the

arguments in each case are shown in Figure 12.1. Explanation of each task

follows.

12.2.1 $q_initialize

The $q_initialize task is to initialize a new queue. All four arguments in the

task invoking statement are variables of the integer type. The first is the identifier;

it has the role of a queue address. The second specifies the type of queue – a FIFO

or a LIFO. Only two types are possible. The third argument specifies the

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

408 QUEUES, PLAS, AND FSMS

$q_initialize(aaa, bbb,ccc,ddd)
4th argument: an output integer
signifying the queue status

3rd argument: an input integer
specifying the maximum queue length

2nd argument: an input integer
specifying the queue type: 1 - FIFO & 2
 LIFO

1st argument: an input integer
representing the address of the queue

keyword of the system task to create a
new aqueue

(a)

$q_add(aaa, eee, fff, ddd)

4th argument: an
output integer
signifying the queue
status

3rd argument: the integer
output from the queue

2nd argument: an input
integer specifying the
serial number of the job

1st argument: an input
integer representing the

address of the queue

keyword of the system task to
add an integer to the queue

$q_remove(aaa, eee, ggg, ddd)

keyword of the system task to
remove an integer from the queue

3rd argument: the integer
input to the queue

(b)

$q_exam(aaa, hhh,jjj,ddd)

4th argument: an output integer
signifying the queue status

3rd argument: an output integer representing the
information sought (Column 2 in Table 12.2)

2nd argument: an input integer signifying the type
of information sought (Column 1 Table 12.2)

1st argument: the input integer
representing the address of the queue

keyword of the system task to output
performance data

(c)

Figure 12.1 Verilog system tasks for queue operations: (a) Task for queue initialization.

(b) Tasks for adding and removing from the queue. (c) Task to get queue statistics.

QUEUES 409

$q_full(aaa, kkk)

2nd argument: output:

1 if queue is full; else 0

1st argument: an input integer

representing the address of the queue

keyword of the system

task to check status queue(d)

Figure 12.1 Verilog system tasks for queue operations (continued): (d) Task to check

whether the queue is full or not.

allocated length of the queue. The fourth argument returns the status for all other

operations. Any queue is to be initialized before carrying out an activity with it.

12.2.2 $q_add

$q_add is the system task to add a new entry to a queue. The first argument

specifies the queue to which the entry is to be made. The second is the job serial

number. The third is to be entered into the queue as an integer. The fourth returns

a value signifying the q status. The value and the associated status it represents are

given in the Table 12.1.

12.2.3 $q_remove

The task is to remove an entry from the queue (signifying servicing of the queue).

The first argument signifies the queue to be accessed. The second is the serial

number of the job. The third returns the value of the variable read from the queue.

The fourth is an integer representing the queue status – as given in Table 12.1.

12.2.4 $q_exam

The task is to elicit updated statistical information about the queue operation.

The first argument is the queue ID and the second is the code for requested

information. The information sought is returned as the third argument. The fourth

is the status of the queue. Respective codes are as in Table.12.1. Table 12.2 lists

the types of information that can be obtained from the specified queue. The first

column gives the code for the requested information and the second description of

the quantity returned.

410 QUEUES, PLAS, AND FSMS

Table 12.1 Status of queue Table 12.2 Information from the queue

Code value

returned

Meaning Code

value

Item returned

0 OK 1 Current queue length

1 Queue is full 2 Mean inter arrival time

2 Queue address not specified 3 Maximum queue length

3 Queue is empty 4 Lowest wait time

4 Queue type not available 5 Highest wait time

5 Length specified is negative 6 Average wait time

6 Queue address already exists

7 Inadequate memory

12.2.5 $q_full

The task checks the specified queue for possible available space for entry. The

first argument is the queue identification number; the second argument – returned

from the queue – signifies its status: It is 1 if the queue is full and 0 otherwise.

Queue-related activities are illustrated through a set of examples.

Example 12.1

A FIFO type of queue is set up with a length of 10 locations. The module is

shown in Figure 12.2, and the simulation results in Figure 12.3. A random number

in the range 0 to 100 is generated and successive ones added to the queue. After

the 10th entry status 1 is returned signifying “buffer full.”

module mulqua();

reg clk;

integer in, out, tim,iden,typ,len,status,jid ;

initial begin

 iden=8; typ=1; len =10; jid=1; clk=1'b0;

 $display ("time\t\tiden\ttyp\tlen\ttim\tstatus\tjid");

 $q_initialize(iden,typ,len,status);

 end

always #3 clk=~clk;

always@(posedge clk) begin

tim={$random}%100;

$q_add(iden,jid,tim,status);

continued

QUEUES 411

continued

$display("%0d\t\t%0d\t%0d\t%0d\t%0d\t%0d\t%0d",$time,iden,typ,len,tim,status,

jid);

jid=jid+1;

 end

initial #70 $stop;

endmodule

Figure 12.2 A module to illustrate queue generation: A test bench is also included in the

figure.

time iden typ len tim status jid

3 8 1 10 48 0 1

9 8 1 10 97 0 2

15 8 1 10 57 0 3

21 8 1 10 87 0 4

27 8 1 10 57 0 5

33 8 1 10 57 0 6

39 8 1 10 25 0 7

45 8 1 10 82 0 8

51 8 1 10 61 0 9

57 8 1 10 29 0 10

63 8 1 10 18 1 11

69 8 1 10 97 1 12

Figure 12.3 Results of simulating the module set in Figure 12.2.

Example 12.2

Figure 12.4 shows a module for sequential entry into a queue followed by removal

of the entries. A random number generates positive numbers in the range 0 to 100;

7 of them are entered into the queue. Subsequently, they are flushed out. The

simulation results are reproduced in Table 12.3.

Table 12.3 Simulation results of the module set in Figure 12.4

1 a 98 2 a 1 3 a 11 4 a 41 5 a 57 6 a 57 7 a 29

1 r 98 2 r 1 3 r 11 4 r 41 5 r 57 6 r 57 7 r 29

412 QUEUES, PLAS, AND FSMS

module dem_qb;

integer alpha, beta ,gama,i,n;

initial begin

 $q_initialize (1,1,10,alpha); //start a fifo queue no:1

 n=$random(22);

 for(i=1;i<8;i=i+1) begin

 beta=50 + $random%50;

 $q_add (1,i,beta,alpha);

 $write ("%0d a %0d ",i,beta);

 end

 $display;

 for(i=1;i<8;i=i+1) begin

 $q_remove (1,i,gama,alpha);

 $write ("%0d r %0d ",i,gama);

 end

 $display;

 end

endmodule

Figure 12.4 A module to illustrate the formation of a typical queue.

Example 12.3

The module in Figure 12.5 is a modified version of that in Figure 12.4. The queue

length has been set to 20. Twenty successive entries are made into the queue;

subsequently all are flushed out sequentially. The time interval of arrival of

successive entrants to the queue is a random number – in the range 0 to 7.

Simulation results are in Table 12.4. The queue service details are also displayed.

It includes the mean interval time of arrivals of entrants to the queue.

module dem_qg;

integer alpha, beta ,gama,i,j,n,qlen,mnit,xql; reg[2:0] aa[22:1]; reg[2:0] b;

initial begin

 $display ("addition\ni\tbeta\tb");

 $q_initialize (1,1,20,alpha); //start a fifo queue no:1

 n=$random(22);

 for(j=1;j<21;j=j+1) aa[j]=3+($random%4);

 for(i=1;i<21;i=i+1) begin

 beta=50 + $random%50;

 b=aa[i];

continued

QUEUES 413

continued

 #b $q_add (1,i,beta,alpha);

 $display ("%0d\t%0d\t%d",i,beta,b);

 end

 $display;

 $q_exam(1,1,qlen,alpha);$q_exam(1,2,mnit,alpha);

 $q_exam(1,3,xql,alpha);

 $display ("current queue length = %0d, mean interval time =

%d",qlen,mnit);

 $display ("maximum queue length = %0d", xql);

 $display("removal");

 $display ("i\tgama");

 for(i=1;i<21;i=i+1) begin

 $q_remove (1,i,gama,alpha);

 $display ("%0d\t%0d ",i,gama);

 end

 #500 $stop;

 end

endmodule

Figure 12.5 The module of Figure 12.4 modified to show queue statistics.

Table 12.4 Results of simulating the module pair in Figure 12.5

#addition # removal

i beta b i beta b i gama i gama

1 48 3 # 11 27 5 # 1 48 # 11 27

2 89 0 # 12 90 4 # 2 89 # 12 90

3 86 0 # 13 32 4 # 3 86 # 13 32

4 4 2 # 14 86 3 # 4 4 # 14 86

5 22 4 # 15 64 4 # 5 22 # 15 64

6 7 4 # 16 25 1 # 6 7 # 16 25

7 84 0 # 17 26 0 # 7 84 # 17 26

8 47 1 # 18 35 1 # 8 47 # 18 35

9 33 4 # 19 15 4 # 9 33 # 19 15

10 43 4 # 20 37 2 # 10 43 # 20 37

current queue length = 20, mean interval time = 2

maximum queue length = 20

414 QUEUES, PLAS, AND FSMS

12.3 PROGRAMMABLE LOGIC DEVICES (PLDs)

All logic functions can be realized in the sum of products or the product of sums

form. The practice is to express it in terms of minterms or maxterms and express

the function in terms of prime implicants [Micheli]. If its size is small, the

function can be realized in terms of a few SSIs or MSIs. But if the number of ICs

required increases beyond a limit, economic alternatives are provided by PLDs.

PLDs have circuit structures to realize combinational circuits; they also have

flip-flops and allow realization of sequential circuits. Often sequential circuits or

finite state machines with tens of states can be realized with them.

The term PLD refers to families of devices which can be programmed to carry out

different functions. Figure 12.6 shows the circuit arrangement of such a device in

simplified form.

The device accepts three logic inputs – x, y, and z – and through buffers makes

them as well as their complements available on six signal lines inside. These form

the inputs to a set of three AND gates – a1, a2, and a3 – with outputs p1, p2, and

p3. Borrowing a term from combinational circuits, p1, p2 and p3 are called the

“Product Terms.” The signal lines p1, p2, and p3 form possible inputs to the

following set of OR gates – r1, r2, and r3. s1, s2, and s3 are the OR gate outputs.

These can be made available as possible outputs of the device – designated g1, g2,

and g3. The device acts purely as a general-purpose combinatorial circuit with

programming facility. Alternately, s1, s2, and s3 can be the inputs to the flip-flops

– ff1, ff2, and ff3. The flip-flop outputs can be the chip outputs. The product term

p1 can be formed by selectively connecting inputs to the AND gate a1. The dots at

the crossings signify such a connection. With the dots shown, we get

p1 = x y’ z’

and

p2 = z’

where x’, y’, and z’ signify the complements of x, y, and z, respectively.

Selectively establishing the connections to p1, p2, and p3 forms the first level of

programming of the PLD.

The inputs to the OR gates r1, r2, and r3 can be selected from amongst p1, p2,

and p3. The dots at the crossings signify such connections. With the dots shown

for r3, we get

s3 = x y’ z’ + z.

Deciding the inputs to the OR gates constitutes the second level of

programming of the PLD.

The OR gate outputs can be made available directly at the output side as q1,

q2, and q3 respectively. Alternately, they can be loaded into the respective flip-

flops at the clock edges. The selection between these alternatives constitutes the

third level of programming of the PLD. In short, a combinational or a sequential

circuit is realized using a PLD, through three levels of programming.

PROGRAMMABLE LOGIC DEVICES (PLDs) 415

x

p1= xy'z'

a1

z

y

a3a2

p3p2

r1

r3

r2

s1

s3

s2

clk

clk

clk

ff1

ff3

ff2

q1

q3

q2

qf1

Figure 12.6 A diagram illustrating the structure of a PLA.

What is described here constitutes the general structure of a PLD. Details of

individual devices and device families differ from manufacturer to manufacturer.

Observations:

In mask programmable PLDs programming is done at the mask level at

the manufacturing stage itself.

In erasable PLDs (EPLDs), programming is done electrically at the

customer’s site. It is carried out with a particular sequence of electrical

voltage pulses applied to selected pins of the device. The program can be

erased by subjecting the device to UV rays for a specified period (~20

minutes) and the device can be reprogrammed.

416 QUEUES, PLAS, AND FSMS

An electrically erasable PLD (E2PL) is programmed like an EPLD by

applying a specific electrical voltage sequence to it. The erasure is also

carried out electrically by applying another set of electrical voltage

pulses. The electrically erased device can be programmed again.

EPLDs and E2PLDs are also known as field programmable devices.

Programmable array logic (PAL) is a class of PLD. The OR gates are

fixed here and not programmable. Only the AND gates can be

programmed.

A programmable logic array (PLA) is another class of PLD. The inputs

to their OR gates are also programmable; this is in addition to the

programming facility at the AND gate level.

Normally, the size of a PLD is referred to as a × b × c, where a, b, and c

are the number of input lines, the number of product terms, and the

number of output lines respectively.

Manufacturers offer different families of PLDs; normally, a family has

the size fixed with the number of its inputs and outputs changing.

Depending on the application, a family and a device in the family can be

selected.

The flip-flop outputs are normally available as additional input lines to

the product terms of the device. One can use them judiciously and realize

sequential circuits and different finite state machines.

12.3.1 Programming of PLD in VERILOG

Verilog provides a family of system tasks to simulate different types of PLDs.

Figure 12.7 shows the structure of the tasks. The keyword for the task is in three

parts; the alternatives for each are shown in the figure. Possible combinations of

the alternatives lead to a total of 16 such tasks. Their use is illustrated here

through an example.

$ $$

sync

async

and

nand

or

nor

array

plane

(aa, bb, cc)

m vectors n bits each

Input vector of n binary elements

Output vector of m binary elements

Figure 12.7 Format of the tasks to model PLAs.

PROGRAMMABLE LOGIC DEVICES (PLDs) 417

Example 12.4 A 2 × 2 Multiplier

Figure 12.8 shows a module to realize a 2 × 2 multiplier as a PLA. A test bench

for the multiplier is also included in the figure. Multipliers of much larger sizes

can be described and realized; the one considered here is purely illustrative in

nature.

a and b form the two 2-bit inputs to the multiplier and c is its 4-bit output.

The multiplier has been realized in a sum-of-products form. The input

combinations, the outputs, and the relevant product terms are shown in Table 12.5.

module mltp_a(a1,a0,b1,b0,c1,c2,c3,c4);//PLA based 2-bit multiplier

input a1,a0,b1,b0; output c1,c2,c3,c4;

reg[1:4] mand[1:9]; reg[1:9] mor[1:4]; reg p1,p2,p3,p4,p5,p6,p7,p8,p9,c1,c2,c3,c4;

initial begin

 mand[1]=4'b1010; mand[2]=4'b0110; mand[3]=4'b1110;

mand[4]=4'b1001;

 mand[5]=4'b0101; mand[6]=4'b1101; mand[7]=4'b1011;

mand[8]=4'b0111;

 mand[9]=4'b1111; mor[1]=9'b1_0100_0101; mor[2]=9'b0_1110_1110;

 mor[3]=9'b0_0001_1010; mor[4]=9'b0_0000_0001;

 $async$and$array(mand,{a0,a1,b0,b1},{p1,p2,p3,p4,p5,p6,p7,p8,p9});

 $async$or$array(mor,{p1,p2,p3,p4,p5,p6,p7,p8,p9},{c1,c2,c3,c4});

 end

endmodule

module mltp_a_tst;

reg a1,a0,b1,b0; reg[1:4] n; integer i;wire c4,c3,c2,c1;

mltp_a mm(a1,a0,b1,b0,c1,c2,c3,c4);

always begin

 n=4'b0000;

 for(i=0;i<17;i=i+1) begin

 {a1,a0,b1,b0}=n;

 #1 n=n+1'b1;

 end

 end

initial $monitor("%b\t%b\t%b",{a1,a0},{b1,b0},{c4,c3,c2,c1});

initial begin

 $display("a \tb\t a*b");

 #15 $stop;

 end

endmodule

Figure 12.8 A 2 × 2 multiplier module and its test bench.

418 QUEUES, PLAS, AND FSMS

Table 12.5 Details of the multiplier module in Figure 12.8

Bits of input a Bits of input b Product Bits of output c

a1 a0 b1 b0 p c3 c2 c1 c0

0 0 0 0 – 0 0 0 0

0 0 0 1 – 0 0 0 0

0 0 1 0 – 0 0 0 0

0 0 1 1 – 0 0 0 0

0 1 0 0 – 0 0 0 0

0 1 0 1 p1 0 0 0 1

0 1 1 0 p2 0 0 1 0

0 1 1 1 p3 0 0 1 1

1 0 0 0 – 0 0 0 0

1 0 0 1 p4 0 0 1 0

1 0 1 0 p5 1 0 0 0

1 0 1 1 p6 1 1 0 0

1 1 0 0 – 0 0 0 0

1 1 0 1 p7 0 0 1 1

1 1 1 0 p8 1 1 0 0

1 1 1 1 p9 1 0 0 1

The output bits affected by the product terms are shown in bold italics in the

table. The two PLA task statements in Figure 12.8 together realize the multiplier

in asynchronous form. Simulation results are reproduced in Table 12.6.

12.4 DESIGN OF FINITE STATE MACHINES

A finite state machine (FSM) is the most basic form of describing a digital system.

Properly carried out, it forms the optimal and compact representation. Knowledge

of design of FSMs will remain a basic one; hence its importance [Comer, Devadas

et al.] An FSM is characterized by the following:

A set of finite states

A set of logic inputs

Table 12.6 Simulation results of the module set in Figure 12.8

a b a*b a b a*b

00

00

00

00

01

01

01

00

01

10

11

00

01

10

0000

0000

0000

0000

0000

0001

0010

01

10

10

10

10

11

11

11

00

01

10

11

00

01

0011

0000

0010

0100

0110

0000

0011

DESIGN OF FINITE STATE MACHINES 419

A set of logic outputs

A set of logic equations connecting the next state to the present state and

present input vectors

A set of logic equations connecting the next output state to the present-state

input values

In general, a state description of a state machine consists of descriptions of the

state transitions, the output functions, and the next-state register functions.

Because the next-state functions call for memory or register based operations, an

always block is an appropriate way to describe it in Verilog. If-else-if or Case

statements, the 3-operand operator, or proper usage of combinational and

sequential UDPs perform the state transition and output function descriptions. In

case all the possible states are not defined and the Case statement is used to realize

the FSM, it should always have a default statement to ensure that the state machine

does not go into an undefined state. In case the If-else-if construct is used, at the

beginning of the always block an asynchronous reset or clear can be used to bring

the machine to a known initialized state.

The instant of transition from the present to the next can be completely

controlled by a clock; additionally, changes in the inputs may also dictate such

transitions. FSMs can be broadly classified into two categories – Moore machines

and Mealy machines. Design of both types is discussed and illustrated in the

sequel.

12.4.1 Moore Machine

The Moore model of the FSM is shown in Figure 12.9 in block diagram form. The

input vector A and the present state vector Sp together form the input to a

Output

Memory

Next state

combinational

logic

Output

combinational

logic

Clock

Input
A

S
n

S
n S

o

S
p

Figure 12.9 Moore machine in block diagram form.

420 QUEUES, PLAS, AND FSMS

combinational circuit block. Its output vector So forms the address input to the

memory block. At the active clock edge the memory location is accessed and the

next state vector output from it. At any moment a second combinational logic

block defines the output in terms of the present state vector. Two aspects

characterize a Moore machine:

Next state of the output is decided fully by the present state.

All changes in the output are brought about only at the active edge of the

clock. Hence the Moore machine is inherently synchronous.

Edge-triggered flip-flops, synchronous counters, etc., are typical examples of

Moore machines. Design of Moore machines can be described in various ways.

Since the active edge of the clock is pivotal to its operation, the circuit design

block can be directly activated at the active edge of the clock. Figure 12.10 shows

two approaches to the Moore machine design. Other combinations of procedural

and continuous assignments to So and Sp are also possible. All the approaches are

characterized by the following:

Assignments to Sn are procedural and at the active edge of the clock.

Assignments within the procedural block are of the nonblocking type, since

the updating of values depends on the previous state.

The step-by-step procedure for the design of a synchronous (Moore) machine is as

follows:

Generate a state diagram from the problem statement.

Minimize the number of states.

Select a binary encoding for the states.

Generate an encoded state table.

Select the memory device –T flip-flop or D flip-flop.

Generate a next-state K map for each memory device.

Generate a K map for each output.

Implement memory and combinational logic using PLAs or other devices.

always@(posedge clk)

begin

Sn <= F1(Sp);

Sp <= F2(Sn, A);

So <= F3(Sn);

End

Assign Sp = F2(Sn, A);

always@(posedge clk)

begin

Sn <= F1(Sp);

So <= F3(Sn);

End

Figure 12.10 Two of the possible approaches to a Moore machine description.

DESIGN OF FINITE STATE MACHINES 421

Example 12.5

A sequence generator is to sequence through eight distinct states. The states are

represented by a set of four binary variables – W, X, Y, and Z. The states and the

sequence are as follows (the 4 bits represent values of W, X, Y, and Z,

respectively):

1000 1100 0100 0110 0010 0011 0001 1001 1000

Each transition is to take place at the positive edge of the clock. Since the

scheme has no external primary input to affect the output, it is realized as a Moore

machine. A 3-bit state machine suffices to generate the eight independent states

specified. The step-by-step implementation of the FSM is on the following lines:

The binary encoding and the corresponding state assignment are shown in

Table 12.7 with the 3 bits being designated as Qa, Qb, and Qc; the states are

designated as S0, S1, S2, S3, S4, S5, S6, and S7, respectively. The binary

sequence of the FSM, the next state, and the set of outputs for each of the

states are given in the table.

The outputs W, X, Y, and Z are expressed as functions of Qa, Qb, and Qc in the

Sum of Products form and the respective Karnaugh maps are given in Table

12.8 to Table 12.11.

The outputs W, X, Y, and Z are given in minimized form as Equations (12.1),

(12.2), (12.3) and (12.4).

The next state variables Qa, Qb, and Qc are implemented using T-flip-flops

designated Ta, Tb and Tc respectively.

The inputs to the flip-flops Qa, Qb, and Qc are designated as Ta, Tb, and Tc;

Karnaugh maps for the respective functions are in Tables 12.12, 12.13 and

12.14.

Equations (12.5), (12.6) and (12.7) represent the minimized functional form of

Ta, Tb, and Tc.

Table 12.7 State assignments and transitions

Present state Next state

State designation QaQbQc QaQbQc Outputs WXYZ

S0 000 001 1000

S1 001 010 1100

S2 010 011 0100

S3 011 100 0110

S4 100 101 0010

S5 101 110 0011

S6 110 111 0001

S7 111 000 1001

422 QUEUES, PLAS, AND FSMS

Table 12.8 Karnaugh map for

FSM output W (Example 12.5)

Table 12.9 Karnaugh map for

FSM output X (Example 12.5)

QaQb QaQb

00 00 00 00 00 01 11 10

0 1 1 0 0 0 0 1 1 1
Qc

1 0 0 1 0
Qc

1 0 0 0 0

Table 12.10 Karnaugh map for

FSM output Y (Example 12.5)

Table 12.11 Karnaugh map for

FSM output Z (Example 12.5)

QaQb QaQb

00 01 11 10 00 01 11 10

0 0 0 1 0 0 0 0 0 0
Qc

1 1 1 0 0
Qc

1 0 1 1 1

Table 12.12 Karnaugh map

for Ta (Example 12.5)

Table 12.13 Karnaugh map

for Tb (Example 12.5)

QaQb QaQb

00 01 11 10 00 01 11 10

0 0 0 1 0 0 0 1 1 0
Qc

1 0 0 1 0
Qc

1 0 1 1 0

Table 12.14 Karnaugh map

for Tc (Example 12.5)

QaQb

00 01 11 10

0 1 1 1 1
Qc

1 1 1 1 1

zQ
y

Q
x

Q
y

Q
x

QW (12.1)

yxzx QQQQX (12.2)

zQ
y

Q
x

Q
y

Q
x

QY (12.3)

yxzx QQQQZ (12.4)

cba QQT (12.5)

cb QT (12.6)

1cT (12.7)

DESIGN OF FINITE STATE MACHINES 423

The above can be realized directly in a programmable logic device; but with the

increase in the number of states, the state machine becomes too big to be manually

designed. In such cases the design description can be done in Verilog.

12.4.1.1 Design Realization: Version 1

Figure 12.11 shows a module to realize the machine under discussion; a test bench

is also shown in the figure. There are two always block in the state machine

description. The outputs change as per the description of the first always blocks.

The change in the state occurs at the clock transitions as described in the second

always block. Thus the outputs are steered through whenever a state transition

occurs. Simulation results are shown in Figure 12.12 as waveforms of the signals.

The synthesized circuit is shown in Figure 12.13.

//sequence generator
//moore machine_a

`define s0 3'b000//wxyz=1000
`define s1 3'b001//wxyz=1100
`define s2 3'b010//0100
`define s3 3'b011//0110
`define s4 3'b100//0010
`define s5 3'b101//0011
`define s6 3'b110//0001
`define s7 3'b111//1001
module a_seqmoorev(clr,clk,w,x,y,z);
input clr,clk;
output w,x,y,z;
reg w,x,y,z;
reg [2:0]present_state;

always@(present_state)
begin
case(present_state)
 `s0: {w,x,y,z}=4'b1000;
 `s1: {w,x,y,z}=4'b1100;
 `s2: {w,x,y,z}=4'b0100;
 `s3: {w,x,y,z}=4'b0110;
 `s4: {w,x,y,z}=4'b0010;
 `s5: {w,x,y,z}=4'b0011;
 `s6: {w,x,y,z}=4'b0001;
 `s7: {w,x,y,z}=4'b1001;
endcase
end

continued

424 QUEUES, PLAS, AND FSMS

continued

always@(posedge clk)
begin
if (clr) present_state =`s0;
 else begin
 case(present_state)
 `s0: present_state=`s1;
 `s1: present_state=`s2;
 `s2: present_state=`s3;
 `s3: present_state=`s4;
 `s4: present_state=`s5;
 `s5: present_state=`s6;
 `s6: present_state=`s7;
 `s7: present_state=`s0;
 default: present_state=`s0;
 endcase
 end
end
endmodule

//test-bench
//In a moore machine the next_state logic is independent of primary inputs and
hence
module test_a_seqmoorev();
reg clr,clk;
wire w,x,y,z;
a_seqmoorev vv(clr,clk,w,x,y,z);
initial begin clk=1'b0;clr=1'b1; #3 clr =1'b0; #50 $stop; end
always #2 clk = ~clk;
endmodule

Figure 12.11 Module Version 1 of the design for the FSM of Example 12.5; a test bench for

the design is also shown in the figure.

Figure 12.12 Simulation results of the set of modules in Figure 12.11.

DESIGN OF FINITE STATE MACHINES 425

 Figure 12.13 Synthesized circuit of the design module in Figure 12.11.

12.4.1.2 Design Realization: Version 2

An alternate design module is shown in Figure 12.14. The transition output

variables and the state transitions of the next-state variables have been combined

in a common always block: The outputs are steered through at the clock edge;

hence as many extra latches are inferred as the number of outputs. The simulation

output waveforms are identical to those for Version 1 shown in Figure 12.12 and

are not reproduced. Six latches are implied – 2 for the state variables and four for

the 4 output variables. The synthesized circuit in Figure 12.15 too confirms the

same. In contrast, the coding in Version 1 above does not explicitly imply latches

for the output variables.

//sequence generator – moore machine

`define s0 3'b000//wxyz=1000

`define s1 3'b001//wxyz=1100

`define s2 3'b010//0100

`define s3 3'b011//0110

`define s4 3'b100//0010

`define s5 3'b101//0011

`define s6 3'b110//0001

`define s7 3'b111//1001

continued

426 QUEUES, PLAS, AND FSMS

continued

module seqmoorev2(clr,clk,w,x,y,z);

input clr,clk;

output w,x,y,z;

reg w,x,y,z;

reg [2:0]present_state;

//mainblock

always@(posedge clk or posedge clr)

begin

 if (clr)

 present_state =`s0;

 else

 begin

 case(present_state)

 `s0:begin present_state=`s1; {w,x,y,z}=4'b1000; end

 `s1:begin present_state=`s2; {w,x,y,z}=4'b1100; end

 `s2:begin present_state=`s3; {w,x,y,z}=4'b0100; end

 `s3:begin present_state=`s4; {w,x,y,z}=4'b0110; end

 `s4:begin present_state=`s5; {w,x,y,z}=4'b0010; end

 `s5:begin present_state=`s6; {w,x,y,z}=4'b0011; end

 `s6:begin present_state=`s7; {w,x,y,z}=4'b0001; end

 `s7:begin present_state=`s0; {w,x,y,z}=4'b1001; end

 default: present_state=`s0;

 endcase

 end

 end

endmodule

//test-bench

//In a moore machine the next_state logic is independent of primary inputs

module test_seqmoorev2();

reg clr,clk;

wire w,x,y,z;

seqmoorev2 vv(clr,clk,w,x,y,z);

initial begin clk=1'b0;clr=1'b1; #3 clr = 1'b0; #50 $stop; end

always #2 clk = ~clk;

endmodule

Figure 12.14 Module Version 2 of the design for the FSM of Example 12.5; a test bench for

the design is also shown in the figure.

DESIGN OF FINITE STATE MACHINES 427

Figure 12.15 Synthesized circuit of the design module in Figure 12.14.

12.4.2 Mealy Machine

The Mealy machine is shown in block diagram form in Figure 12.17. It differs

from the Moore machine at the output stage. The inputs can affect the outputs

directly. Thus for the output So we have

So = F4(Sn, A)

The changes in the input A reflect as corresponding changes in the outputs without

the clock being directly involved: To that extent the behavior is asynchronous.

Counters with asynchronous Preset and Clear and Shift Registers with Preset are

examples of Mealy machines. A Mealy machine has to respond to changes in

input in addition to the response to the active edges of the clock. The same can be

accommodated in various ways. Figure 12.16 shows two possible realizations.

always@(negedge clk or A)

assignments;

Continuous assignments;

always@(negedge clk or A)

Assignments;

Figure 12.16 Two possible approaches to Mealy machine description.

428 QUEUES, PLAS, AND FSMS

Output

Memory

Next state

combinational

logic

Output

combinational

logic

Clock
S

n

S
n

S
o

S
p

Input A

Figure 12.17 A Mealy machine in block diagram form.

Example 12.6

A sequence generator is to have four binary outputs designated W, X, Y, and Z.

They are to follow either of two sequences depending on the value of a Boolean

variable A:

If A = 0, the sequence to be followed is

1000 1100 0100 0110 0010 0011 0001 1001 1000 . . .

where W is the most significant bit and Z the least significant bit.

If A = 1, the sequence to be followed is

1001 0001 0011 0010 0110 0100 1100 1000 1001 . . .

The encoding used for the Moore machine has been retained. The design is done

on the following lines:

The encoding, the set of present states, corresponding next states and

respective outputs are shown in Table 12.15 for the sequence when A = 0:

Table 12.16 shows the same when A = 1.

Each of the outputs is a function of 4 variables, namely, Qa, Qb, Qc, and A.

The Karnaugh map representation of the functions is in Tables 12.17 to 12.20.

The minimized functions are given by Equations (12.8) to (12.11).

Each next state variable is also a function of Qa, Qb, Qc, and A; the functions

are represented in Karnaugh map form in Tables 12.21 to 12.24. The

respective minimized functions are given by Equations (12.12) to (12.14).

DESIGN OF FINITE STATE MACHINES 429

Table 12.15 State transition details for

Example 12.6 for A = 0

Table 12.16 State transition details for

Example 12.6 for A = 1

Present state
Next state for

A = 0
Present state

Next state for

A = 1

State

designation
QaQbQc QaQbQc

Outputs

WXYZ

State

designation
QaQbQc QaQbQc

Outputs

WXYZ

S0 000 001 1000 S0 000 111 0001

S1 001 010 1100 S1 111 110 0011

S2 010 011 0100 S2 110 101 0010

S3 011 100 0110 S3 101 100 0110

S4 100 101 0010 S4 100 011 0100

S5 101 110 0011 S5 011 010 1100

S6 110 111 0001 S6 010 001 1000

S7 111 000 1001 S7 001 000 1001

Table 12.17 Karnaugh map for FSM

output W (Example 12.6)

Table 12.18 Karnaugh map for FSM

output X (Example 12.6)

QbQc QbQc

00 01 11 10 00 01 11 10

00 1 1 0 0 00 0 1 1 1

01 0 0 1 0 01 0 0 0 0

11 0 0 1 1 11 1 1 0 1
AQa

10 1 0 0 0

AQa

10 0 0 0 0

Table 12.19 Karnaugh map for FSM

output Y (Example 12.6)

Table 12.20 Karnaugh map for FSM

output Z (Example 12.6)

QbQc QbQc

00 01 11 10 00 01 11 10

00 0 0 1 0 00 0 0 0 0

01 1 1 0 0 01 0 1 1 1

11 1 0 0 0 11 0 0 0 0
AQa

10 0 0 1 1

AQa

10 1 1 0 1

cbacbacbaba QQQQQAQQQQQQAW (12.8)

bacabaca QAQQAQQQAQQAX (12.9)

bacbabacba QAQQQQQQAQQQY (12.10)

cababaca QQAQQAQQAQQAZ (12.11)

430 QUEUES, PLAS, AND FSMS

Table 12.21 Karnaugh map for Ta

(Example 12.6)

Table 12.22 Karnaugh map for Tb

(Example 12.6)

QbQc QbQc

00 01 11 10 00 01 11 10

00 0 0 1 0 00 0 1 1 0

01 0 0 1 0 01 0 1 1 0

11 1 1 1 1 11 1 1 1 1
AQa

10 1 1 1 1

AQa

10 1 1 1 1

Table 12.23 Karnaugh map for Tc

(Example 12.6)

QbQc

00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 1 1
AQa

10 1 1 1 1

AYZTa (12.12)

AZATb (12.13)

Tc = 1 (12.14)

The above FSM can be realized using a PLD. However, here it is realized through

a Verilog module. The module and its test bench are in Figure 12.18. The

simulation waveforms are in Figure 12.19. The synthesized circuit is shown in

Figure 12.20.

//sequence generator – mealy machine

`define s0 3'b000//wxyz=1000

`define s1 3'b001//wxyz=1100

`define s2 3'b010//0100

`define s3 3'b011//0110

`define s4 3'b100//0010

`define s5 3'b101//0011

`define s6 3'b110//0001

`define s7 3'b111//1001

module p_seqmealy(a,clk,w,x,y,z,state);

input a,clk; output w,x,y,z; output [2:0]state;

reg w,x,y,z; reg [2:0] state,next_state;

continued

DESIGN OF FINITE STATE MACHINES 431

continued

initial begin
 if (!x)
 begin
 state=`s0;
 next_state=`s0;
 end
 else begin
 state =`s7;
 next_state =`s7;
 end
 end
always@(posedge clk)
state = next_state;
always@(state)
 begin
 case(state)
 `s0: {w,x,y,z}=4'b1000;
 `s1: {w,x,y,z}=4'b1100;
 `s2: {w,x,y,z}=4'b0100;
 `s3: {w,x,y,z}=4'b0110;
 `s4: {w,x,y,z}=4'b0010;
 `s5: {w,x,y,z}=4'b0011;
 `s6: {w,x,y,z}=4'b0001;
 `s7: {w,x,y,z}=4'b1001;
 endcase
 end

//mainblock
always@(clk)
 begin
 case(state)
 `s0: next_state=a?`s7:`s1;
 `s1: next_state=a?`s0:`s2;
 `s2: next_state=a?`s1:`s3;
 `s3: next_state=a?`s2:`s4;
 `s4: next_state=a?`s3:`s5;
 `s5: next_state=a?`s4:`s6;
 `s6: next_state=a?`s5:`s7;
 `s7: next_state=a?`s6:`s0;
 endcase
 end
endmodule

continued

432 QUEUES, PLAS, AND FSMS

continued

//test-bench

module p_tst_seqmealy();

reg a, clk; wire w,x,y,z; wire [2:0]state;

p_seqmealy sm (a,clk,w,x,y,z,state);

initial begin clk=1'b0;a=1'b0; #150 $stop; end

always #2 clk = ~clk;

always #60 a=~a;

endmodule

Figure 12.18 A design module for the FSM of Example 12.6. A test bench is also included

in the listing.

Figure 12.19 Waveforms of the variables during the simulation of the module in Figure

12.18.

Figure 12.20 Synthesized circuit of the FSM module in Figure 12.18.

EXERCISES 433

12.5 EXERCISES

A microcontroller is shown in block diagram form in Figure 12.21. Its

organization and working are briefly on the following lines:

A clock unit generates a nonoverlapping two-phase clock – designated alpha

and beta.

The program memory is of 1 Kb.

The program counter (PC) is 10 bits wide. Its output forms the address for the

program memory.

The instruction to be executed is fetched from the program memory and

loaded into the instruction register (IR). The program counter content forms

address of the instruction.

The PC incrementer can increment the program counter by 1, 2, or 3 as

desired; the incrementing is synchronous with one of the clocks.

The instruction decoder decodes the instruction and provides the control

outputs to the different units.

A versatile register file (VRF), an ALU, a RAM, a serial I/O unit, a clock

scaler and a move block byte (MBB) are the other units of the

Microcontroller.

Instructions are fetched from the program memory and executed successively

and cyclically.

The microcontroller is to be developed in steps through the exercises given below.

Serial I/O

unit

VRF

Clock

scaler

MBB

unit

VRF

controller

RAM

Program

counter

Program

memory

PC

Incrementer

Instruction

register

Instruction

decoder

ALU

Clock unit

Figure 12.21 A microcontroller in block diagram form.

434 QUEUES, PLAS, AND FSMS

 1. The instruction decoder block of a microcontroller is shown in Figure

12.22(a). Its clock – called ‘alpha’ – is to work with output as shown in

Figure 2.22(b). Details are as given below:

 a. Widths of register outputs are given in the figure.

 b. The program memory is to be 1 Kb wide.

 c. At every positive edge of the clock the program counter (PC) has to

increment by one.

 d. The PC output forms the address to the program memory: Data at the

location are transferred to the instruction register (IR) at the following

negative edge of alpha clock.

 e. The IR output is decoded by the instruction decoder.

 The instruction decoder output is 24 bits wide – designated c0 to c23. Set

up the scheme and test it through a test bench. The alpha clock is to be

generated; the 8-bit IR content is to be output. load the program memory

with 1 Kb of random data. Bring them out as IR output successively in the

test-bench. The instruction decoder may be ignored for the present.

 2. Modify the scheme in Exercise 1 above by interposing a “PC Incrementer”

between the clock and the PC as shown in Figure 12.23 to form the

instruction decoder (ID) module. The control bits c22 and c23 decide its

role:

clock

program

counter

Instruction

register

Instruction

decoder

alpha

10 bit

8 bit

8 bit

c0 to c23

Program

Memory

0 1 4 5 8
t

alpha

clock

(a) (b)

Figure 12.22 Figure for Exercise 1: (a) Instruction decoder block. (b) alpha clock.

EXERCISES 435

clock

program

counter

Instruction

register

Instruction

decoder

alpha

10 bit

8 bit

8 bit

c0 to c23

Program

Memory

PC Incrementer

Alternate

register

16 bit

Figure 12.23 Figure for Exercise 2: A modified version of the instruction decoder block in

Figure 12.22.

 a. If c22 c23 = 00, increment the PC by one byte.

 b. If c22 c23 = 01, increment the PC by two bytes; load the following byte

to the alternate register (immediate memory addressing).

 c. If c22 c23 = 10, increment the PC by three bytes; load the following two

bytes to the alternate register (immediate memory addressing – two bytes

of data).

 d. If c22 c23 = 11, increment the PC by three bytes; load the following two

bytes back to the PC (unconditional jump).

 3. Set up a versatile register file (VRF) on the following lines:

 a. 16 numbers of 8-bit registers addressed by 4 bits

 b. A control vector c of 13 bits:

i. c0 – c3 address A

ii. c5 – c8 address B

iii. c9 – c11 steer vector (SV)

iv. c12 enable bit

 c. Two buses aa and bb – 8 bits wide

 d. Clock waveform (clock beta) as in Figure 12.24(a).

 e. Carry out instructions as in Table 12.24. If c12 = 1, VRF is active. If c12

= 0, VRF is inactive.

436 QUEUES, PLAS, AND FSMS

 The VRF will have a VRF controller – a decoder, a mux and a demux

combined – [Figure 12.24(b)].

 Realize the module, form a test bench, and test the module for all its

functions.

2 3 6 7 10
t

beta

clock

VRF
VRF

controller
ba

Control vector

bb

beta Clock

8

8

Figure 12.24 (a) beta clock waveform. Figure 12.24 (b) The VRF in Exercise 3

in block diagram form.

Table 12.24 Instructions linked to VRF in Exercise 3

SV value Instruction

000 Clear VRF.

001 Load data on bus ba to register of address A (8-bit store).

010 Clear register of address A.

011 Read from register of address A into bus bb (8 bit load).

100 Transfer content of register of address A into register of address B; content of

register of address A to remain unaffected.

101 Swap contents of register of address A and register of address B.

110 Load from ba to register of address A and bb to register of address B (16-bit

store).

111 Load from register of address A to ba and register of address B to bb (16-bit

Load).

 4. Combine the ID and the VRF modules in the two previous exercises as

shown in Figure 12.25. Details of Instructions are in Table 12.25. The 8-bit

content of IR is the instruction to be carried out. For the set of values of IR

content given in Table 12.25, the control lines active are c0 – c11, c22 and

c23. All other control lines are zero. Note that the IR values given in Table

12.25 are all Opcodes. The instruction decoder has to accept the 8-bit

content of IR and generate all the necessary control signal values through

appropriate combinational logic.

 5. Combine the IR-VRF of the last exercise with an ALU. A and B will be the

source and destination addresses of the ALU operation for all the ALU

instructions. The ALU operation is specified by the bits b0-b2 of IR; the

additional commitment of IR bits is follows:

 a. b3-b4 specify A address

 b. b5-b6 specify B address

EXERCISES 437

ID module

VRF module

c0 - c11

ba
8 bit

bb

alpha clock

beta clock

8 bit

Figure 12.25 Combining ID and VRF units as in Exercise 12.4.

Table 12.25 Instructions for the unit in Figure 12.25

IR

content

Instruction to be carried out No. of bytes by

which the PC is to

be incremented

00H No operation 1

01H Specify address of register A; load following byte into Ra 2

02H Specify addresses of registers A and B;; load following

word into the pair.
3

03H Specify addresses of registers A and B; load the content of

the pair into the PC.
–

04H Clear VRF 1

05H to

0bH

All register based instructions in Exercise 3 above, as

detailed in Table 12.24; every instruction is a 2 byte

instruction with the 2nd byte specifying the A and B

addresses

2

 c. b7 = 1 for ALU operation and 0 for other operations

 d. Carry, borrow, half-carry, and zero bits are to be loaded into the 0Fh

register of VRF.

 Prepare a test bench for the design and test all assigned functions.

 6. The above compact processor has some (many) limitations. When b7 = 1,

127 Opcode possibilities exist; only eight of them have been used. Others

cannot be used. Why?

 7. Add a serial transmitter module to the unit in Exercise 5 as shown in Figure

12.26. Assign addresses 0Eh and 0Dh of VRF to RcR and TxR. Specific

details are as follows:

438 QUEUES, PLAS, AND FSMS

Serial transmitterClock scaler
alpha clock

c18 & c19 for

clock scaling

Control bits c20 &

c21 of ID module

Din

Dout
Txr RcR

Figure 12.26 Block diagram of the serial I/O unit to be added to the microcontroller.

 a. In the Opcode b7 b6 b5 = 000 & b4 = 1 for serial transmission.

 b. When IR = 10H transmit TxR content serially to Dout.

 c. When IR = 11H, receive Din data and load it into RcR.

 d. IR = 12H transmit as with IR = 10H but at half the clock rate.

 e. IR = 13H receive as with IR = 11H but at half the clock rate.

 f. IR = 14H transmit as with IR = 10H but at 1/4th the clock rate.

 g. IR = 15H receive as with IR = 11H but at 1/4th the clock rate.

 h. IR = 14H transmit as with IR = 10H but at 1/8th the clock rate.

 i. IR = 15H receive as with IR = 11H but at 1/8th the clock rate.

 Four possible clock values are specified here; use control bits c18 & c19 to

select clock scale factor.

 8. Form a processor by combining the Memory block of Exercise 5 in Chapter

7 with ID, VRF, and serial I/O block above. Have the following additional

instructions:

 a. For IR content 20H to 2fH, load the following two bytes from the

program memory into the MAR at beta clock. In the following alpha

clock, do memory read and load into the register in VRF with address as

the 2nd nibble of the Opcode.

 b. For IR content 31H to 3fH load the following two bytes from the program

memory into the MAR at beta clock. In the following alpha clock, take

the content of register from VRF with address as the 2nd nibble of the

Opcode and do memory write at the address in MAR.

 9. The processor built up above has room for only a limited set of Opcodes. It

is due to the limited IR width and the constraint imposed on it that b7 = 1

means ALU operation. The constraint was imposed to make the instruction

decoder simple. Remove this constraint and absorb further decoding onto it.

With such a change, many more instructions can be accommodated as

shown in Table 12.26.

EXERCISES 439

Table 12.26 Part of a compact Instruction set for the processor

Opcode Operation

00H to 0bH All the instructions in Exercise 5 above linking ID unit and the VRF unit.

10H – 1fH Immediate-type ALU instructions; result to be put in the VRF register of

address 0H.

20 H– 2fH Load and store-type instructions between RAM, VRF, and the immediate

bytes.

30H – 3fH Fetch from memory, ALU operation and back to VRF.

40H – 4fH Fetch from VRF, ALU operation, and back to memory.

50 onward Serial transmit, serial receive, block move; provision for additions to the

instruction set.

 10. Add reset input to the processor in the above example. All the registers and

all the locations in the memory block should get reset and remain so as long

as the reset line is high. It includes the alpha and beta clocks also. The

reset input should remain low for 100 ns and revert to the high state

automatically. As soon as it goes high the processor should start working.

It should start with t = 0 ns with the alpha clock waveform. The program

memory is to remain undisturbed during the reset mode (Note that the reset

line is to be added to all the modules as an additional input). Test the reset

function through a test-bench.

 11. Add “hold” input to the processor. Normally the hold input should be low.

As long as it remains high, the processor operation will remain suspended;

PC, IR, all registers, memory locations, etc., will retain their stored values

(Hint: Disable the clocks to all the blocks). Test the hold function through a

test bench.

 12. “Move Bulk Byte” (MBB) unit: The unit is shown in block diagram form in

Figure 12.27. The MBB block is to move a block of data bytes to the

memory block from ba bus; or it is to move a block of data bytes from the

memory block to bus ba. The movement is effected byte-wise on successive

clock pulses. MBB is a skeletal DMA unit. Its activity is decided by the

contents of three registers within. They decide the starting address of the

block (register strt), the size of the block (register sz), and the mode of

transfer (bits M1 and M2). Form the unit with the following functions:

 a. The block is selected when the Select input goes high; any activity

connected with the block is done with the select line held high.

 b. When Load1 input goes high, the byte on the ba bus will be loaded into

register strt (more significant byte of the starting address). It will happen

at the following positive edge of beta.

 c. When Load2 goes high, the byte on the ba bus will be loaded into register

sz (size) inside. It will happen at the following positive edge of beta.

440 QUEUES, PLAS, AND FSMS

 d. During the beta clock pulse following Load2, bits M1 and M2 will be

loaded through the 0th and 1st bits on ba bus. With such three successive

load operations, MBB is ready for data transfer.

 e. M1 decides mode and M2 decides the operation. M1M2 = 00 means the

MBB is to do read operation with the processor in HOLD mode. MM2 =

01 means the MMB is to do write operation in hold mode. MM2 = 10

means that doing read operation in “cycle steal” mode. MM2 = 11 means

write operation in “cycle steal” mode.

 Specify the sequence of activities for each of the operations. The bits M1,

M2, Load1, Load2, and clocks alpha and beta are all to be used as inputs to

a finite state machine and outputs WR, RD, SD (selective disable), and

EBM (enable bulk move) generated to conform to the above requirements.

Design the FSM and test it through a test-bench. Integrate it with the

registers sz and strt to complete the MBB. Prepare a test-bench for the

MBB and test its functioning.

Clock unit
MBB

beta

alpha

Load2

Load1

Select

EBM

ba

SD

RD

WR

Figure 12.27 The MBB unit considered in Exercise 12 in block diagram form.

 13. Form two single byte ports and link them to the MBB; one is to the input

port for data being written to the MBB and the other the output port for data

read from it. Form the composite module; test it with a test bench.

 14. Designate two registers 0ch and 0bh in VRF as input and output ports.

Assign two flags – data input flag (DIF) and data output flag (DOF) in the

Status register (b6 and b5) dedicated to I//O operation. Whenever data are

written into the DIF, b6 of status register is set. Whenever data in DIF is

read, b6 of status register is reset. Similarly, whenever data are written into

the DOF, b6 of status register is set. Whenever data in DOF are read, b6 of

status register is reset. Through a suitable test bench, test port allocations

and assignments.

EXERCISES 441

 15. Integrate the MBB and the memory block of Exercise 5 in Chapter 7. Note

that the data selected for movement of data start at the beginning of pages

128 bytes apart. Test the operation of the composite unit through a test-

bench.

 16. Integrate the MBB with the processor; add the reset input to the MBB also.

Note that Load1, Load2, Enable, M1 and M2 can be combined and output as

one byte on the bb bus from the ID block of the processor. Depending on

the activity desired, the select bit can be made 1 or 0. c17 of the ID unit is

to be connected to the select input of the MBB block. Load EBM into b7 of

the status byte (0th byte of the VRF block).

 a. Ready the processor for bulk writing into memory by writing into strt and

sz registers: Hold mode is to be used.

 b. Ready the processor for bulk reading from memory by writing into strt

and sz registers: Hold mode is to be used.

 c. Ready the processor for bulk writing into memory by writing into strt and

sz registers: Cycle steal mode is to be used.

 d. Ready the processor for bulk reading from memory by writing into strt

and sz registers: Cycle steal mode is to be used.

 Assign Opcodes to the above instructions. Test the functions through a test

bench.

 17. In the processor two registers of the VRF were designated as input and

output registers, respectively. Instead use separate ports as the basis: Attach

an input port and an output port to the processor. Use c15 and c16 of the ID

module to read from the input port and write to the output port, respectively.

443

APPENDIX A

Keywords and Their Significance

always Start of a continuous type of behavior activity flow
and Instantiation of an AND gate primitive
assign Assign a value or an expression to a net or a

variable
automatic The qualified function / task is of a reentrant type
begin Start of a block of statements
buf Instantiation of a buffer primitive
bufif0 Instantiation of a tri-state buffer primitive; On

when the control input is at 0 state
bufif1 Instantiation of a tri-state buffer primitive; On

when the control input is at 1 state
case Start of a multiway decision statement
casex Start of a multiway decision statement: x and z

values are don’t cares
casez Start of a multi-way decision statement: z values

are don’t cares
cell Design element such as module, primitive, etc.
cmos Instantiation of a CMOS switch primitive
config Configuration for instantiation
deassign Termination of a procedural continuous assignment
default Unspecified instances in a configuration
defparam Modified value of parameter(s) follows.
design Library and cell of the top level module
disable Termination of a concurrent activity
edge Type of edge for timing checks
else Alternative in a conditional assignment
end Termination of a block definition
endcase Termination of a case statement
endconfig Termination of configuration for instantiation
endfunction Termination of a function definition
endgenerate Termination of multiple instantiations
endmodule Termination of a module definition

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

444 APPENDIX A

endprimitive Termination of an UDP definition
endspecify Termination of a specify block definition
endtable Termination of a table definition
endtask Termination of a task definition
event A flag
for Control execution of statement(s) by a three-step

process
force An overriding assignment on a variable / variables
forever Continuous execution of statement (s)
fork Statements for concurrent execution
function Start of definition of a function
generate Multiple instantiation
genvar The index variable in a generate loop
highz0 0 state of a net with high source impedance
highz1 1 state of a net with high source impedance
if Conditional operator
ifnone Default state-dependent path delay
include Inclusion of specified file
initial Start of an “only once” type of behavior activity

flow
inout Declaration of port(s) of input or output types
input Declaration of input port(s)
instance A specific instance (to be followed by an expansion

clause)
integer A variable of type integer
join Termination of list of statements for concurrent

execution
large Largest value of charge strength on a net
liblist A set of libraries to be searched for the instance
library A logical collection of cells
localparam Parameter value not alterable externally
macromodule Start of a module definition
medium Medium value of charge strength on a net
module Start of a module definition
nand Instantiation of a NAND gate primitive
negedge Falling edge of a net or variable
nmos Instantiation of an NMOS switch primitive
nor Instantiation of a NOR gate primitive
noshowcancelled In case of anomalous delay specifications, avoid

output transition to x state
not Instantiation of a NOT gate primitive
notif0 Instantiation of a tri-state NOT gate primitive: ON

when control input is at 0 state
notif1 Instantiation of a tri-state NOT gate primitive: ON

when control input is at 1 state
or Alternative event in sensitivity list

APPENDIX A 445

output Declaration of output port(s)
parameter Declaration of a constant / constants
pmos Instantiation of a PMOS switch primitive
posedge Rising edge of a net or variable
primitive Start of an UDP definition
pull0 Strength value of net (s) at 0 state
pull1 Strength value of net (s) at 1 state
pulldown A resistive connection of a net to logic 0
pullup A resistive connection of a net to logic 1
pulsestyle_onevent Possible transition of output to x state on event
pulsestyle_ondetect Possible transition of output to x state on detection
rcmos Instantiation of a resistive CMOS switch primitive
real A variable or a constant of the real number type
realtime Numerical value of simulation time
reg A data storage element
release Termination of an overriding assignment on a

variable / variables
repeat Execute a statement / statements a fixed number of

times
rnmos Instantiation of a resistive NMOS switch primitive
rpmos Instantiation of a resistive PMOS switch primitive
rtran A bi-directional resistive pass switch primitive
rtranif0 A bi-directional resistive pass switch primitive; it is

ON when control input is 0.
rtranif1 A bidirectional resistive pass switch primitive; it is

ON when control input is 1.
scalared No restriction on operation on vectors specified
showcancelled Output transition to x state bypassing possible

anomalous delay specifications
signed The qualified variable has a sign associated
small Smallest value of charge strength on a net
specify Specific value assignments to parameters follow
specparam Specifies values for the parameters that follow
strong0 Strength value of net when in 0 state
strong1 Strength value of net when in 1 state
supply0 Connection to logic 0 supply
supply1 Connection to logic 1 supply
table Beginning of state table of a UDP
task Start of a task definition
time Time variable
tran A bi-directional pass switch primitive
tranif0 A bi-directional pass switch primitive; it is ON

when control input is 0.

446 APPENDIX A

tranif1 A bi-directional pass switch primitive; it is ON

when control input is 1.
tri A net driven from multiple sources
tri0 A net driven from multiple sources with resistive

pulldown
tri1 A net driven from multiple sources with resistive

pullup
triand A net (nets) driven by multiple sources with AND-

type output in case of conflict
trior A net (nets) driven by multiple sources with OR-

type output in case of conflict
trireg A capacitive type net which can store charge
use A binding for the cell specified
vectored Restricted operation on vectors specified
wait Wait for an expression to be true to start execution
wand A net (nets) driven by multiple sources with AND-

type output in case of conflict
weak0 Strength value of net (s) at 0 state
weak1 Strength value of net (s) at 1 state
while Execute a statement / statements until an expression

becomes false
wire A type of net
wor A net (nets) driven by multiple sources with OR

type output in case of conflict
xnor Instantiation of an XNOR gate primitive
xor Instantiation of an XOR gate primitive

447

APPENDIX B

Truth Tables of Gates and Switches

The truth tables for gates are given with two inputs each; it remains the same for

multiple inputs as well. The inputs are designated as ‘Input 1’ and ‘Input 2’; the

output values are in the respective cells of the table.

Table B.1 Truth table of AND gate Table B.2 Truth table of OR gate

Input 1 Input 1

0 1 x z 0 1 x z

0 0 0 0 0 0 0 1 x x

1 0 1 x x 1 1 1 1 1

x 0 x x x x x 1 x x

In
p

u
t

2

z 0 x x x

In
p

u
t

2

z x 1 x x

Table B.3 Truth table of NAND gate Table B.4 Truth table of NOR gate

Input 1 Input 1

0 1 x z 0 1 x z

0 1 1 1 1 0 1 0 x x

1 1 0 x x 1 0 0 0 0

x 1 x x x x x 0 x x

In
p

u
t

2

z 1 x x x

In
p

u
t

2

z x 0 x x

Table B.5 Truth table of XOR gate Table B.6 Truth table of XNOR gate

Input 1 Input 1

0 1 x z 0 1 x z

0 0 1 x x 0 1 0 x x

1 1 0 x x 1 0 1 x x

x x x x x x x x x x

In
p

u
t

2

z x x x x

In
p

u
t

2

z x x x x

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

448 APPENDIX B

Table B.7 Truth table for Buffer and

NOT gates

Input buf output NOT output

0 0 1

1 1 0

x x x

z x x

Table B 8 Truth table of bufif0 gate Table B 9 Truth table of bufif1 gate

Data input Data input

0 1 x z 0 1 x z

0 0 1 x x 0 z z z z

1 z z z z 1 0 1 x x

x L H x x x L H x x

C
o

n
tr

o
l

in
p

u
t

z L H x x

C
o

n
tr

o
l

in
p

u
t

z L H x x

Table B 10 Truth table of notif0 gate Table B 11 Truth table of notif1 gate

Data input Data input

0 1 x z 0 1 x z

0 1 0 x x 0 z z z z

1 z z z z 1 1 0 x x

x H L x x x H L x x

C
o

n
tr

o
l

in
p

u
t

z H L x x C
o

n
tr

o
l

in
p

u
t

z H L x x

Table B 12 Truth table of pmos and

rpmos gates

Table B 13 Truth table of nmos and

rnmos gates

Data input Data input

0 1 x z 0 1 x z

0 0 1 x x 0 z z z z

1 z z z z 1 0 1 x x

x L H x x x L H x x

C
o

n
tr

o
l

in
p

u
t

z L H x x C
o

n
tr

o
l

in
p

u
t

z L H x x

449

REFERENCES

Arnold MG (1998) Verilog Digital Computer Design. Prentice-Hall, Englewood

Cliffs, NJ.

Baker RJ, Li HW, Boyce DE (1998) CMOS Circuit Design, Layout and

Simulation. IEEE, New York.

Bhaskar J (1997) Verilog HDL Primer. Star Galaxy Press, Allentown, PA.

Bignell J, Donovan R (2000) Digital Electronics, 4th ed. Thomson Learning, New

York.

Bogart Jr., TF (1992) Introduction to Digital Circuits. McGraw-Hill, New York.

Ciletti MD (1999) Modeling, Synthesis and Rapid Prototyping with the Verilog

HDL. Prentice-Hall, Englewood Cliffs, NJ.

Comer DJ (1995) Digital Logic and State Machine Design. 3rd ed. Saunders

College Publishing, New York.

Devadas S, Ghosh A, Keutzer K (1994) Logic Synthesis. McGraw-Hill, New York.

Gopalan KG (1996) Introduction to Digital Microelectronic Circuits. McGraw-

Hill, New York.

Gottfried BS (1990) Programming with C. McGraw-Hill, New York.

Heuring VP, Jordan HJ (1997) Computer Systems Design and Architecture.

Addison-Wesley, Menlo Park, CA.

Hill FJ, Peterson G (1987) Digital Systems: Hardware Organization and Design.

3rd ed. John Wiley & Sons, New York.

IEEE (2001) IEEE Standard Verilog Hardware Description Language. IEEE,

New York

Lee JM (1997) Verilog Quickstart. Kluwer Academic Publishers, Norwell, Ma.

Micheli GD (1994) Synthesis and Optimization of Digital Circuits. McGraw-Hill,

New York.

Navabi Z (1999) Verilog Digital System Design. McGraw-Hill, New York.

Oldfield JV, Dorf RC (1995) Field Programmable Gate Arrays. Wiley

Interscience, New York.

Palnitkar S (1996) Verilog HDL: A Guide to Digital Design and Synthesis.

Prentice-Hall, Engelwood Cliffs, NJ.

Proakis JG (2001) Digital Communications. 4th ed. McGraw-Hill, New York.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

450 REFERENCES

Roth Jr., Charles H (1998) Digital Systems Design Using VHDL. PWS Publishing,

Boston.

Rabaey JM (1996) Digital Integrated Circuits – A Design Perspective. Prentice-

Hall, Engelwood Cliffs, NJ.

Sedra AS, Smith KC (1998) Microelectronic Circuits, 4th ed. Oxford University

Press, New York.

Smith DJ (1996) A Practical Guide for Designing, Synthesizing and Simulating

ASICs and FPGAs using VHDL or Verilog. Doone Publications,

Madison, AL.

Smith MJ (1997) Application-Specific Integrated Circuits. Addison-Wesley

Longman, Reading, MA.

Sutherland S (2001) Verilog 2001. Kluwer Academic Publishers, Norwell, MA.

Thomas DE, Moorby PR (1996) The Verilog Hardware Description Language.

3rd ed. Kluwer Academic Publishers, Norwell, MA.

Tocci RJ, Widmer NS (2001) Digital Systems – Principles and Applications. 8th

ed. Pearson Education, Singapore.

Wai-Kai Chen (ed) (2000) VLSI Handbook, CRC Press, Florida.

Wakerly JF (2000) Digital Design – Principles and Practices. Prentice-Hall,

Engelwood Cliffs, NJ.

Wolf W (1998) Modern VLSI Design – Systems on Silicon. Prentice-Hall,

Engelwood Cliffs, NJ.

451

INDEX

A
Adder, 239-244, 277-283, 290, 291

 BCD, 147, 148

ALU, 116-123, 143-145, 210-212

always, 161, 168,169

and, 48-50

Array of instances, 66

ASIC, 4

assign, 128, 225-230

Assignment, 12

 blocking, 201-204

 concurrent, 201

 continuous, 127-130

 and delays, 133, 134

 and nets, 131

 and strengths, 132

 nonblocking, 201-204

 and delays, 204, 205

 procedural, 160, 161

 with delays, 184-187

 procedural continuous, 227, 228

 sequential, 161

 vector, 135

automatic, 285, 286

B
begin, 28, 161-163

Bidirectional pass switch, 328-329

Block

 disabling, 244-249

 named, 163

 nesting, 163

buf, 51-52

Buffer, 51-52

bufif0, 64, 65

bufif1, 64, 65

Bus switcher, 151, 152, 329-331

C
C language, 13, 16, 159, 219

case, 205-210

Case sensitivity, 31

casex, 210-212

casez, 210-212

Clock, 184, 254, 255

cmos, 318-321

CMOS

 NOR gate, 312-314

 switch, 318-321

Comment, 33, 34

Comparator, 67-69

Compiler directive, 385-392

 define, 385

Concatenation, 135

Contention resolution, 102-109,

334-337

Counter, 170-179, 224, 225, 232,

234

 ring, 152-156

D
Data types, 40, 41

deassign, 225-230

default, 205-210

defparam, 42, 340

Delay, 15, 28, 91-102, 133, 134

 assigning, 184-187, 191

 conditional, 359-361

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1

452 INDEX

 distributed, 348

 gate, 94-99

 intra-assignment, 187, 188

 net, 92-94

 path, 348-371

 pin to pin, 348-371

 propagation, 97

 with tri-state gates, 99-102

 zero, 191

Demux, 222-224, 227, 228

Design description

 levels, 11

 behavioral, 13, 14

 circuit, 11

 data flow, 12

 gate, 12

disable, 244-249

display, 44, 374-378

Distributed delay, 348

Dynamic shift register, 325-327

E
else, 219-225

end, 28, 161-163

endcase, 205-210

endfunction, 274

endmodule, 18, 50

endprimitive, 293

endspecify, 348-361

endtable, 293

endtask, 286-287

Escaped identifiers, 32, 33

Event, 38, 169, 170, 266-268

Expression

 bit width, 150, 151

F
Finish, 29, 45, 381

Finite State Machine, 418-432

 Mealy machine, 427-432

 Moore machine, 419-427

Flip-flop

 clocked, 181, 182

 D, 86-88, 183, 228-235

 edge-triggered, 88-91, 153, 154,

300, 301

 RS, 83-86

for, 238-244

 loop flowchart, 238

force, 261-265

forever, 254-258

fork, 258-261

FPGA, 7

Full adder, 71-72, 294-296

function, 273, 274

Function, 274

 recursive, 284-286

 scope, 284

G
Gates

 resistive, 308

 tri-state, 64-66

H
Half adder, 70-71

Hardware

 trade off with speed, 283, 284

HDL, 3, 9

Hierarchical access, 14, 56-62,

361-362, 393-404

Hierarchical name, 375-377

I
Identifier, 32

if, 219-225

 loop flowchart, 220

if–else, 219-225

 loop flowchart, 221

initial, 28, 161, 164, 165

inout, 17, 50

input, 17, 50

Instantiation, 19-21

integer, 34-36

Inverter

 CMOS, 311, 312

 NMOS, 317, 318

INDEX 453

J
join, 258-261

K
Keyword, 31, 32

L
large, 106

latch, 152, 153, 183, 298, 299

 with NAND gates, 81

Level

 behavioral level, 159, 160

 data flow level, 127

 gate level, 47-80

 RTL, 14

 switch level, 305

Lexical tokens, 17, 31

 comment, 33, 34

 identifier, 32, 33

 keyword, 31, 32

 number, 34-38

 operator, 43

 string, 36-38

 white space, 33

Logic values, 38

M
Macromodule, see module

medium, 39, 106

Memory, 43

Microcontroller design, 433-441

Modeling, see Level

module, 16-18, 50

Module

 path, 349-371

 stimulus, 18, 54, 55

 structure, 16-21, 50

 test bench, 18

monitor, 29, 44, 380, 381

Multiple always blocks, 194-197

Multiple initial blocks, 167

Mux, 73-79, 122, 146

N
nand, 51, 52

negedge, 169, 170

Net, 40, 131

 charge, 106, 107

 types, 109-115

nmos, 306

NMOS inverter, 317, 318

nor, 51, 52

not, 51, 52

notif0, 64, 65

notif1, 64, 65

Number, 34-38

 integer, 34-36

 real, 36

 sign, 35, 36

O
Operand, 160

Operation, 160

Operator, 43, 136-150, 160

 algebraic

 arithmetic, 137, 138

 binary, 137, 138

 equality, 139

 logical, 138-140

 modulus

 precedence, 148-150

 relational, 138, 139

 shift, 141

 ternary, 141-143

 unary, 137

or, 51, 52

output, 17, 50

P
Parallel blocks, 258-261

parameter, 42, 341-347, 372

Parameter, 42, 43, 339, 340

 assignment, 341-347

 declaration, 341-347

454 INDEX

 module, 371-373

 over-riding, 342-347

 type, 347

Parity bit generation, 274- 277

Path delay, 348-371

 conditional, 359-361

 edge sensitive, 364-366

PLA, 416

PLD, 414-418

PLI, 16

pmos, 307

Port, 16, 21

posedge, 169, 170

primitive, 293

Primitive, 12

 gate, 47-52, 81

 user defined, 292-302

Programmable Logic Device,

414-418

 programming, 416-418

Programmable Logic Interface, 16

pull0, 39

pull1, 39

pulldown, 309-311

pullup, 309-311

Pulse filtering, 367-371

Q
Queue, 407-413

R
RAM cell, 321-325, 331-333

rcmos, 328

real, 41

realtime, 388, 389

reg, 41

release, 261-265

repeat, 236, 237

Ring counter, 152-156

rnmos, 308

rpmos, 308

RS latch, 83-84

Rtran, 328

rtranif0, 328

rtranif1, 328

S
Scalar, 41,42

Shift register, 179-181

 dynamic, 325-327

Simulation, 7, 24, 25, 28, 214, 215

 concurrency, 13

small, 39, 106

specify, 348-361

specparam, 340, 351-352

stop, 45, 165, 381

Stratified event queue, 215, 216

Strength, 38-40, 102-109, 132

 task for display, 377, 378

String, 36-38

Strobe, 378, 379

strong0, 39

strong1, 39

supply0, 39, 115

supply1, 39, 115

Switch primitive

 bi-directional, 328-333

 CMOS, 311-312, 318-321

 NMOS, 306

 PMOS, 307

 resistive, 308

 with delay, 333, 334

Synthesis, 7, 14, 25-27

System function, 16, 381-383

 file related, 383-385

 for random number, 381-383

System task, 16, 44, 45, 374-381

 file related, 383-385

 for display, 44, 45

 for output, 44, 45

 timescale related, 386-392

T
table, 293

task, 286-287

 enabling, 286

 structure, 287

Test

INDEX 455

 functional, 14, 15

 timing, 14

Test bench, 14, 18, 27, 54, 55

time, 388, 389

 simulation time

Time scale, 386-392

 default, 388

Time step, 28

Tokens, see Lexical tokens

tran, 328

tranif0, 328

tranif1, 328

tri, 40, 113

tri0, 114

tri1, 114

triand, 113

trior, 113

trireg, 38, 106

U
UDP, see User Defined Primitive

User Defined Primitive

 combinational, 292-294

 instantiation, 295

 with delay, 302

 sequential, 297, 298

V
Variable, 41

 local, 164

Vector, 41, 42, 135

VHDL, 9

W
wait, 192-195

wand, 109, 110

weak0, 39

weak1, 39

while, 249-254

 loop flowchart, 249

White space, 33

wire, 40

wor, 111-113

write, 224, 374

X
xnor, 51, 52

xor, 51, 52

Z
Zero delay, 191

	booktext.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	Appendix A pdf.pdf
	Appendix B.pdf
	References.pdf
	Index.pdf

