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PREFACE

Verilog has rapidly become a widely accepted language for VLSI design.  The 

language is well-structured and defined to cater to the steady increase in the size of 

ICs to be designed without sacrificing the advantages associated with design at the 

“grass roots” level.  A designer aspiring to master the language in its versatility 

should become familiar with the various constructs in it, practice their use in real 

applications, and use them in combinations to be successful.  

Describing a design using Verilog is only half the story:  Writing Test 

benches, testing a design for all its desired functions, and identifying the faults and 

removing them remain equally challenging tasks.  This book is an attempt to 

address these issues effectively.  The constructs in Verilog are discussed through 

apt illustrative examples.  Equal importance is given to design description and test 

benches.  The examples have been tested with popular and commonly used 

simulation packages and the results reproduced.  In many of the cases the tested 

designs have been synthesized, and the synthesized circuit has also been 

reproduced.  “Seeing is believing”: Seeing a design available as a software routine, 

transformed to a circuit, will add a lot to the confidence level of novices who use 

the book.  flip-flops, counters, registers, coders, decoders, mux, demux etc., have 

been considered at different levels of design; this should help in clarifying the 

perspectives regarding levels, need, and significance.   

Place and significance of Verilog in VLSI design have been brought out in 

Chapters 1 and 2.  Basics of the language, its conventions, etc., are dealt with in 

Chapters 2 and 3.  Chapters 4 and 5 form an introduction to design through 

Verilog.  It is done at the gate level, which may be the most comfortable for the 

beginner.  Any design, however involved it may be, can be completely realized in 

terms of the gate primitives of Verilog.  We hope that the illustrative examples 

considered and the exercises at the end of the chapters, impart such a confidence to 

a designer.  Chapter 6 is devoted to design at the data flow level. Continuous 

assignments using operators linking operands, which allow designs to be described 

more compactly but still close enough to the circuit level, form the theme of this 

chapter.  Behavioral level design is discussed in Chapters 7 and 8. Mastery at this 

level – akin to the C language – is essential for a successful designer working at 

the system level.  Functions and tasks, which facilitate structuring of designs and 

their orderly description, form the theme of Chapter 9.  The switch primitives in 

Verilog constitute the link with actual VLSI implementation although their 

mastery is not essential to many of the designers with their higher level activities.  

Chapter 10 is devoted exclusively to switch level design; since it stands out from 



xii PREFACE

the main text flow so far, its discussion is consciously deferred to this stage.  

Chapter 11 forms an introduction to the system tasks and functions in Verilog and 

their use in typical environments.  Chapter 12 deals with design using PLDs and 

FSMs.  Though subdued, the treatment is enough to give the necessary lead to 

more comprehensive designs.   

All the chapters have enough exercises at the end.  Some help mastery of the 

material in the chapter, through practice; others are structured to stimulate the 

users to explore avenues of their own.  The step-by-step build-up of a processor in 

Chapter 12 is of this type.   

All simulation results presented in the text as part of illustrative examples, 

have been obtained using the “Modelsim” software of Mentor Graphics.  All 

synthesis results wherever presented, have been obtained using the “Leonardo 

Spectrum” software of Mentor Graphics.  These have been reproduced by courtesy 

of Mentor Graphics. 

Users’ views and suggestions are welcome; for this purpose, the website 

www.aitec.amrita.edu/publications may be accessed. 

 T. R. PADMANABHAN

 B. BALA TRIPURA SUNDARI

July 2003
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1

INTRODUCTION TO VLSI DESIGN 

1.1 INTRODUCTION 

The word digital has made a dramatic impact on our society. More significant is a 

continuous trend towards digital solutions in all areas – from electronic 

instrumentation, control, data manipulation, signals processing, telecom-

munications etc., to consumer electronics. Development of such solutions has been 

possible due to good digital system design and modeling techniques.   

1.2 CONVENTIONAL APPROACH TO DIGITAL DESIGN  

Digital ICs of SSI and MSI types have become universally standardized and  have 

beenaccepted for use.  Whenever a designer has to realize a digital function, he 

uses a standard set of ICs along with a minimal set of additional discrete circuitry.  

Consider a simple example of realizing a function as 

Q n+1 = Q n + (A B)

Here Qn, A, and B are Boolean variables, with Q n being the value of Q at the nth

time step.  Here A B signifies the logical AND of A and B; the ‘+’ symbol signifies 

the logical OR of the logic variables on either side.  A circuit to realize the 

function is shown in Figure 1.1.  The circuit can be realized in terms of two ICs – 

an A-O-I gate and a flip-flop.  It can be directly wired up, tested, and used. 

A

clk
Q

n

B

Figure 1.1 A simple digital circuit. 
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2 INTRODUCTION TO VLSI DESIGN 

With comparatively larger circuits, the task mostly reduces to one of 

identifying the set of ICs necessary for the job and interconnecting; rarely does one 

have to resort to a microlevel design [Wakerly].  The accepted approach to digital 

design here is a mix of the top-down and bottom-up approaches as follows  [Hill & 

Peterson]:

Decide the requirements at the system level and translate them to circuit 

requirements. 

Identify the major functional blocks required like timer, DMA unit, register-

file etc., say as in the design of a processor. 

Whenever a function can be realized using a standard IC, use the same –for 

example programmable counter, mux, demux, etc.

Whenever the above is not possible, form the circuit to carry out the block 

functions using standard SSI – for example gates, flip-flops, etc.

Use additional components like transistor, diode, resistor, capacitor, etc.,

wherever essential. 

Once the above steps are gone through, a paper design is ready. Starting with 

the paper design, one has to do a circuit layout.  The physical location of all the 

components is tentatively decided; they are interconnected and the ‘circuit-on-

paper’ is made ready.  Once a paper design is done, a layout is carried out and a 

net-list prepared.  Based on this, the PCB is fabricated, and populated and all the 

populated cards tested and debugged. The procedure is shown as a process 

flowchart in Figure 1.2. 

System requirements

ICs

Circuit requirements

Other components

PCB layout

Wiring & testing

Final circuit

Figure 1.2 Sequence of steps in conventional electronic circuit design. 
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At the debugging stage one may encounter three types of problems:  

Functional mismatch: The realized and expected functions are different.  One 

may have to go through the relevant functional block carefully and locate any 

error logically.  Finally the necessary correction has to be carried out in 

hardware.   

Timing mismatch: The problem can manifest in different forms.  One 

possibility is due to the signal going through different propagation delays in 

two paths and arriving at a point with a timing mismatch.  This can cause 

faulty operation.  Another possibility is a race condition in a circuit involving 

asynchronous feedback.  This kind of problem may call for elaborate 

debugging.  The preferred practice is to do debugging at smaller module 

stages and ensuring that feedback through larger loops is avoided: It becomes 

essential to check for the existence of long asynchronous loops. 

Overload: Some signals may be overloaded to such an extent that the signal 

transition may be unduly delayed or even suppressed.  The problem manifests 

as reflections and erratic behavior in some cases (The signal has to be suitably 

buffered here.).  In fact, overload on a signal can lead to timing mismatches. 

The above have to be carried out after completion of the prototype PCB 

manufacturing; it involves cost, time, and also a redesigning process to develop a 

bugfree design. 

1.3 VLSI DESIGN 

The complexity of VLSIs being designed and used today makes the manual 

approach to design impractical. Design automation is the order of the day.  With 

the rapid technological developments in the last two decades, the status of VLSI 

technology is characterized by the following [Wai-kai, Gopalan]:  

A steady increase in the size and hence the functionality of the ICs. 

A steady reduction in feature size and hence increase in the speed of operation 

as well as gate or transistor density. 

A steady improvement in the predictability of circuit behavior. 

A steady increase in the variety and size of software tools for VLSI design. 

The above developments have resulted in a proliferation of approaches to VLSI 

design.   We briefly describe the procedure of automated design flow [Rabaey, 

Smith MJ]. The aim is more to bring out the role of a Hardware Description 

Language (HDL) in the design process.  An abstraction based model is the basis of 

the automated design.  
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1.3.1 Abstraction Model 

The model divides the whole design cycle into various domains (see Figure 1.3).  

With such an abstraction through a division process the design is carried out in 

different layers.  The designer at one layer can function without bothering about 

the layers above or below.  The thick horizontal lines separating the layers in the 

figure signify the compartmentalization.  As an example, let us consider design at 

the gate level.  The circuit to be designed would be described in terms of truth 

tables and state tables.  With these as available inputs, he has to express them as 

Boolean logic equations and realize them in terms of gates and flip-flops.  In turn, 

these form the inputs to the layer immediately below.  Compartmentalization of 

the approach to design in the manner described here is the essence of abstraction; 

it is the basis for development and use of CAD tools in VLSI design at various 

levels.  

 The design methods at different levels use the respective aids such as 

Boolean equations, truth tables, state transition table, etc. But the aids play only a 

small role in the process. To complete a design, one may have to switch from one 

tool to another, raising the issues of tool compatibility and learning new 

environments.   

1.4 ASIC DESIGN FLOW 

As with any other technical activity, development of an ASIC starts with an idea 

and takes tangible shape through the stages of development as shown in Figure 1.4 

and shown in detail in Figure 1.5.  The first step in the process is to expand the 

idea in terms of behavior of the target circuit.  Through stages of programming, the 

same is fully developed into a design description – in terms of well defined 

standard constructs and conventions.   

Behavioral domain

System (Performance

specifications)

Chip (Micro-operations)

Register

(Truth tables, state tables)

Gate (Boolean equations)

Circuit (differential equations)

Silicon (none)

Structural domain

Processing core : nondigital,

nonelectronic systems

Microprocessors,

memories, I/O devices

Registers, ALU,

multipliers

Gates, flip-flops

Transistors, L, R, C

Geometric objects

Figure 1.3 Design domain and levels of abstraction. 
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Idea

SynthesisSimulation

Design description

Physical

design

Figure 1.4 Major activities in ASIC design. 

The design is tested through a simulation process; it is to check, verify, and 

ensure that what is wanted is what is described.  Simulation is carried out through 

dedicated tools.  With every simulation run, the simulation results are studied to 

identify errors in the design description.  The errors are corrected and another 

simulation run carried out.  Simulation and changes to design description together 

form a cyclic iterative process, repeated until an error-free design is evolved.   

Design description is an activity independent of the target technology or 

manufacturer.  It results in a description of the digital circuit.  To translate it into a 

tangible circuit, one goes through the physical design process.  The same 

constitutes a set of activities closely linked to the manufacturer and the target 

technology

1.4.1 Design Description 

The design is carried out in stages.  The process of transforming the idea into a 

detailed circuit description in terms of the elementary circuit components 

constitutes design description.  The final circuit of such an IC can have up to a 

billion such components; it is arrived at in a step-by-step manner.   

The first step in evolving the design description is to describe the circuit in 

terms of its behavior.  The description looks like a program in a high level 

language like C.  Once the behavioral level design description is ready, it is tested 

extensively with the help of a simulation tool; it checks and confirms that all the 

expected functions are carried out satisfactorily.  If necessary, this behavioral level 

routine is edited, modified, and rerun – all done manually.  Finally, one has a 

design for the expected system – described at the behavioral level.  The behavioral 

design forms the input to the synthesis tools, for circuit synthesis. The behavioral 

constructs not supported by the synthesis tools are replaced by data flow and gate 

level constructs. To surmise, the designer has to develop synthesizable codes for 

his design. 
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Data flow level

description

Gate level

description

Switch level

description

Compile / edit Simulate

Compile / edit Simulate

Compile / edit Simulate

Compile / edit Simulate

Optimization

Prototype

Synthesis

FPGA based

design

Final circuit System partitioning

Floor planning

Placement

Routing

Mask

Verification

Feature extraction

P
h
y
si

ca
l 

d
es

ig
n

Idea

Behavioral level

description

Logical design

(Scope of HDL)

Scope of

simulation tool

Figure 1.5ASIC design and development flow. 

The design at the behavioral level is to be elaborated in terms of known and 

acknowledged functional blocks.  It forms the next detailed level of design 

description.  Once again the design is to be tested through simulation and 

iteratively corrected for errors.  The elaboration can be continued one or two steps 

further.  It leads to a detailed design description in terms of logic gates and 

transistor switches.  
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1.4.2 Optimization 

The circuit at the gate level – in terms of the gates and flip-flops – can be 

redundant in nature.  The same can be minimized with the help of minimization 

tools.  The step is not shown separately in the figure.  The minimized logical 

design is converted to a circuit in terms of the switch level cells from standard 

libraries provided by the foundries. The cell based design generated by the tool is 

the last step in the logical design process; it forms the input to the first level of 

physical design [Micheli]. 

1.4.3 Simulation 

The design descriptions are tested for their functionality at every level – 

behavioral, data flow, and gate.  One has to check here whether all the functions 

are carried out as expected and rectify them. All such activities are carried out by 

the simulation tool.  The tool also has an editor to carry out any corrections to the 

source code. Simulation involves testing the design for all its functions, functional 

sequences, timing constraints, and specifications.   Normally testing and 

simulation at all the levels – behavioral to switch level – are carried out by a single 

tool; the same is identified as “scope of simulation tool” in Figure 1.5. 

1.4.4 Synthesis 

With the availability of design at the gate (switch) level, the logical design is 

complete.   The corresponding circuit hardware realization is carried out by a 

synthesis tool.  Two common approaches are as follows: 

The circuit is realized through an FPGA [Oldfield].  The gate level design 

description is the starting point for the synthesis here.  The FPGA vendors 

provide an interface to the synthesis tool.  Through the interface the gate level 

design is realized as a final circuit.  With many synthesis tools, one can 

directly use the design description at the data flow level itself to realize the 

final circuit through an FPGA.  The FPGA route is attractive for limited 

volume production or a fast development cycle. 

The circuit is realized as an ASIC.  A typical ASIC vendor will have his own 

library of basic components like elementary gates and flip-flops.  Eventually 

the circuit is to be realized by selecting such components and interconnecting 

them conforming to the required design.  This constitutes the physical design.  

Being an elaborate and costly process, a physical design may call for an 

intermediate functional verification through the FPGA route.  The circuit 

realized through the FPGA is tested as a prototype.  It provides another 

opportunity for testing the design closer to the final circuit.   
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1.4.5 Physical Design 

A fully tested and error-free design at the switch level can be the starting point for 

a physical design [Baker & Boyce, Wolf].  It is to be realized as the final circuit 

using (typically) a million components in the foundry’s library.  The step-by-step 

activities in the process are described briefly as follows: 

System partitioning: The design is partitioned into convenient compartments 

or functional blocks.  Often it would have been done at an earlier stage itself 

and the software design prepared in terms of such blocks.  Interconnection of 

the blocks is part of the partition process.   

Floor planning: The positions of the partitioned blocks are planned and the 

blocks are arranged accordingly.  The procedure is analogous to the planning 

and arrangement of domestic furniture in a residence.  Blocks with I/O pins 

are kept close to the periphery; those which interact frequently or through a 

large number of interconnections are kept close together, and so on.  

Partitioning and floor planning may have to be carried out and refined 

iteratively to yield best results.         

Placement: The selected components from the ASIC library are placed in 

position on the “Silicon floor.”  It is done with each of the blocks above. 

Routing: The components placed as described above are to be interconnected 

to the rest of the block:  It is done with each of the blocks by suitably routing 

the interconnects.  Once the routing is complete, the physical design cam is 

taken as complete.  The final mask for the design can be made at this stage 

and the ASIC manufactured in the foundry. 

1.4.6 Post Layout Simulation 

Once the placement and routing are completed, the performance specifications like 

silicon area, power consumed, path delays, etc., can be computed.  Equivalent 

circuit can be extracted at the component level and performance analysis carried 

out.  This constitutes the final stage called “verification.”  One may have to go 

through the placement and routing activity once again to improve performance. 

1.4.7 Critical Subsystems 

The design may have critical subsystems.  Their performance may be crucial to the 

overall performance; in other words, to improve the system performance 

substantially, one may have to design such subsystems afresh. The design here 

may imply redefinition of the basic feature size of the component, component 

design, placement of components, or routing done separately and specifically for 

the subsystem.  A set of masks used in the foundry may have to be done afresh for 

the purpose.   
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1.5 ROLE OF HDL 

An HDL provides the framework for the complete logical design of the ASIC.  All 

the activities coming under the purview of an HDL are shown enclosed in bold 

dotted lines in Figure 1.4.  Verilog and VHDL are the two most commonly used 

HDLs today.  Both have constructs with which the design can be fully described at 

all the levels.  There are additional constructs available to facilitate setting up of 

the test bench, spelling out test vectors for them and “observing” the outputs from 

the designed unit.   

IEEE has brought out Standards for the HDLs, and the software tools conform 

to them.  Verilog as an HDL was introduced by Cadence Design Systems; they 

placed it into the public domain in 1990.  It was established as a formal IEEE 

Standard in 1995. The revised version has been brought out in 2001.  However, 

most of the simulation tools available today conform only to the 1995 version of 

the standard. 

Verilog HDL used by a substantial number of the VLSI designers today is the 

topic of discussion of the book. 
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2

INTRODUCTION TO VERILOG 

2.1 VERILOG AS AN HDL 

Verilog has a variety of constructs as part of it.  All are aimed at providing a 

functionally tested and a verified design description for the target FPGA or ASIC.  

The language has a dual function – one fulfilling the need for a design description 

and the other fulfilling the need for verifying the design for functionality and   

timing constraints like propagation delay, critical path delay, slack, setup, and hold 

times [Smith DJ, Wai-Kai]. 

Verilog as an HDL has been introduced here and its overall structure 

explained.  A widely used development tool for simulation and synthesis has been 

introduced; the brief procedural explanation provided suffices to try out the 

Examples and Exercises in the text.   

2.2 LEVELS OF DESIGN DESCRIPTION 

The components of the target design can be described at different levels with the 

help of the constructs in Verilog. 

2.2.1 Circuit Level  

At the circuit level, a switch is the basic element with which digital circuits are 

built.  Switches can be combined to form inverters and other gates at the next 

higher level of abstraction. Verilog has the basic MOS switches built into its 

constructs, which can be used to build basic circuits like inverters, basic logic 

gates, simple 1-bit dynamic  and static memories. They can be used to build up 

larger designs to simulate at the circuit level, to design performance critical 

circuits. Figure 2.1 shows the circuit of an inverter suitable for description with the 

switch level constructs of Verilog. 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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2.2.2 Gate Level 

At the next higher level of abstraction, design is carried out in terms of basic gates.  

All the basic gates are available as ready modules called “Primitives.”  Each such 

primitive is defined in terms of its inputs and outputs.  Primitives can be 

incorporated into design descriptions directly.  Just as full physical hardware can 

be built using gates, the primitives can be used repeatedly and judiciously to build 

larger systems.  Figure 2.2 shows an AND gate suitable for description using the 

gate primitive of Verilog.  The gate level modeling or structural modeling as it is 

sometimes called is akin to building a digital circuit on a bread board, or on a 

PCB. One should know the structure of the design to build the model here. One 

can also build hierarchical circuits at this level.  However, beyond 20 to 30 of such 

gate primitives in a circuit, the design description becomes unwieldy; testing and 

debugging become laborious. 

2.2.3 Data Flow  

Data flow is the next higher level of abstraction.  All possible operations on signals 

and variables are represented here in terms of assignments.  All logic and algebraic 

operations are accommodated.  The assignments define the continuous functioning 

of the concerned block. At the data flow level, signals are assigned through the 

data manipulating equations. All such assignments are concurrent in nature. The 

design descriptions are more compact than those at the gate level.  Figure 2.3 

shows an A-O-I relationship suitable for description with the Verilog constructs at 

the data flow level. 

Supply0

out

in

Q
1

Q
2

V
CC

a
c

b

c = a . b

Figure 2.1 A simple Inverter circuit at the 

switch level. 

Figure 2.2 A simple AND gate represented 

at the gate level. 
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2.2.4 Behavioral Level 

Behavioral level constitutes the highest level of design description; it is essentially 

at the system level itself [Bhaskar].  With the assignment possibilities, looping 

constructs and conditional branching possible, the design description essentially 

looks like a “C” program.  The statements involved are “dense” in function.  

Compactness and the comprehensive nature of the design description make the 

development process fast and efficient.  Figure 2.4 shows an A-O-I gate expressed 

in pseudo code suitable for description with the behavioral level constructs of 

Verilog.   

2.2.5 The Overall Design Structure in Verilog   

The possibilities of design description statements and assignments at different 

levels necessitate their accommodation in a mixed mode.  In fact the design 

statements coexisting in a seamless manner within a design module is a significant 

characteristic of Verilog. Thus Verilog facilitates the mixing of the above-

mentioned levels of design. A design built at data flow level can be instantiated to 

form a structural mode design. Data flow assignments can be incorporated in 

designs which are basically at behavioral level. 

2.3 CONCURRENCY

In an electronic circuit all the units are to be active and functioning concurrently.  

The voltages and currents in the different elements in the circuit can change 

simultaneously. In turn the logic levels too can change.  Simulation of such a 

circuit in an HDL calls for concurrency of operation.  A number of activities – 

may be spread over different modules – are to be run concurrently here.  Verilog 

simulators are built to simulate concurrency. (This is in contrast to programs in the 

normal languages like C where execution is sequential.)  Concurrency is achieved 

by proceeding with simulation in equal time steps.  The time step is kept small 

enough to be negligible compared with the propagation delay values. All the 

activities scheduled at one time step are completed and then the simulator 

dcbae ..

If (a, b, c or d changes) 

Compute e as  

dcbae ..

Figure 2.3 An A-O-I gate represented as a 

data flow type of relationship. 

Figure 2.4 An A-O-I gate in pseudo code  at 

behavioral level. 
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advances to the next time step and so on.  The time step values refer to simulation 

time and not real time.  One can redefine timescales to suit technology as and 

when necessary and carry out test runs. 

In some cases the circuit itself may demand sequential operation as with data 

transfer and memory-based operations.  Only in such cases sequential operation is 

ensured by the appropriate usage of sequential constructs from Verilog HDL. 

2.4 SIMULATION AND SYNTHESIS  

The design that is specified and entered as described earlier is simulated for 

functionality and fully debugged.  Translation of the debugged design into the 

corresponding hardware circuit (using an FPGA or an ASIC) is called “synthesis.” 

The tools available for synthesis relate more easily with the gate level and data 

flow level modules [Smith MJ].  The circuits realized from them are essentially 

direct translations of functions into circuit elements.  In contrast many of the 

behavioral level constructs are not directly synthesizable; even if synthesized they 

are likely to yield relatively redundant or wrong hardware.  The way out is to take 

the behavioral level modules and redo each of them at lower levels.  The process is 

carried out successively with each of the behavioral level modules until practically 

the full design is available as a pack of modules at gate and data flow levels (more 

commonly called the “RTL level”).   

2.5 FUNCTIONAL VERIFICATION   

Testing is an essential ingredient of the VLSI design process as with any hardware 

circuit. It has two dimensions to it – functional tests and timing tests.  Both can be 

carried out with Verilog.  Often testing or functional verification is carried out by 

setting up a “test bench” for the design.  The test bench will have the design 

instantiated in it; it will generate necessary test signals and apply them to the 

instantiated design.  The outputs from the design are brought back to the test bench 

for further analysis.  The input signal combinations, waveforms and sequences 

required for testing are all to be decided in advance and the test bench configured 

based on the same.   

The test benches are mostly done at the behavioral level.  The constructs there 

are flexible enough to allow all types of test signals to be generated.  

In the process of testing a module, one may have to access variables buried 

inside other modules instantiated within the master module.  Such variables can be 

accessed through suitable hierarchical addressing.    
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2.5.1 Test Inputs for Test Benches   

Any digital system has to carry out a number of activities in a defined manner.  

Once a proper design is done, it has to be tested for all its functional aspects.  The 

system has to carry out all the expected activities and not falter.  Further, it should 

not malfunction under any set of input conditions.  Functional testing is carried out 

to check for such requirements.  Test inputs can be purely combinational, periodic, 

numeric sequences, random inputs, conditional inputs, or combinations of these.  

With such requirements, definition and design of test benches is often as 

challenging as the design itself. 

As the circuit design proceeds, one develops smaller blocks and groups them 

together to form bigger circuit units.  The process is repeated until the whole 

system is fully built up.  Every stage calls for tests to see whether the subsystem at 

that layer behaves in the manner expected.  Such testing calls for two types of 

observations:  

Study of signals within a small unit when test inputs are given to the whole 

unit. 

Isolation of a small element and doing local test to facilitate debugging. 

Verilog has constructs to accommodate both types of observation through a 

hierarchical description of variables within.   

2.5.2 Constructs for Modeling Timing Delays  

Any basic gate has propagation delays and transmission delays associated with it.  

As the elements in the circuit increase in number, the type and variety of such 

delays increase rapidly; often one reaches a stage where the expected function is 

not realized thanks to an unduly large time delay.  Thus there is a need to test 

every digital design for its performance with respect to time.  Verilog has 

constructs for modeling the following delays:  

Gate delay  

Net delay 

Path delay 

Pin-to-pin delay 

In addition, a design can be tested for setup time, hold time, clock-width time 

specifications, etc. Such constructs or delay models are akin to the finite delay 

time, rise time, fall time, path or propagation delays, etc., associated with real 

digital circuits or systems. The use of such constructs in the design helps simulate 

realistic conditions in a digital circuit.  Further, one can change the values of 
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delays in different ways.  If a buffer capacity is increased, its associated delays can 

be reduced.  If a design is to migrate to a better technology, the delay values can be 

rescaled.  With such testing, one can estimate the minimum frequency of 

operation, the maximum speed of response, or typical response times. 

2.6 SYSTEM TASKS 

A number of system tasks are available in Verilog. Though used in a design 

description, they are not part of it.  Some tasks facilitate control and flow of the 

testing process.  The values of signals in a module can be displayed in the course 

of simulation.  The tasks available for the purpose display them in desired formats.   

Reading data from specified files into a module and writing back into files are also 

possible through other tasks.  Timescale can be changed prior to simulation with 

the help of specific tasks for the purpose.   

A set of system functions add to the flexibility of test benches: They are of 

three categories:  

Functions that keep track of the progress of simulation time 

Functions to convert data or values of variables from one format to another  

Functions to generate random numbers with specific distributions. 

There are other numerous system tasks and functions associated with file 

operations, PLAs, etc.

2.7 PROGRAMMING LANGUAGE INTERFACE (PLI) 

PLI provides an active interface to a compiled Verilog module.  The interface adds 

a new dimension to working with Verilog routines from a C platform.  The key 

functions of the interface are as follows:  

One can read data from a file and pass it to a Verilog module as input.  Such 

data can be test vectors or other input data to the module.  Similarly, variables 

in Verilog modules can be accessed and their values written to output devices. 

Delay values, logic values, etc., within a module can be accessed and altered. 

Blocks written in C language can be linked to Verilog modules. 

2.8 MODULE 

Any Verilog program begins with a keyword – called a “module.”  A module is 

the name given to any system considering it as a black box with input and output 

terminals as shown in Figure 2.5.  The terminals of the module are referred to as 

‘ports’. The ports attached to a module can be of three types:  
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module

output port input port

inout port

module adder(  a, b, . . .p, q, . . . x, y );

Figure 2.5 Representation of a module as black box with its ports. 

input ports through which one gets entry into the module;  they signify the 

input signal terminals of the module.  

output ports through which one exits the module; these signify the output 

signal terminals of the module. 

inout ports: These represent ports through which one gets entry into the 

module or exits the module; These are terminals through which signals are 

input to the module sometimes; at some other times signals are output  from 

the module through these. 

Whether a module has any of the above ports and how many of each type are 

present depend solely on the functional nature of the module.  Thus one module 

may not have any port at all, another may have only input ports, while a third may 

have only output ports, and so on.  

All the constructs in Verilog are centered on the module. They define ways of 

building up, accessing, and using modules.  The structure of modules and the 

mode of invoking them in a design are discussed here.  

A module comprises a number of “lexical tokens” arranged according to some 

predefined order.  The possible tokens are of seven categories:  

White spaces 

Comments 

Operators 

Numbers 

Strings

Identifiers 

Keywords 
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The rules constraining the tokens and their sequencing will be dealt with as 

we progress.  For the present let us consider modules.  In Verilog any program 

which forms a design description is a “module.”  Any program written to test a 

design description is also a “module.”  The latter are often called as “stimulus 

modules” or “test benches.”  A module used to do simulation has the form shown 

in Figure 2.6.  Verilog takes the active statements appearing between the 

“module” statement and the “endmodule” statement and interprets all of them 

together as forming the body of the module.  Whenever a module is invoked for 

testing or for incorporation into a bigger design module, the name of the module 

(“test” here) is used to identify it for the purpose.  

A digression into design using SSI ICs is in order here.  Consider the IC 7430, 

an eight input NAND gate.  In any design using it, the IC can be looked up on as a 

black box with eight input leads and one output lead (Figure 2.7a).  Three aspects 

characterize the IC – its function, its input leads, and its output lead.  Other ICs 

may have more output leads.  A NAND gate module is defined in an analogous 

manner in terms of its function, input leads and the output lead. The module used 

to describe the circuit here also follows the earlier format; that is, the “module”

statement signifies the beginning of the module, the “endmodule” statement 

signifies the end of the module.  However, the initial statement “module” has to 

be more elaborate with the input and the output ports forming part of it (see Figure 

2.7b). 

module test ;

....
statement1     ;

statement2     ;

...

endmodule

Signifies declaration of a module

Name assigned to the module

The semicolon ';' signifies termination of a

module statement

Signifies termination of a module

Individual statements within the module

Figure 2.6 Structure of a typical simulation module. 
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O

 NAND gate

I1

I8

I7

I2

Figure 2.7(a) Eight input NAND gate (IC 7430).  Gate proper with terminals. 

Signifies declaration of a module(keyword)

Name assigned to the module

The semi-colon ';' signifies termination of a module statement

Signifies termination of a module

(keyword)

Individual statements within the module

Signifies the set of I/O leads to the module

module nand_gate (O, I1, I2, I3, I4, I5, I6, I7, I8) ;

....

statement1   ;

statement2   ;

...

endmodule

Figure 2.7(b) Eight input NAND gate (IC 7430).  Structure of the gate module. 

The same type of IC – 7430 – may be repeatedly used in a circuit.   Each time 

it is used, a different name is assigned to it in the design sheet.  Part of such a 

typical design sheet will look as in Figure 2.8.  The associated table (Table 2.1) 

allows us to identify each type of IC to be used and put in its proper place.  An 

automated design description can use a module defined above, repeatedly in a 

number of places as in the circuit of Figure 2.8.  Each such use is an 

“instantiation.”  A typical instantiation of the module defined above has the form 

shown in Figure 2.9.  The following observations are in order here:  
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Table 2.1 Partial list of IC numbers and their types for a typical design 

IC No IC1 IC2 IC3 … IC9 … 

IC type 7430 7430  … 7405 … 

IC1

IC2

IC3

I1

I8

a

o1

o2

Figure 2.8 Part of the circuit diagram of a typical digital circuit. 

nand_gate ic1 (b1, a1, a2, ...a8 ) ;

nand_gate ic2(b2, c1, c2, ...c8) ;

A typical instantiation of the

NAND gate in Figure 2.2

Another instantiation of the NAND

gate in Figure 2.2

Names of the input leads

Name of the output lead

Name assigned to the

instantiation

Figure 2.9 Instantiations of module nand_gate in another module. 

The designer has defined a specific function within a module; the module is 

assigned the name “nand_gate.”

The nand_gate can be invoked (instantiated) by him in a design as many 

times as desired. 

Each instantiation has to be assigned a separate identifier name by him (called 

“IC1”, “IC2”, etc.).
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As part of the instantiation declaration, the input and output terminals are to 

be defined.  The convention followed is to stick to the same order as in the 

module declaration.  It is further illustrated in Figure 2.9. 

Some modules may have a large number of ports.  Sticking to the order of the 

ports in an instantiation is likely to cause (human) errors.  An alternative (and 

sometimes more convenient) form of instantiation is also possible – shown in 

Figure 2.10.  The terminal identifications are explicit (though elaborate) here.  

Further one need not stick to the order of the ports as they appear in the module 

definition.  With such a form of port assignments, the possibility of errors is 

considerably reduced.   

The following aspects of the modules and their instantiation are noteworthy:  

Each module can be defined only once. 

Module definitions are to be done independently.  One module cannot be 

defined inside another – they cannot be nested. 

Any module can be instantiated inside another any number of times.  Each 

instantiation has to be done with a separate name assigned to it. 

The various constructs and features available in Verilog are discussed in the 

following chapters.  However, certain conventions and constructs essential for the 

progress of the book at this stage are discussed in Chapter 3. 

nand gate module

IC1

I1

I8

bO

a8

a1

nand_gate ic1(O(b), I8(a8), ...              I1(a1));

(a)

(b)

Figure 2.10 (a) A typical circuit block and (b) its instantiation. 
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2.9 SIMULATION AND SYNTHESIS 

A variety of Software tools related to VLSI design is available.  We discuss here 

two of them directly relevant to us – Modelsim and Leonardo Spectrum of Mentor 

Graphics.  Modelsim has been used to simulate the designs.  Simulation results 

presented for the variety of examples discussed in the book have been obtained 

using it.  Leonardo Spectrum has been used to obtain the synthesized circuits 

presented.  We would like to draw the attention of the readers to the following in 

this context:  

Only the essential aspects of the tools are presented – those essential for 

the progress of the book. 

For more details of the tools and the variety of facilities they offer, one 

can refer to the respective user manuals and the Help menus. 

Tools from other sources are similar in essentials.  Any of them can be 

used. 

2.9.1 Use of Modelsim SE 5.5 

The procedure to invoke the tool and use it is briefly described here.  The tool can 

be used to prepare a source file, edit and compile it, and simulate the compiled 

version. 

Editing and Compilation 

Open the Modelsim Window.  We get the following menus listed at the top:  

File Edit Design View Project Run Compare Macro

Click on “View.”  We get the following menus:  

All

Hide Workspace 

Sources

Structure 

Variables 

Signals 

List

Process

Wave
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Data flow 

Data sets 

New

Other 

Click on “Source.”  The “Source” window opens with the following set of 

menus listed at the top: 

File Edit Object Options Window 

Click on “File” option.  We get the following options: 

New

Open 

Use source 

Source directory 

Properties 

Save

Save as 

Compile 

Close 

Click on “New.”  We get the following options: 

VHDL 

Verilog 

Others 

Click on “Verilog.”  A “Source_edit-new.v” opens. 

The Verilog design can be keyed in.  It forms the source file.  The source file 

considered in various examples in the book can be created in this manner 

(e.g., Example 4.2 and Figure 4.4). 

Click on “File” option.  We get a pull down menu. 

Click on “Save as.” 

Select a Directory of your choice.  Give a suitable filename with extension 

“.v” (Say “demo.v”).  Click on “Save” and save the file.  The source (design) 

file has been created and saved.  Now it is ready for compilation. 
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Click on “Compile.”  “Compile HDL Source Files” window opens.  File name 

“demo” is displayed.  Library “Work” is displayed.  The selected file 

(demo.v) will be compiled and loaded into Work.  The lines of display in the 

main window confirm this. 

If the source file has any syntax or logical errors, compilation will not take 

place.  The errors will be indicated in the main window.  The source file can 

be opened (by clicking on the main menu) and edited.  Once again 

compilation can be attempted.  The procedure has to be repeated iteratively 

until all the errors in the source file have been removed and compilation is 

successfully completed. 

Simulation 

In the main window click on “Design” pulldown menu. 

In the options displayed, click on “Load Design.”  The following options are 

displayed at the top:– 

Design VHDL Verilog Libraries SDF 

Select “Design” and click on it.  A small window appears on the screen.  

“Library: Work” is displayed, implying that the working library is open.  The 

module name “demo” is displayed under it.  In the normal course the names of 

all the compiled files will be listed alphabetically one below the other.  The 

specific file to be simulated is to be selected by clicking on the same. 

The “Load” button below gets highlighted.  Click on it.  The design gets 

loaded and is ready for simulation run. 

Click the “Run” menu in the Modelsim main window.  Select 100 ns runtime.   

The design runs for 100 ns (by default) and the output list appears in the main 

window.  The listing can be selected, copied, and pasted to another file.  The 

simulation results for the various examples in the book have been obtained in 

this manner.   If necessary, the time duration of simulation can be altered in 

the main window. 

Observing Waveforms 

Simulation results can alternately be viewed as waveforms with the following 

procedure: 

In the main Modelsim window click on “Signals.”  The signals window opens 

with the following options displayed at the top:  

File Edit View Window 
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Click on the “View” pulldown menu.  We get the options as shown below: 

Wave 

List

Log

Filter

Amongst the options available, click on “Wave.”  We get the following 

options:  

Selected Signals 

Signals in Region 

Signals in Design 

Select “Signals in Design.”  The “Waveform Window” opens and shows the 

signals in the design. The Window has a “Run” option.    

Click on “Run” to run the design and get the waveforms displayed.   

The waveforms shown as simulated outputs for different examples in the book 

have been obtained in this manner.   

One can practice simulation of a few examples given in the book. 

Subsequently options available at the different stages can be tried, and the tool 

with its full versatility can be mastered. 

2.9.2 Synthesis  

Conversion of the code into hardware logic and fitting it into an FPGA or ASIC to 

realize the circuit is termed “Synthesis.”  We have used the Mentor Graphics 

Synthesis tool called “Leonardo Spectrum” for the purpose.  The synthesis 

procedure is briefly described here: 

Double click on “Leonardo Spectrum 2000.1b.” 

The Main Window named “Examplar Logic – Leonardo Spectrum Level 

3”opens with a pulldown menu as follows: 

File Edit View Tools Window Help 

Click on “File”.  A pulldown menu opens with options such as the following: 
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New

Open 

Save

…

…

Select “New.”  A window named “untitled” opens.  We can type in a new 

program and save it as a file with a name assigned to it (Say “name.v”) in a 

directory of our choice.  The procedure is similar to that followed above to 

create and save a new file with extension “.v” (signifying that it is a Verilog 

file).  The file is now ready for synthesis.  However, it is always preferable to 

simulate a file and be fully satisfied with at the simulation stage itself before 

synthesizing it.   

Click on the “Tools” menu on the main window.  A set of options appear on 

the screen. 

Select “Quick Set up.”  A window of the type shown in Figure 2.11 appears.  

All the settings necessary to complete the synthesis can be carried out with it.   

Click on “Open files.”  Select the Verilog source file to be synthesized.  It will 

be visible under “Input” in the figure.   

Under “Technology” select “FPGA.”  Select a device of (say) Xilinx – for 

example, XC4000XL.  The selected Xilinx device name is displayed under 

‘Device’. 

Select a “Clock Frequency” – say 10 MHz. 

Click on the “Run Flow” button.  The synthesis program runs and completes 

the synthesis.  Summarized results will be displayed on the screen.   

If the coding is correct and synthesizable, the display “Ready” appears 

highlighted at the bottom left-hand corner.  If not, error details will be 

displayed.  The program may be rectified and synthesis attempted again.  

Icons for “RTL Schematic”, “Gate Level Schematic” and “Critical Path 

Schematic” at the top become active.  

We can click on each of them in succession.  The circuit schematic can be 

viewed at the RTL level or the gate level.  The critical path can be viewed – it 

represents the path that takes the maximum time of operation on a pin-to-pin 

basis.  It sets the upper limit to the speed of operation of the circuit.   

The synthesized circuits shown for the different examples in the book have 

been obtained in this manner.  The device selected to synthesize the design, is 

called the “Target Device.”  One can select any other suitable target device of 

Xilinx or other FPGA vendors like Actel, Altera, Cypress, Lattice, Lucent, 

Quicklogic, etc.

The  program generates a summary of the synthesis activity and displays it as 

a  “Sum File.”  It gives a report on the utilization of the “Target Device” by the 
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Technology

FPGA

ASIC

Input

Speed grade

Device

HelpRun flow

MHzClock Frequency

Working directory

open files

Figure 2.11 The Window in Leonardo Spectrum to do the settings for synthesis. 

design that was synthesized.  It also generates and displays some timing 

information like “Critical Path Timing.” 

2.10 TEST BENCHES 

Any digital circuit that has been designed and wired goes through a testing process 

before being declared as ready for use.  Testing involves studying circuit behavior 

under simulated conditions for the following: 

Check and ensure that all functions are carried out as desired.  It is the test for 

the static behavior of the circuit.  A set of logic input values are applied at 

selected points and the logic values at another set of points observed.   

Check and ensure that all the functional sequences are carried out as desired.  

It is one of the tests for the dynamic behavior of the circuit.  It may call for the 
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generation of specific input sequences with respect to time, applying them to 

the circuit and observing selected outputs. 

Check for the timing behavior: One tests for the propagation and other types 

of delays here.  A variety of tests may have to be carried out. It may involve 

observation of variations in the signals at selected points, measuring the time 

delay between specified events, measuring pulse widths, and so on.   

Verilog has the provision for all the above.  One sets up a “test bench” in 

software and caries out a simulated test.  The facilities required to set up test 

benches are discussed in detail in Chapters 7 and 8.  However, the need to test the 

designs in Chapters 4 to 6 warrants a brief introduction to them here; only the 

essentials are discussed.  Further, the “test benches” up to Chapter 7 are kept 

simple and easily understandable.   

Simulated testing is a time-based activity.  It is usually carried out in 

simulated time.  With any simulation tool the simulation progresses through equal 

simulation time steps.  The time step can be 1 fs, 1 ps, 1 ns and so on.  In the text 

the default value is taken as 1 ns.  In some cases it is mentioned explicitly; in other 

situations it is implicit, that is, whenever ‘time step’ is mentioned, it implies 1ns of 

simulation time.  If required, the simulation time step can be altered (see Chapter 

11).   

Consider the group of statements below reproduced from the test bench of 

Figure 4.1: 

Initial

Begin

a1 = 0; 
 a2 = 0; 
  #3 a1 = 1; 
  #1 a1 = 0;  
  #2 a2 = 1;  
  #4 a1 = 1;  
  #3 a2 = 0; 
  #1 a2 = 1; 
end

and g1(b, a1, a2);

initial $monitor ( $time, “a1 = %b, a2 = %b, b = %b”’ a1, a2, b);

#100 $finish;

The keyword initial is followed by a sequence of statements between the 

keywords begin and end.  Usually the initial banner signifies a setting done 

on a once or a “once for all” basis.  The “# 3” implies a time delay or wait time of 

3 time steps in simulation.  Thus the sequence implies the following: 

At 0 simulation time the logic variables a1 and a2 are assigned the logic level 

0.   
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With a delay of 3 ns a1 is reassigned the logic value of 1. 

With a further delay of 1 ns – that is, at the 4th ns - a1 is reverted to the logic 

level 0.   

Similarly at the 6th, 10th, 13th and 14th ns values of simulation time, further 

changes are made to a1 and a2.

Note that every time value specified here is an increment in simulation time. 

The values of a1 and a2 are not changed beyond the 14th ns.  The statement 

initial # 100 $finish;

implies that the simulation is to be continued up to the 100th ns of simulation time 

and then stopped.   

The above constitutes the generation of the test sequence for testing.  Such test 

signals are applied to the designed circuit through instantiation; the statement 

and g1(b, a1, a2);

implies as much.  The statement 

initial $monitor ( $time, “a1 = %b, a2 = %b, b = %b”’ a1, a2, b);

monitors a1, a2, and a3 for changes; whenever any of them changes, all of them 

are sampled and the sampled values displayed.   

Summarizing testing constitutes three activities: 

Generation of the test signals – under the “initial” banner  

Application of the test signal to the circuit under test – through instantiation 

Observing selected signal values – through the $monitor statement 

Many of the test benches for the subsequent examples are also structured in a 

similar fashion.  Changes are kept to the minimum to ensure focus on the example 

concerned.  As and when such changes are made, the same is explained. 
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3

LANGUAGE CONSTRUCTS AND 

CONVENTIONS IN VERILOG 

3.1 INTRODUCTION 

The constructs and conventions make up a software language.  A clear 

understanding and familiarity of these is essential for the mastery of the language.  

Verilog has its own constructs and conventions [IEEE, Sutherland].  In many 

respects they resemble those of C language [Gottfried].  We discuss the constructs 

and conventions essential to the progress of the book.  More of these follow in the 

ensuing chapters.   

Any source file in Verilog (as with any file in any other programming 

language) is made up of a number of ASCII characters.  The characters are 

grouped into sets — referred to as “lexical tokens.”  A lexical token in Verilog can 

be a single character or a group of characters.  Verilog has 7 types of lexical tokens 

— operators, keywords, identifiers, white spaces, comments, numbers, and strings.  

Operators are introduced in Chapter 6.  All the other tokens are discussed here.  

Some other aspects of Verilog essential to the progress of the book are also 

discussed subsequently. 

3.1.1 Case Sensitivity 

Verilog is a case-sensitive language like C.  Thus sense, Sense, SENSE, sENse,… 

etc., are all treated as different entities / quantities in Verilog. 

3.2 KEYWORDS 

The keywords define the language constructs.  A keyword signifies an activity to 

be carried out, initiated, or terminated.  As such, a programmer cannot use a 

keyword for any purpose other than that it is intended for.  All keywords in 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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Verilog are in small letters and require to be used as such (since Verilog is a case-

sensitive language). All keywords appear in the text in New Courier Bold-type 

letters.

Examples 

module  signifies the beginning of a module definition. 

endmodule  signifies the end of a module definition. 

begin  signifies the beginning of a block of statements. 

end  signifies the end of a block of statements. 

if  signifies a conditional activity to be checked 

while  signifies a conditional activity to be carried out. 

A list of keywords in Verilog with the significance of each is given in Appendix 

A.

3.3 IDENTIFIERS 

Any program requires blocks of statements, signals, etc., to be identified with an 

attached nametag.  Such nametags are identifiers.  It is good practice for us to use 

identifiers, closely related to the significance of variable, signal, block, etc., 

concerned.  This eases understanding and debugging of any program.   

e.g., clock, enable, gate_1, . . . 

There are some restrictions in assigning identifier names. All characters of the 

alphabet or an underscore can be used as the first character. Subsequent characters 

can be of alphanumeric type, or the underscore (_), or the dollar ($) sign – for 

example 

name, _name. Name, name1, name_$, . . .  all these are allowed as 

identifiers 

name aa  not allowed as an identifier because of the blank ( “name” and “aa”

are interpreted as two different identifiers) 

$name  not allowed as an identifier because of the presence of “$” as the first 

character. 

1_name  not allowed as an identifier, since the numeral “1” is the first 

character 

@name  not allowed as an identifier because of the presence of the character 

“@”.

A+b  not allowed as an identifier because of the presence of the character “+”. 

An alternative format makes it is possible to use any of the printable ASCII 

characters in an identifier.  Such identifiers are called “escaped identifiers”; they 
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have to start with the backslash (\) character.  The character set between the first 

backslash character and the first white space encountered is treated as an identifier.  

The backslash itself is not treated as a character of the identifier concerned.   

Examples 

\b=c
\control-signal
\&logic
\abc // Here the combination “abc” forms the identifier.  

It is preferable to use the former type of identifiers and avoid the escaped 

identifiers; they may be reserved for use in files which are available as inputs to 

the design from other CAD tools. 

3.4 WHITE SPACE CHARACTERS 

Blanks (\b), tabs (\t), newlines (\n), and formfeed form the white space characters 

in Verilog.  In any design description the white space characters are included to 

improve readability.  Functionally, they separate legal tokens. They are introduced 

between keywords, keyword and an identifier, between two identifiers, between 

identifiers and operator symbols, and so on.  White space characters have 

significance only when they appear inside strings. 

3.5 COMMENTS 

It is a healthy practice to comment a design description liberally – as with any 

other program.  Comments are incorporated in two ways. A single line comment 

begins with “//” and ends with a new line – for example  

module d_ff (Q, dp, clk); //This is the design description of a D flip-flop. 

//Here Q is the output. 

// dp is the input and clk is the clock. 

One can incorporate multiline comments also without resorting to “//” at every 

line.  For such multiline comments “/*” signifies the beginning of a comment and 

“*/” its end.  All lines appearing between these two symbol combinations are 

together treated as a single block comment – for example   

module d_ff (Q, dp, clk);
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/*  This module forms the design description of a d_flip_flop wherein 

 Q is the output of the flip-flop , 

 dp is the data input and  

 clk the clock input*/ 

Multiline comments cannot be nested.  For example, the following comment is not 

valid. 

/*The following forms the design description of a D flip-flop /*which can be 

modified to form other types of flip-flops*/ with clock and data inputs.*/ 

A valid alternative can be as follows: - 

/*The following forms the design description of a D flip-flop (which can be 

modified to form other types of flip-flops) with clock and data inputs.*/ 

3.6 NUMBERS 

Frequently numbers need to be specified in a design description.  Logic status of 

signal lines, buses, delay values, and numbers to be loaded in registers are 

examples.  The numbers can be of integer type or real type.  

3.6.1 Integer Numbers 

Integers can be represented in two ways.  In the first case it is a decimal number – 

signed or unsigned; an unsigned number is automatically taken as a positive 

number.  Some examples of valid number representations of this category are 

given below: 

2

25

253 

–253 

The following are invalid since nondecimal representations are not permissible. 

2a

B8 

–2a

–B8 

Normally the number is taken as 32 bits wide.  Thus all the following numbers are 

assigned 32 bits of width: 

2

25
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253 

–2

–25 

–253 

If a design description has a number specified in the form given here, the circuit 

synthesizer program will assign 32 bits of width to it and to all the related circuits.  

Hence all such number specifications – despite their simplicity – may be avoided 

in design descriptions.  Number representation in this form may preferably be 

restricted to test benches.   

The alternate form of number representation is more specific – though 

elaborate.  The number can be specified in binary, octal, decimal, or hexadecimal 

form. The representation has three tokens with an optional sign preceding it.  

Figure 3.1 shows typical number representations with the significance of each field 

explained separately. 

- 8 'h f 4
This field signifies the value of the number.  For binary

numbers the characters 0, 1, x, z can be used to form the

value.

For octal numbers the numerals 0 to 7, x, z can be used to

form the value.

For decimal numbers all the numerals, x, z can be used to

form the value.

For hex numbers all the numerals, a, b, c, d, e, f, x, z can be

used to form the numbers.

This combination - the single quote character followed by b, o,

d or h - specifes the base of the number.  The character

signifies binary, octal, decimal or hexadecimal base.  If this

field is absent, the number is taken as a dcimal one.

If present, the decimal number in this field signifies the bit

width of the number.  If absent the width is assigned a default

value by the compiler.

This field(optional) is for the sign bit.  It is allowed only with

the decimal numbers.  If absent, the number is taken as

positive.  For a number with a negative sign the number is

represented in 2's complement form

Figure 3.1 Representation of a number in Verilog: One can use capital letters instead of 

small letters in the last two fields.  
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Observations: 

The characters used to specify the base number, the sign or the magnitude can 

be in either case (Thus A, B, C, D, E, or F can be used in place of a, b, c, d, 
e, or f, respectively, to specify the concerned hex digit.  X or Z can be used in 

place of x or z value, respectively). 

The single quote character in the base field has to be immediately followed by 

the character representing the base.  Intervening white spaces are not allowed.  

However, such white spaces can precede the magnitude field. 

Negative numbers are represented in 2’s complement form.   

The question mark character – “?” – can be used in place of z.  The 

underscore character can be used anywhere after the first character.  It adds to 

the readability.   It is normally ignored. 

If the number size is smaller than the size specified, the size is made up by 

padding 0’s to the left.  However, if the leftmost bit is a x or z, the same is 

padded to the left. 

Left truncation and right extension can often be confusing.  It is preferable to 

specify the numbers fully. 

Table 3.1 shows the format of specifications of the integer type numbers along 

with illustrative examples.  

3.6.2 Real Numbers 

Real numbers can be specified in decimal or scientific notation.  The decimal 

notation has the form 

-a.b

where a, b, the negative sign, and the decimal point have the usual significance.  

The fields a and b must be present in the number.  A number can be specified in 

scientific notation as 

4.3e2

where 4.3 is the mantissa and 2 the exponent. The decimal equivalent of this 

number is 430.  Other examples of numbers represented in scientific notation are  

–4.3e2, –4.3e–2, and 4.3e–2. The representations are common. 

3.7 STRINGS  

A string is a sequence of characters enclosed within double quotes.  A string must 

be contained on a single line; that is, it cannot be carried over to two lines with a 



STRINGS 37 

Table 3.1 Different ways of number representations in Verilog 

Representation Remarks

33

‘d33 

Both of these represent decimal numbers of unspecified size – 

normally interpreted by Verilog as 32 bitwide, i.e., 0000 0000 0000 

0000 0000 0000 0010 0001  

9’d439 

9’D439 

9’D4_39 

All these represent 3 digit decimal numbers.  D & d both specify 

decimal numbers.  “_” (underscore) is ignored 

9’b1_1011__1x01

9’b11011x01

9’B11011x01 

All these represent binary numbers of value 11011x01. B & b 

specify binary numbers.  “_” is ignored.  x signifies the concerned 

bit to be of unknown value. 

9’o123 

9’O123 

9’o1x3

9’o12z

All these represent 9-bit octal numbers. The binary equivalents are 

001 010 011, 

001 010 011, 001 xxx 011, 001 010 zzz respectively.  z signifies 

the concerned bits to be in the high impedance state. 

‘o213 An octal number of unspecified size having octal value 213. 

8’ha5 

8’HA5 

8’hA5 

8’ha_5 

All these are 8 bit-wide-hex numbers of hex value a5h.   The 

equivalent binary value is 1010 0101. 

11’hb0 
A 11 bit number with a hex assignment.  Its value is 000 1011 0000.  

The number of bits specified is more than that indicated in the value 

field.  Enough zeros are padded to the left as shown. 

9’hza A hex number of 9 bits.  Its value is taken as zzzzz 1010.

5’hza A 5-bit hex number.  Its value is taken as z 1010. 

5’h?a 
A 5-bit hex number.  Its value is taken as z 1010.  ‘?’ is another 

representation for ‘z’.

-5’h1a 

-3’b101 

Negative numbers.  Negative numbers are represented in 2’s 

complement form. 

-4’d7
A 4 bit negative number.  Its value in 2’s complement form is 7.  

Thus the number is actually – (16 – 7) = –9. 

carriage return.  Special characters are specified by preceding them with the “\” 

character. Verilog treats a string as a sequence of ASCII characters – for example,  

“This is a string” 

“This string is one \t with a gap in between” 

“This is called a \“string\””. 
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When a string of ASCII characters as above is an operand in an expression, it 

is treated as a binary number.  This binary number is formed by replacing each 

ASCII character by 8 bits – a 0 bit followed by the 7-bit ASCII equivalent – and 

treating the resulting binary sequence as a single binary number.  For example, the 

statement (with P defined as a 32-bit vector beforehand) 

P = “numb” 

assigns the binary value  

0110 1110 0111 0101 0110 1101 0110 0010 

to P (0110 1110, 0111 0101, 0110 1101 and 0110 0010  are the 8-bit equivalents 

of the letters n, u, m, and b, respectively).   

3.8 LOGIC VALUES 

Signal lines, logic values appearing on signal lines, etc., can normally take two 

logic levels:  

1  signifies the 1 or high or true level 

0  signifies the 0 or low or false level. 

Two additional levels are also possible – designated as x and z.  Here x

represents an unknown or an uninitialized value.  This corresponds to the don’t-

care case in logic circuits.  z represents / signifies a high impedance state.  This is 

possible when a signal line is tri-stated or left floating. The following are 

noteworthy here:  

When a variable in an expression is in the z state, the effect is the same as it 

having z value.  But when an input to a gate is in the z state (see Chapter 4), it 

is equivalent to having the x value. 

The MOS switches discussed in Chapter 10 form an exception to the above.  

If the input to a MOS switch is in the z state, its output too remains at the z

state.

With a few exceptions all data types in Verilog can take on all the 4 logic 

values or levels.  The event (see Section 8.11) is an exception to this.  It 

cannot store any value.  The trireg cannot take on the z value (see Chapter 

5). 

A logic state can have a “strength” associated with it.  It is a quantitative 

representation of the internal impedance value of the corresponding hardware 

circuit; a change in the internal impedance is reflected as a corresponding change 

in the strength level.  Whenever the logic values from two sources are combined, 

there can be a conflict and the resulting contention has to be resolved.  The 

strength values are discussed below.  Details of contention and its resolution are 

discussed in Chapter 5.  
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3.9 STRENGTHS 

The logic levels are also associated with strengths.  In many digital circuits, 

multiple assignments are often combined to reduce silicon area or to reduce pin-

outs. To facilitate this, one can assign strengths to logic levels.  Verilog has eight 

strength levels – four of these are of the driving type, three are of capacitive type 

and one of the hi-Z type. Details are given in Table 3.2 (see also Section 5.4).  

When a signal line is driven simultaneously from two sources of different 

strength levels, the stronger of the two prevails.  A few illustrative examples are 

considered here. 

If a signal line a is driven by two sources – b at 1 level with strength 

“strong1” and c at level 0 with strength “pull0”– a will take the value 1. 

3.2 Details of strengths in Verilog  

Strength

name

Strength

level 

(signifies

inverse of 

source

impedance)

Specification 

keyword 
Abbreviation Element modeled 

Supply1 Su1 Supply 

drive
7

Supply0 Su0

Power supply 

connection

Strong1 St1 
Strong

drive
6

Strong0 St0

Default gate and 

assign output 

strength

Pull1 Pu1 
Pull drive 5 

Pull0 Pu0

Gate and assign 

output strength 

Large1 La1 Large 

capacitor 
4

Large0 La0

Size of trireg net 

capacitor 

Weak1 We1 
Weak drive 3 

Weak0 We0

Gate and assign 

output strength 

Medium1 Me1 Medium

capacitor 
2

Medium0 Me0

Size of trireg net 

capacitor 

Small1 Sm1 Small 

capacitor 
1

Small0 Sm0

Size of trireg net 

capacitor 

Highz1 Hi1 High

impedance
0

Highz0 Hi0

Tri-stated line 
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If a signal line a is driven by two sources – b at 1 level with strength 

“pull1” and c at level 0 with strength “strong0,” a will take the value 0. 

If a signal line a is driven by two sources – b at 1 level with strength 

“strong1” and c at level 0 with strength “strong0,” a will take the value 

x (indeterminate). 

If a signal line a is driven by two sources – b at 1 level with strength 

“weak1” and c at level 0 with strength “large0,” a will take the value 0. 

(Note that large signifies a capacitive drive on a tri-stated line whereas 

weak signifies a gate / assigned output drive with a high source impedance; 

despite this, due to the higher strength level, the large signal prevails.) 

The significance of strengths is further explained in Chapter 5. 

3.10 DATA TYPES 

The data handled in Verilog fall into two categories: 

(i) Net data type 

(ii) Variable data type 

The two types differ in the way they are used as well as with regard to their 

respective hardware structures.  Data type of each variable or signal has to be 

declared prior to its use.  The same is valid within the concerned block or module. 

3.10.1 Nets 

A net signifies a connection from one circuit unit to another.  Such a net carries the 

value of the signal it is connected to and transmits to the circuit blocks connected 

to it. If the driving end of a net is left floating, the net goes to the high impedance 

state.  A net can be specified in different ways.   

wire:  It represents a simple wire doing an interconnection.  Only one output is 

connected to a wire and is driven by that. 

tri:  It represents a simple signal line as a wire.  Unlike the wire, a tri can be 

driven by more than one signal outputs. 

Functionally, wire and tri are identical.  Distinct nomenclatures are provided 

for the convenience of assigning roles.  Other types of nets are discussed in 

Chapter 5.   
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3.10.2 Variable Data Type 

A variable is an abstraction for a storage device.  It can be declared through the 

keyword reg and stores the value of a logic level: 0, 1, x, or z. A net or wire 

connected to a reg takes on the value stored in the reg and can be used as input 

to other circuit elements.  But the output of a circuit cannot be connected to a reg.

The value stored in a reg is changed through a fresh assignment in the program.  

time, integer, real, and realtime are the other variable types of data; 

these are dealt with later. 

3.11 SCALARS AND VECTORS 

Entities representing single bits — whether the bit is stored, changed, or 

transferred — are called “scalars.”  Often multiple lines carry signals in a cluster – 

like data bus, address bus, and so on.  Similarly, a group of regs stores a value, 

which may be assigned, changed, and handled together.  The collection here is 

treated as a “vector.”  Figure 3.2 illustrates the difference between a scalar and a 

vector.  wr and rd are two scalar nets connecting two circuit blocks circuit1 and 

circuit2.  b is a 4-bit-wide vector net connecting the same two blocks.  b[0], b[1], 
b[2], and b[3] are the individual bits of vector b.  They are “part vectors.” 

A vector reg or net is declared at the outset in a Verilog program and hence 

treated as such.  The range of a vector is specified by a set of 2 digits (or 

expressions evaluating to a digit) with a colon in between the two.  The 

combination is enclosed within square brackets. 

Circuit 1 Circuit 2

wr

rd

b[0]
b[1]

b[2]
b[3]

wr & rd are scalars

part vectors

4-bit-wide vector b

Figure 3.2 Illustration of scalars and vectors. 



42 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG

Examples: 

wire[3:0] a;  /* a is a four bit vector of net type; the bits are designated as 

a[3], a[2], a[1] and a[0]. */ 

reg[2:0] b;  /* b is a three bit vector of reg type; the bits are designated as 

b[2], b[1] and b[0]. */ 

reg[4:2] c;  /* c is a three bit vector of reg type; the bits are designated as 

c[4], c[3] and c[2]. */ 

wire[-2:2] d ; /* d is a 5 bit vector with individual bits designated as d[-2],  

d[-1], d[0], d[1] and d[2]. */ 

Whenever a range is not specified for a net or a reg, the same is treated as a 

scalar – a single bit quantity.  In the range specification of a vector the most 

significant bit and the least significant bit can  be assigned specific integer values.  

These can also be expressions evaluating to integer constants – positive or 

negative. 

Normally vectors – nets or regs – are treated as unsigned quantities.  They 

have to be specifically declared as “signed” if so desired. 

Examples 

wire signed[4:0] num;  // num is a vector in the range -16 to +15. 

reg signed [3:0] num_1;  // num_1 is a vector in the range -8 to +7.  

3.12 PARAMETERS 

In some designs, certain parameter values are not committed at the outset.  

Proportionality constants, frequency-scaling levels, number of taps in digital 

filters, etc., are typical examples.  There are also situations where the size of the 

design is left open and decided at a later stage.  Bus width, LIFO depth, and 

memory size are such quantities which may be committed later.  All such 

constants can be declared as parameters at the outset in a Verilog module, and 

values can be assigned to them; for example, 

parameter word_size  = 16; 

parameter word_size  = 16, mem_size = 256; 

Such parameter assignments are made at compiler time.  The parameter values 

cannot be changed (normally) at runtime.  However, a parameter that has been 

assigned a value in a module definition can have its value changed at runtime – 

that is, when the module is used at runtime in some other design (i.e., instantiated) 

or when it is tested.  Such modifications are carried out through a 

“defparameter” statement.  The parameter assignment done as part of 

parameter declaration can have the appropriate constant on the right-hand side of 



OPERATORS 43 

the assignment statement, as was the case above.  The assignment can also have 

algebraic expressions on the right hand side.  Such expressions can involve 

constants and other parameters declared already; for example 

Parameter word_size  = 16, factor = word_size/2; 

3.13 MEMORY 

Different types and sizes of memory, register file, stack, etc., can be formed by 

extending the vector concept.  Thus the declaration  

Reg [15:0] memory[511:0]; 

declares an array called “memory”; it has 512 locations.  Each location is 16 bits 

wide.  The value of any chosen location can be assigned to a selected register or 

vice versa; this constitutes memory reading or writing [see Example 8.10].  The 

index used to refer a memory location can be a number or an algebraic expression 

which reduces to an integral value – positive, zero, or negative.  As an example, 

consider the assignment statement 

B = mem[(p-q)/2];

The simulator first evaluates (p - q)/2 (which should be an integer): Let it reduce  

to 3.  Then the data stored at mem[3] is assigned to B.  Stack pointer, program 

counter, index register, etc., can be implemented through the above concept.  

Different types of memory addressing like indirect, indexed, etc., can also be 

accommodated.  Page addressing can be accomplished by a slight adaptation of the 

concept. 

3.14 OPERATORS 

Verilog has a number of operators akin to the C language.  These are of three 

types: 

1. Unary: the unary operator is associated with a single operand.  The operator 

precedes the operand – for example, ~a.

2. Binary: the binary operator is associated with two operands.   The operator 

appears between the two operands – for example, a&b.

3. Ternary: the ternary operator is associated with three operands.  The two 

operators together constitute a ternary operation.  The two operators separate 

the three operands – for example  

a?b:c  // Here the operators “?” and “:” together define an operation. 

Operators are discussed in detail in Chapter 6. 
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3.15 SYSTEM TASKS 

During the simulation of any design, a number of activities are to be carried out to 

monitor and control simulation.  A number of such tasks are provided / available in 

Verilog.  Some other tasks serve other functions.   However, a few of these are 

used commonly; these are described here.  The “$” symbol identifies a system 

task.  A task has the format 

$<keyword>

3.15.1 $display 

When the system encounters this task, the specified items are displayed in the 

formats specified and the system advances to a new line.  The structure, format, 

and rules for these are the same as for the “printf” / “scanf” function in C.  Refer to 

a standard text in “C” language for the text formatting codes in common usage 

[Gottfried]. 

Examples 

$display (“The value of a is : a = , %d”, a);

Execution of this line results in printing the value of a as a decimal number 

(specified by “%d”).  The string present within the inverted commas specifies this. 

Thus if a has the value 3.5, we get the display 

The value of a is : a = 3.5. 

After printing the above line, the system advances to the next line. 

$display;  /* This is a display task without any arguments.  It advances 

output to a new line. */ 

3.15.2 $monitor 

The $monitor task monitors the variables specified whenever any one of those 

specified changes.  During the running of the program the monitor task is invoked 

and the concerned quantities displayed whenever any one of these changes.  

Following this, the system advances to the next line.  A monitor statement need 

appear only once in a simulation program.  All the quantities specified in it are 

continuously monitored.  In contrast, the $display command displays the 

quantities concerned only once – that is, when the specific line is encountered 

during execution.  The format for the $monitor task is identical to that of the 

$display task.    
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Examples 

$monitor (“The value of a is : a = , %d”, a);

With the task, whenever the value of a changes during execution of a program, its 

new value is printed according to the format specified.  Thus if the value of a
changes to 2.4 at any time during execution of the program, we get the following 

display on the monitor. 

The value of a is: a = 2.4. 

3.15.3 Tasks for Control of Simulation 

Two system tasks are available for control of simulation: 

$finish task, when encountered, exits simulation.  Control is reverted to the 

Operating System.  Normally the simulation time and location are also printed out 

by default as part of the exit operation.   

$stop task, suspends simulation; if necessary the simulation can be resumed by 

user intervention.  Thus with the stop task, the simulator is in an interactive mode.  

In contrast with $finish, simulation has to be started afresh. 

3.16 EXERCISES 

1.  Run the Verilog program in Figure 3.3.  Observe the output. 

module fancy2; 

integer i,j; 

initial repeat(5) 

begin 

 #1 j=0; 

 while(j<=10) 

 begin 

  j=j+1; 

  for(i=0;i<=j;i=i+1) $write(" b"); 

  $display("*"); 

 end 

#1 while(j>=0) 

continued 
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continued 

 begin 

  for(i=0;i<=j;i=i+1) $write(" c"); 

  $display("*"); 

  j=j-1; 

 end 

end

initial #12 $stop; 

endmodule 

Figure 3.3 A simple Verilog module. 

2.   In Exercise 3.1 above, delete b and c in the write statement lines.  Rerun the 

program. 

3.   Try other combinations of I and j values and repeat the run. 

4.   Run the Verilog program in Figure 3.4.   

5.   In the program of Figure 3.4 replace the “always” statement by 

“initial” statement and run the program. 

6.  In the program of Figure 3.4 replace the “a=a+7” statement by “a=a-7”

statement and run the program. 

module fancy3; 

reg[11:0]a; 

always

begin 

 #0 $display("See this:          ah=%d, ad=%h, ao=%o, ab=%b",a,a,a,a); 

 #1 $display("How about this? ah=%0d, ad=%0h, ao=%0o, ab=%0b",a,a,a,a); 

 a=a+7; 

end

initial  

begin 

 a=0; 

 #10 $stop; 

end

endmodule 

Figure 3.4 Another simple Verilog module.
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4

GATE LEVEL MODELING – 1 

4.1 INTRODUCTION 

Digital designers are normally familiar with all the common logic gates, their 

symbols, and their working.  Flip-flops are built from the logic gates.  All other 

functionally complex and more involved circuits can also be built using the basic 

gates.  All the basic gates are available as “Primitives” in Verilog.  Primitives are 

generalized modules that already exist in Verilog [IEEE].  They can be instantiated 

directly in other modules.  Further design description using gate primitives is quite 

close to the actual circuits (design description using the switch primitives dealt 

with in Chapter 10 are still closer).  We describe features of gate level primitives, 

ways of working with them, and ways of building more involved circuits with 

them [Palnitkar, Lee].  In this process some of the commonly used features of 

Verilog are also brought out. 

4.2 AND GATE PRIMITIVE 

The AND gate primitive in Verilog is instantiated with the following statement:  

and g1 (O, I1, I2, . . ., In);

Here ‘and’ is the keyword signifying an AND gate.  g1 is the name assigned to 

the specific instantiation.  O is the gate output; I1, I2, etc., are the gate inputs.  The 

following are noteworthy:  

The AND module has only one output.  The first port in the argument list is 

the output port.   

An AND gate instantiation can take any number of inputs — the upper limit is 

compiler-specific.   

A name need not be necessarily assigned to the AND gate instantiation; this is 

true of all the gate primitives available in Verilog. 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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4.2.1 Example 4.1 

Figure 4.1 shows the stimulus program for testing the AND gate g1.   The output 

obtained by stimulating the program is shown in Figure 4.2.  Some explanation 

regarding the simulation program is in order here. 

The module test_and has no port.  It instantiates the AND module once. 

The test input sequence is specified within the initial block – the 

sequence of statements between the begin and end statements together form 

this block. 

The keyword “initial” signifies the settings done initially — that is, only 

once for the whole routine. 

The first set of statements within the initial block

a1 = 0;
a2 = 0;

make  

a1 = a2 = 0
at zero simulation time.  

After 3 time steps, a1 is set to one but a2 remains at 0.  The expression “#3” 

means “after 3 time steps”. Subsequent changes in a1 and a2 also can be 

explained in the same manner. 

module test_and;

reg a1, a2;

wire b;
Initial

Begin

a1 = 0; 
 a2 = 0; 
  #3 a1 = 1; 
  #1 a1 = 0;  
  #2 a2 = 1;  
  #4 a1 = 1;  
  #3 a2 = 0; 
  #1 a2 = 1; 
end

and g1(b, a1, a2);

initial $monitor ( $time, “a1 = %b, a2 = %b, b = %b”’ a1, a2, b);

initial #100 $finish;
endmodule

Figure 4.1 A module to instantiate the AND gate primitive and test it. 
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0 a1 = 0 a2 = 0 b = 0

3 a1 = 1 a2 = 0 b = 0

4 a1 = 0 a2 = 0 b = 0

6 a1 = 0 a2 = 1 b = 0

10 a1 = 1 a2 = 1 b = 1

13 a1 = 1 a2 = 0 b = 0

14 a1 = 1 a2 = 1 b = 1

Figure 4.2 The output obtained by running the module of Figure 4.1. 

The program displays the variable values – that is, the values of o, a1, and a2
whenever any one of these changes. This is evident from the printout on the 

monitor, which has been reproduced in Figure 4.2. 

A pair of variables a1 and a2 are declared in the program, and the values 

stored in them are given as inputs to the AND gate instantiation. 

Any variable not declared in the module is by default taken as a net of wire 

type; it is also taken as a scalar. The same is true of all modules in Verilog. 

The term $time in the $monitor statement signifies the running time of 

the program.  Here it causes the value of time at the instant of capturing the 

data for display, to be displayed. 

The statement  

#100 $finish;

signifies that the program will stop simulation and exit the operating system at 

the end of 100 time steps. 

4.2.2 Truth Table of AND Gate Primitive 

The truth table for a two-input AND gate is shown in Table 4.1.  It can be directly 

extended to AND gate instantiations with multiple inputs.  The following 

observations are in order here:  

Table 4.1 Truth table of AND gate primitive 

Input 1 

0 1 x z

0 0 0 0 0 

1 0 1 x x

x 0 x x x

In
p

u
t 

2
 

z 0 x x x 
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If any one of the inputs to the AND gate instantiation is in the 0 state, its 

output is also in the 0 state.  It is irrespective of whether the other inputs are at 

the 0, 1, x or z state.

The output is at 1 state if and only if every one of the inputs is at 1 state. 

For all other cases the output is at the x state. 

Note that the output is never at the z state – the high impedance state.  This is 

true of all other gate primitives as well. 

4.3 MODULE STRUCTURE 

Figure 4.1 shows a typical module.  In a general case a module can be more 

elaborate.  A lot of flexibility is available in the definition of the body of the 

module.  However, a few rules need to be followed: 

The first statement of a module starts with the keyword module; it may be 

followed by the name of the module and the port list if any (see Section 2.8). 

All the variables in the ports-list are to be identified as inputs, outputs,

or inouts.  The corresponding declarations have the form shown below: 

Input a1, a2;

Output b1, b2;

Inout c1, c2;

The port-type declarations here follow the module declaration mentioned 

above.

The ports and the other variables used within the body of the module are to be 

identified as nets or registers with specific types in each case.  The respective 

declaration statements follow the port-type declaration statements.  

Examples: 

wire a1, a2, c; 

reg b1, b2; 

The type declaration must necessarily precede the first use of any variable or 

signal in the module. 

The executable body of the module follows the declaration indicated above. 

The last statement in any module definition is the keyword “endmodule”.

Comments can appear anywhere in the module definition. 



ILLUSTRATIVE EXAMPLES  51 

4.4 OTHER GATE PRIMITIVES 

All other basic gates are also available as primitives in Verilog.  Details of the 

facilities and instantiations in each case are given in Table 4.2.  The following 

points are noteworthy here: 

In all cases of instantiations, one need not necessarily assign a name to the 

instantiation.  It need be done only when felt necessary – say for clarity of 

circuit description. 

In all the cases the output port(s) is (are) declared first and the input port(s) is 

(are) declared subsequently. 

The buffer and the inverter have only one input each.  They can have any 

number of outputs; the upper limit is compiler-specific.  All other gates have 

one output each but can have any number of inputs; the upper limit is again 

compiler-specific. 

4.4.1 Truth Table 

Extending the concepts of Section 4.2.2, one can form the truth tables of all other 

gate primitives.  The basic features of each are given in Table 4.3.  The truth tables 

themselves are given in Appendix B. 

4.5 ILLUSTRATIVE EXAMPLES 

The examples considered here illustrate the use of gate primitives in designs.  

Further, they bring out how one can build fairly large designs by judiciously 

combining smaller modules in a repeated fashion [Bignel, Sedra].  

Table 4.2 Basic gate primitives in Verilog with details

Gate Mode of instantiation Output port(s) Input port(s) 

AND and ga ( o, i1, i2, . . . i8); o i1, i2, . .

OR or gr ( o, i1, i2, . . . i8); o i1, i2, . .

NAND nand gna ( o, i1, i2, . . . i8); o i1, i2, . .

NOR nor gnr ( o, i1, i2, . . . i8); o i1, i2, . .

XOR xor gxr ( o, i1, i2, . . . i8); o i1, i2, . .

XNOR xnor gxn ( o, i1, i2, . . . i8); o i1, i2, . .

BUF buf gb ( o1, o2, …. i); o1, o2, o3, . . i

NOT not gn (o1, o2, o3, . . . i); o1, o2, o3, . . i
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Table 4.3 Rules for deciding the output values of gate primitives for different input 

combinations

Type of gate 0 output state 1 output state x output state 

AND
Any one of the 

inputs is zero 

All the inputs are at one

NAND
All the inputs are at 

one

Any one of the inputs is 

zero

OR
All the inputs are at 

zero

Any one of the inputs is 

one

NOR
Any one of the 

inputs is one 

All the inputs are at 

zero

All other cases 

XOR

XNOR

If every one of the inputs is definite at zero or 

one, the output is zero or one as decided by 

the XOR or XNOR function 

If any one of the inputs is 

at x or z state, the output is 

at x state 

BUF
If the only input is at 

0 state 

If the only input is at 1 

state 

NOT
If the only input is at 

1 state 

If the only input is at 0 

state 

All other cases of inputs 

4.5.1 Example 4.2 

The commonly used A-O-I gate is shown in Figure 4.3 for a simple case.  The 

module and the test bench for the same are given in Figure 4.4. The circuit has 

been realized here by instantiating the AND and NOR gate primitives.  The names 

of signals and gates used in the instantiations in the module of Figure 4.4 remain 

the same as those in the circuit of Figure 4.3. The module aoi_gate in the figure 

has input and output ports since it describes a circuit with signal inputs and an 

output.  The module aoi_st is a stimulus module.  It generates inputs to the 

aoi_gate module and gets its output.  It has no input or output ports. 

a1

o

o2

o1

b2

b1

a2

g3

g2

g1

Figure 4.3 A typical A-O-I gate circuit. 
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/*module for the aoi-gate of figure 4.3 instantiating 
the gate primitives - fig4.4*/ 
module aoi_gate(o,a1,a2,b1,b2); 
input a1,a2,b1,b2;// a1,a2,b1,b2 form the input
//ports of the module 
output o;//o is the single output port of the module 
wire o1,o2;//o1 and o2 are intermediate signals
//within the module 
and g1(o1,a1,a2); //The AND gate primitive has two 
and g2(o2,b1,b2);// instantiations with assigned 
//names g1 & g2.
nor g3(o,o1,o2);//The nor gate has one instantiation
//with assigned name g3. 
endmodule

//Test-bench for the aoi_gate above 
module aoi_st; 
reg a1,a2,b1,b2; 
//specific values will be assigned to a1,a2,b1,
// and b2 and these connected
//to input ports of the gate insatntiations; 
//hence these variables are declared as reg
wire o; 
initial
begin
    a1 = 0; 
    a2 = 0; 
    b1 = 0; 
    b2 = 0; 

#3 a1 = 1; 
#3 a2 = 1; 
#3 b1 = 1; 
#3 b2 = 0; 
#3 a1 = 1; 
#3 a2 = 0; 
#3 b1 = 0; 

end
initial #100 $stop;//the simulation ends after
//running for 100 tu's. 
initial $monitor($time   ,   "   o = %b , a1 = %b , 
 a2 = %b , b1 = %b ,b2 = %b ",o,a1,a2,b1,b2); 
aoi_gate gg(o,a1,a2,b1,b2); 
endmodule

Figure 4.4 Module for the AOI gate of Figure 4.3 and a test bench for the same. 



54  GATE LEVEL MODELING – 1 

The A-O-I gate module has three instantiations – two of these being AND gates 

and the third a NOR gate; this conforms to the circuit of A_O_I gate in Figure 4.3.  

Within the aoi_gate module, all signals are of type net.  The aoi_ gate module in 

Figure 4.4 is instantiated once in the module aoi_st for testing.  Any such 

instantiation of a user-defined module in another module has to be assigned a 

name. (As mentioned earlier, this is not mandatory with the instantiation of gate 

primitives available in Verilog.)  The instantiation is given the name gg here.  

Note that all the inputs to the instantiation of aoi_gate in the test bench are fed 

through regs.   

The aoi_gate and aoi_st are compiled and run.  Different combinations of 

values are assigned to a1, a2, b1, and b2 in the test bench at regular intervals of 3 

time steps.   At all such time steps at least one of the signals included in the 

monitor statement changes.  Hence all the signal values are displayed on the 

monitor at three time step intervals.  The results of running the test bench are 

reproduced in Figure 4.5, which confirms this. 

The module aoi_gate has been synthesized and the synthesized circuit shown 

in Figure 4.6; the figure does not warrant any detailed explanation. 

Both the modules can do with some elegant simplification.  First consider the 

stimulus module aoi_st in Figure 4.4.  All the four inputs can be clubbed together 

and treated as a “vector” input.  Often this may be possible to be identified with a 

four-bit-wide bus in a system.  It makes the vector representation all the more 

meaningful.  With this, the variables together can be declared as a single vector.  

The value taken by the vector can be defined with relevant time delays.  To 

accommodate such a change, the AOI module of Figure 4.4 is recast in Figure 4.7. 

The compactness achieved here is carried over to the instantiation of the module 

for its test bench aoi_st2, which is also shown in the figure.  

The AOI gate itself (aoigate2 in Figure 4.7) has been made compact on two 

counts: All the four inputs have been clubbed together and treated as a four-bit 

vector.  Further, the two and gate instantiations are clubbed together into one 

statement.  Note the format of the statement – a comma separates the two 

instantiations, and as usual a semicolon signifies the end of the statement.  In any 

set of instantiations, all similar instantiations in a module can be combined in this 

manner.  The module aoigate2 has an input/output port since it describes a circuit 

with signal inputs and outputs.  aoi_st2 is a stimulus module.  It generates inputs 

 #   0   o = 1 , a1 = 0 , a2 = 0 , b1 = 0 ,b2 = 0  
 #   3   o = 1 , a1 = 1 , a2 = 0 , b1 = 0 ,b2 = 0  
 #   6   o = 0 , a1 = 1 , a2 = 1 , b1 = 0 ,b2 = 0  
 #   9   o = 0 , a1 = 1 , a2 = 1 , b1 = 1 ,b2 = 0  
 #  18   o = 1 , a1 = 1 , a2 = 0 , b1 = 1 ,b2 = 0  
 #  21   o = 1 , a1 = 1 , a2 = 0 , b1 = 0 ,b2 = 0  

Figure 4.5 Results of running the aoi_st test bench of Figure 4.3. 
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Figure 4.6 Synthesized version of the module aoi_gate of Figure 4.4. 

to the module from within the stimulus module and gets its output.  It has no input 

or output port.  In a more general case one may have a number of modules defined 

at different levels, which are repeatedly instantiated in bigger modules.  The 

stimulus module may be at the apex.  It may carry out the stimulus activity by 

generating the inputs to the other ports in the hierarchy and receiving their outputs.  

module aoi_gate2(o,a); 
input [3:0]a;//A is a vector of 4 bits width 
output o;// output o is a scalar 
wire o1,o2;//these are intermediate signals 
and (o1,a[0],a[1]),(o2,a[2],a[3]); 
nor (o,o1,o2);/*The nor gate has one instantiation 
with assigned name g3.*/ 
endmodule

module aoi_st2; 
reg[3:0] aa; 
aoi_gate2 gg(o,aa); 
initial
  begin 
 aa = 4'b000;//a being a vector, all its  
  #3  aa = 4'b0001;//bit components are
  #3  aa = 4'b0010;//assigned values at one go.
  #3  aa = 4'b0100;//Similarly their changes are
  #3  aa = 4'b1000;//combined in the assignments 
  #3  aa = 4'b1100;
  #3  aa = 4'b0110; 
  #3  aa = 4'b0011; 
 end 
initial
$monitor(  $time , " aa = %b , o = %b " , aa,o); 
initial #24 $stop; 
endmodule

Figure 4.7 Another realization of the A-I-O gate with the input declared as a vector; the test 

bench for the module is also shown in the figure. 
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The stimulus module need not necessarily have a port; aoi_st in Figure 4.4 and 

aoi_st2 in Figure 4.7 are typical examples. The results of running the test bench 

aoi_st2 of Figure 4.7 are shown in Figure 4.8. 

To facilitate involved design descriptions, some additional flexibility is 

available in Verilog. 

Signals at the ports can be identified by a hierarchical name.  Such addressing 

may become useful when displaying them in the stimulus module. 

Signal instantiations illustrated above specify inputs and outputs in the same 

sequence as was done in the definition.  The procedure is simple and 

acceptable in situations with only a few numbers of inputs and outputs.  But in 

modules with a comparatively large number of inputs and outputs, sticking to 

the sequence and keeping track of it becomes strenuous.  In such situations the 

instantiation can be done by identifying the inputs and outputs on a one-to-one 

basis [see Section 2.8].  Thus the instantiation of the aoi_gate2 in the test 

bench of Figure 4.7 can be described alternately as 

aoigate2 gg (.o(o), .a[1](aa[1]), .a[2](aa[2]), .a[3](aa[3]), .a[4](aa[4]) ); 

Here one need not stick to the same order of assignment of the ports as in the 

module definition.  Thus the instantiation entered as

aoigate2 gg (.a[1](aa[1]), .o(o),.a[2](aa[2]), .a[4](aa[4]), a[3](aa[3]) ); 

is equally valid. 

4.5.2 Example 4.3:  4-to-16 Decoder 

Decoder design using gates can be described in various ways.  Here we define a 2-

to-4 decoder module and instantiate it repeatedly and judiciously to realize a 4-to-

16 decoder.  The procedure is not necessarily the best or most elegant. 

#         0   aa = 0000 , o = 1 
#         3   aa = 0001 , o = 1 
#         6   aa = 0010 , o = 1 
#         9   aa = 0100 , o = 1 
#        12   aa = 1000 , o = 1 
#        15   aa = 1100 , o = 0 
#        18   aa = 0110 , o = 1 
#        21   aa = 0011 , o = 0 

Figure 4.8 Results of running the aoi_st2 test bench of Figure 4.7. 
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Figure 4.9(c) shows the formation of the 4-to-16 decoder in terms of two 

numbers of 3-to-8 decoders.  The 3-to-8 decoders have an “Enable” input each 

(designated ‘en’ – one being of the active high and the other of the active low 

type); these are connected to the most significant bit of the 4-bit input to form the 

4-to-16 decoder.  The 3-to-8 decoder can again be formed in terms of two 2-to-4 

decoders in the same manner as shown in Figure 4.9(b).  The 2-to-4 decoder block 

used here is shown in Figure 4.9(a).  The logic of building a complex circuit unit 

in terms of repeated use of smaller and smaller circuit units followed here is used 

in the design description as well.  Figure 4.10 shows the design description of a 2-

to-4 decoder module and a test bench for the same.  The decoder module (dec2_4) 

accepts a 2-bit-wide vector input b and decodes it into a 4-bit-wide vector output 

a.  It has an additional “Enable” input designated “en”; the outputs are enabled 

only if en = 1.  The input en has been introduced to facilitate expansion of the 

decoder capacity by repeated instantiation as explained above.  The test bench for 

the decoder is more illustrative than exhaustive; that is, it does not test the module 

for all possible input values.  Results of the simulation run are shown in Figure 

4.11. 
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Figure 4.9 Formation of 4-to-16 decoder circuit in terms of smaller decoders: (a) 2-to-4 

decoder,  (b) 3-to- 8 decoder in terms of two 2-to-4 decoders, and (c) 4-to-16 decoder in 

terms of two 3-to-8 decoders. 
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module dec2_4 (a,b,en); 
output [3:0] a; 
input [1:0]b; input en; 
wire [1:0]bb; 
not(bb[1],b[1]),(bb[0],b[0]);
and(a[0],en, bb[1],bb[0]),(a[1],en, bb[1],b[0]), 
(a[2],en, b[1],bb[0]),(a[3],en, b[1],b[0]); 
endmodule
//test bench 
module tst_dec2_4(); 
wire [3:0]a; 
reg[1:0] b; reg en; 
dec2_4 dec(a,b,en); 
initial
begin
  {b,en} =3'b000; 
#2{b,en} =3'b001; 
#2{b,en} =3'b011; 
#2{b,en} =3'b101; 
#2{b,en} =3'b111; 
end
initial
$monitor ($time  ,  "output a =  %b, input b  = %b ", 
a, b); 
endmodule

Figure 4.10 Design description of a 2-to-4 decoder circuit and its test bench. 

Figure 4.12 shows a 3-to-8 decoder module formed by repeated instantiation of the 

2-to-4 decoder of Figure 4.10. The eight AND gate instantiations ensure that the 

outputs are enabled only when enn — a separate “Enable” signal — goes active.  

Following the same logic, the module for the 4-to-16 decoder is described in  

Figure 4.13.  A test bench to test the module through all the possible input states is 

also included in the figure.  Figure 4.14 shows the results of running the test-

bench. 

 //output 
 //#        0 output a =  0000, input b  = 00  
 //#        2 output a =  0001, input b  = 00  
 //#        4 output a =  0010, input b  = 01  
 //#        6 output a =  0100, input b  = 10  
 //#        8 output a =  1000, input b  = 11 

Figure 4.11 Results of running the test bench of Figure 4.10. 
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module dec3_8(pp,q,enn); 
output[7:0]pp;
input[2:0]q;
input enn; 
wire qq; 
wire[7:0]p;
not(qq,q[2]);
dec2_4 g1(.a(p[3:0]),.b(q[1:0]),.en(qq)); 
dec2_4 g2(.a(p[7:4]),.b(q[1:0]),.en(q[2])); 
and g30(pp[0],p[0],enn); 
and g31(pp[1],p[1],enn); 
and g32(pp[2],p[2],enn); 
and g33(pp[3],p[3],enn); 
and g34(pp[4],p[4],enn); 
and g35(pp[5],p[5],enn); 
and g36(pp[6],p[6],enn); 
and g37(pp[7],p[7],enn); 
endmodule

Figure 4.12 A 3-to-8 decoder module formed by repeated instantiation of the 2-to-4 

decoder module in Figure 4.10. 

module dec4_16(m,n); 
output[15:0]m;
input[3:0]n;
wire nn; 
//wire en; 
not(nn,n[3]);
dec3_8 g3(.pp(m[7:0]),.q(n[2:0]),.enn(nn)); 
dec3_8 g4(.pp(m[15:8]),.q(n[2:0]),.enn(n[3])); 
endmodule

//test-bench
module dec4_16_stimulus; 
wire[15:0]m;
//wire l,m,n; 
reg[3:0]n;
dec4_16 gg(m,n); 
initial

continued 



60  GATE LEVEL MODELING – 1 

continued

begin
  n=4'b0000;#2n=4'b0000;#2n=4'b0001; 
#2n=4'b0010;#2n=4'b0011;#2n=4'b0100;
#2n=4'b0101;#2n=4'b0110;#2n=4'b0111;
#2n=4'b1000;#2n=4'b1001;#2n=4'b1010;
#2n=4'b1011;#2n=4'b1100;#2n=4'b1101;
#2n=4'b1110;#2n=4'b1111;#2n=4'b1111;
end
initial $monitor($time," m = %b ,n = %b , gg.g3.qq = %b 
, gg.g4.g1.bb = %b " , m,n,gg.g3.qq,gg.g4.g1.bb); 
//gg.g3.qq displays the enable line of dec3_8 called 
g3-g1
//gg.g4.g1.bb displays the bb wire in dec2_4
initial #40 $stop ; 
endmodule

Figure 4.13 A 4-to-16 decoder module formed by repeated instantiation of the 3-to-8 

decoder module of Figure 4.12.  A test bench for the same is also shown. 

//output
//#       0 m = 0000000000000001 ,n = 0000 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 11
//#       4 m = 0000000000000010 ,n = 0001 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 10
//#       6 m = 0000000000000100 ,n = 0010 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 01
//#       8 m = 0000000000001000 ,n = 0011 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 00
//#      10 m = 0000000000010000 ,n = 0100 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 11
//#      12 m = 0000000000100000 ,n = 0101 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 10
//#      14 m = 0000000001000000 ,n = 0110 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 01
//#      16 m = 0000000010000000 ,n = 0111 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 00
//#      18 m = 0000000100000000 ,n = 1000 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 11
//#      20 m = 0000001000000000 ,n = 1001 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 10 
//#      22 m = 0000010000000000 ,n = 1010 , 

continued
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continued 

gg.g3.qq = 1 , gg.g4.g1.bb = 01
//#      24 m = 0000100000000000 ,n = 1011 ,
gg.g3.qq = 1 , gg.g4.g1.bb = 00
//#      26 m = 0001000000000000 ,n = 1100 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 11
//#      28 m = 0010000000000000 ,n = 1101 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 10
//#      30 m = 0100000000000000 ,n = 1110 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 01
//#      32 m = 1000000000000000 ,n = 1111 ,
gg.g3.qq = 0 , gg.g4.g1.bb = 00 

Figure 4.14 Results of running the test bench of Figure 4.13 for the 4-to-16 decoder. 

Observations:– 

The nested tree of modules with the inputs and outputs in each case are shown 

in Figure 4.15.   

dec4_16_stimulus

dec4_16 gg

dec3_8 g3

dec2_4 g1 dec2_4 g2

q [1: 0]

b b

p[3:0]

qq

Ena

q[3]

p[7:4]

En a

dec3_8 g4

dec2_4 g1 dec2_4 g2

q [1: 0]

b b

p[3:0]
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Ena

q[3]

p[7:4]

En a

q q

n[3:0]

En En

nn n[4]

p

m[15:8]m[7:0]

p

m n

p q

Figure 4.15 Block diagram representation of the module instantiations and signal 

assignments for the stimulus module of Figure 4.10. 



62  GATE LEVEL MODELING – 1 

Two signals within the two nested modules are monitored in 

dec4_16_stimulus.  Formation of their hierarchical addresses is also shown in 

Figure 4.15. (Hierarchical addressing is addressed in detail in Chapter 11.) 

The module dec3_8 is instantiated twice in the module dec4_16.  Here the 

port declarations are done by declaring the port names on a one-to one basis.  

The order has not been maintained as in the defining module. 

4.5.2.1 Decoder Synthesis 
The synthesized circuit of the 2-to-4 decoder module of Figure 4.10 (dec2_4) is 

shown in Figure 4.16.  The AND gate cells available in the library are all of the 

two-input type; hence six such cells (designated as ix5, ix7, ix11, ix13, ix15, and 

ix19) are utilized to realize the four numbers of three-input AND gates instantiated 

in the design module.  The NOT gates are realized through two NOT gate cells in 

the library (designated as ix1 and ix3).  The wider lines in the figure signify bus-

type interconnections.  The synthesized circuit of the 3-to-8 decoder module of 

Figure 4.12 (dec3_8) is shown in Figure 4.17.  The two instantiations of the 

dec2_4 module (g1 and g2) are shown as black boxes. Similarly, Figure 4.18 

shows the synthesized circuit of the 4-to-16 decoder module of Figure 4.13 

(dec4_16).  The two instantiations of the dec3_8 module (g3 and g4) appear as 

black boxes inside.  Figure 4.19 shows the complete hierarchy of instantiations in 

the synthesized circuit.  In the figure boxes g3 and g4 represent instantiations of 

the 3-to-8 decoders used in the module.  Each of these has two numbers of the 2-

to-4 decoders – designated as g1 and g2; these are shown enclosed inside boxes. 

Figure 4. 16 The synthesized circuit of the 2-to-4 decoder of Figure 4.10. 
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Figure 4.17 The synthesized circuit of the 3-to- 8 decoder of Figure 4.12. 

Figure 4.18 The synthesized circuit of the 4-to-16 decoder of Figure 4.13. 
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Figure 4.19 Four-to-sixteen decoder – hierarchy of instantiations. 

4.6 TRI-STATE GATES 

Four types of tri-state buffers are available in Verilog as primitives.  Their outputs 

can be turned ON or OFF by a control signal.  The direct buffer is instantiated as  

Bufif1 nn (out, in, control); 

The symbol of the buffer is shown in Figure 4.20.  We have 

 out as the single output variable  

 in as the single input variable and 

 control as the single control signal variable. 

When  

control = 1, 

out = in.
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outin

control

Figure 4.20 A tri-state buffer. 

When  

control = 0, 

out is cut off from the input and tri-stated.  The output, input and control signals 

should appear in the instantiation in the same order as above.  Details of bufif1 as 

well as the other tri-state type primitives are shown in Table 4.4.  In all the cases 

shown in Table 4.4, out is the output, in is the input, and control, the control 

variable. 

Table 4.4 Instantiation and functional details of tri-state buffer primitives 

Typical instantiation Functional representation Functional description 

bufif1 (out, in,

control);

outin

control

Out = in if control = 1; else 

out  = z

bufif0 (out, in,

control);

outin

control

Out = in if control = 0; else 

out  = z

notif1 (out, in,

control);

outin

control

Out = complement of in
 if control = 1; else out  = z

notif0 (out, in,

control);

outin

control

Out = complement of in
 if control = 0; else out  = z
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The truth tables of the tri-state buffers are given in Appendix B.  The following 

observations are common to all the tri-state buffer primitives: 

If the control signal has a value that corresponds to the buffer being on, two 

possibilities exist: 

The output has the same value as the input if the input is 0 or 1. 

The output is at x otherwise (i.e., if the input is x or z). 

If the control signal has a value that corresponds to the control signal being 

off, the output is at z state irrespective of the value of the input. 

If the control signal is at x or z, three possibilities arise: 

If the input is at x or z, the output is at x.

If the input is at 0 state, the output is L for bufif1 and bufif0.  It is at 

H for notif1 and notif0. 

If the input is at 1 state, the output is H for bufif1 and bufif0.  It is at 

L for notif1 and notif0. 

Note that H corresponds to 1 or z state while L corresponds to 0 or z state. 

4.7 ARRAY OF INSTANCES OF PRIMITIVES 

The primitives available in Verilog can also be instantiated as arrays.  A judicious 

use of such array instantiations often leads to compact design descriptions.  A 

typical array instantiation has the form 

and gate [7 : 4 ] (a, b, c); 

where a, b, and c are to be 4 bit vectors.  The above instantiation is equivalent to 

combining the following 4 instantiations: 

and gate [7] (a[3], b[3], c[3]), gate [6] (a[2], b[2], c[2]), gate [5] (a[1], b[1], 

c[1]), gate [4] (a[0], b[0], c[0]);

The assignment of different bits of input vectors to respective gates is implicit in 

the basic declaration itself.  A more general instantiation of array type has the form 

and gate[mm : nn](a, b, c); 

where mm and nn can be expressions involving previously defined parameters, 

integers and algebra with them.  The range for the gate is 1+ (mm-nn); mm and nn

do not have restrictions of sign; either can be larger than the other. 



ARRAY OF INSTANCES OF PRIMITIVES  67 

4.7.1 Example 4.4 A Byte Comparator 

A circuit to compare two variables each of one byte is given in Figure 4.21.  The 

circuit outputs a flag d; d is 1 if the two bytes are equal; else it is 0.  The output is 

activated only if the enable signal en = 1.  If en = 0, the circuit output is tri-stated.  

The module description is given in Figure 4.22 along with a test-bench. The 

simulated output is in Figure 4.23.   

Observations:  

In all array-type instantiations, the array sizes are to be matched. 

The order of assignments to outputs, inputs, etc., in the individual gates will 

be decided by the order of the bits.  Thus the array instantiation 

or gg[3:1] (a[3:1], b[4:2], c); 

is equivalent to the combination of instantiations 

or gg[3] (a[3], b[4], c[2]), gg[2] (a[2], b[3], c[1]), gg[1] (a[1], b[2], c[0]); 

If the vector sizes in the port list do not match the array size specified, 

assignments will be done starting from the right; that is, the rightmost 

instantiation will be assigned the rightmost inputs and outputs and the 

following instantiations will be made assignments in the order specified.  

However, it is desirable to avoid such ill-matched instantiations. 

a[7]

b[6]

a[6]

a[0]

b[7]

b[0]

g1[7]

g1[6]

g1[0]

ddd

en

Figure 4.21 A byte comparator. 
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In the general case the array size is specified in terms of two constant 

expressions.  These can involve constants, previously defined parameters and 

algebraic operators: Such an instantiation can have a form as 

and gate [offset*2+size-1: offset*2] (a, b, c); 

where ‘offset’ and ‘size’ are parameters whose values should have been 

assigned earlier (operators are discussed in detail in Chapter 6). 

module comp(d,a,b,en); 
input en; 
input[7:0]a,b;
output d; 
wire [7:0]c; 
wire dd; 
xor g1[7:0](c,b,a); 
or(dd,c);
notif1(d,dd,en);
endmodule

module comp_tb; 
reg[7:0]a,b;
reg en; 
comp gg(d,a,b,en); 
initial

begin
a  = 8'h00; 
b  = 8'h00; 
en = 1'b0; 
end

always
#2  en = 1'b1; 
always
begin
 #2  a = a+1'b1; 
 #2  b = b+2'd2; 
end
initial $monitor($time," en = %b , a = %b ,b = %b ,d = 
%b ",en,a,b,d); 
initial #30 $stop; 
endmodule

Figure 4.22 Module of an 8-bit comparator and its test bench. 
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 # 0 en = 0, a = 00000000, b = 00000000, d = z  
 # 2 en = 1, a = 00000001, b = 00000000, d = 0  
 # 4 en = 1, a = 00000001, b = 00000010, d = 0  
 # 6 en = 1, a = 00000010, b = 00000010, d = 1  
 # 8 en = 1, a = 00000010, b = 00000100, d = 1  
 #10 en = 1, a = 00000011, b = 00000100, d = 0  
 #12 en = 1, a = 00000011, b = 00000110, d = 0  
 #14 en = 1, a = 00000100, b = 00000110, d = 1  
 #16 en = 1, a = 00000100, b = 00001000, d = 1  
 #18 en = 1, a = 00000101, b = 00001000, d = 0  
 #20 en = 1, a = 00000101, b = 00001010, d = 0  
 #22 en = 1, a = 00000110, b = 00001010, d = 1  
 #24 en = 1, a = 00000110, b = 00001100, d = 1  
 #26 en = 1, a = 00000111, b = 00001100, d = 0  
 #28 en = 1, a = 00000111, b = 00001110, d = 0  

Figure 4.23 Results of the simulation run of the test bench in Figure 4.22. 

4.8 ADDITIONAL EXAMPLES 

A set of representative examples is discussed here with the following aims:– 

Bring out the flexibility associated with the use of primitives and their 

instantiations. 

Illustrate the use of different features of Verilog discussed in the chapter.  

Focus attention on the fact that any combinational circuit can be designed at 

the gate level. 

Details of the examples considered are summarized in Table 4.5 

Table 4.5  Summary of the examples considered in Section 4.8 

Figure numbers 
Circuit

function Module & 

Test-bench 

Simulation 

results

Synthesized 

circuit 

Remarks

Half-adder 4.24 4.25 4.26  

Full-adder 4.27 4.28 
4.29 & 

4.30

Instantiates the half-adder twice as 

ha1 and ha2 in Figure 4.27 

2-to-1 Mux 4.37 4.38 4.39 Realized with tri-state buffers 

4.31 4.32 4.33 Simple & direct 

4.34 4.35 4.36 
The above type with an additional 

tri-state output facility  
4-to-1 Mux 

4.40 4.41 4.42 Realized with tri-state buffers 
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module ha(s,ca,a,b); 
input a,b; 
output s,ca; 
xor(s,a,b);
and(ca,a,b);
endmodule

//test-bench
module tstha(); 
reg a,b; 
wire s,ca; 
ha hh(s,ca,a,b); 
initial
begin
a=0;b=0;
end
always
begin
#2 a=1;b=0; 
#2 a=0;b=1; 
#2 a=1;b=1; 
#2 a=0;b=0; 
end
initial $monitor($time , "  a = %b , b = %b ,out carry 
= %b , outsum = %b  " ,a,b,ca,s); 
initial #24 $stop; 
endmodule

Figure 4.24 Design module and a test bench for a half-adder. 

 output 
 #  0  a = 0 , b = 0 ,out carry = 0 , outsum = 0   
 #  2  a = 1 , b = 0 ,out carry = 0 , outsum = 1   
 #  4  a = 0 , b = 1 ,out carry = 0 , outsum = 1   
 #  6  a = 1 , b = 1 ,out carry = 1 , outsum = 0   
 #  8  a = 0 , b = 0 ,out carry = 0 , outsum = 0   
 # 10  a = 1 , b = 0 ,out carry = 0 , outsum = 1   
 # 12  a = 0 , b = 1 ,out carry = 0 , outsum = 1   
 # 14  a = 1 , b = 1 ,out carry = 1 , outsum = 0   
 # 16  a = 0 , b = 0 ,out carry = 0 , outsum = 0   
 # 18  a = 1 , b = 0 ,out carry = 0 , outsum = 1   
 # 20  a = 0 , b = 1 ,out carry = 0 , outsum = 1   
 # 22  a = 1 , b = 1 ,out carry = 1 , outsum = 0  

Figure 4.25 Results of running the test bench of the half-adder module in Figure 4.24.
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Figure 4.26 Synthesized output of the half-adder module of Figure 4.24. 

module fa(sum,cout,a,b,cin); 
input a,b,cin; 
output sum,cout; 
wire s,c1,c2; 
ha ha1(s,c1,a,b), ha2(sum,c2,s,cin); 
or(cout,c2,c1);
endmodule

//test-bench
module tst_fa(); 
reg a,b,cin; 
fa ff(sum,cout,a,b,cin); 
initial
begin
a =0;b=0;cin=0; 
end
always

begin
#2 a=1;b=1;cin=0;#2 a=1;b=0;cin=1;
#2 a=1;b=1;cin=1;#2 a=1;b=0;cin=0;
#2 a=0;b=0;cin=0;#2 a=0;b=1;cin=0;
#2 a=0;b=0;cin=1;#2 a=0;b=1;cin=1;
#2 a=1;b=0;cin=0;#2 a=1;b=1;cin=0;
#2 a=0;b=1;cin=0;#2 a=1;b=1;cin=1;
end

initial $monitor($time ," a = %b, b = %b, cin = %b, 
outsum = %b, outcar = %b ", a,b,cin,sum,cout); 
initial #30 $stop ; 
endmodule

Figure 4.27 Design module and a test bench for a full-adder. 
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 //output 
 #0  a = 0, b = 0, cin = 0, outsum = 0, outcar = 0  
 #2  a = 1, b = 1, cin = 0, outsum = 0, outcar = 1  
 #4  a = 1, b = 0, cin = 1, outsum = 0, outcar = 1  
 #6  a = 1, b = 1, cin = 1, outsum = 1, outcar = 1  
 #8  a = 1, b = 0, cin = 0, outsum = 1, outcar = 0  
 #10 a = 0, b = 0, cin = 0, outsum = 0, outcar = 0  
 #12 a = 0, b = 1, cin = 0, outsum = 1, outcar = 0  
 #14 a = 0, b = 0, cin = 1, outsum = 1, outcar = 0  
 #16 a = 0, b = 1, cin = 1, outsum = 0, outcar = 1  
 #18 a = 1, b = 0, cin = 0, outsum = 1, outcar = 0  
 #20 a = 1, b = 1, cin = 0, outsum = 0, outcar = 1  
 #22 a = 0, b = 1, cin = 0, outsum = 1, outcar = 0  
 #24 a = 1, b = 1, cin = 1, outsum = 1, outcar = 1  
 #26 a = 1, b = 1, cin = 0, outsum = 0, outcar = 1  
 #28 a = 1, b = 0, cin = 1, outsum = 0, outcar = 1  

Figure 4.28 Results of running the test bench of the full-adder module in Figure 4.27.

Figure 4.29 Synthesized output of the full-adder module of Figure 4.27. 

Figure 4.30 Synthesized circuit hierarchy of the full-adder module in Figure 4.27. 
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module mux4_1(y,i,s); 
input [3:0] i; 
input [1:0] s; 
output y; 
wire [1:0] ss; 
wire [3:0]yy; 
not (ss[0],s[0]),(ss[1],s[1]); 
and (yy[0],i[0],ss[0],ss[1]); 
and (yy[1],i[1],s[0],ss[1]); 
and (yy[2],i[2],ss[0],s[1]); 
and (yy[3],i[3],s[0],s[1]); 
or (y,yy[3],yy[2],yy[1],yy[0]); 
endmodule

//test-bench
module tst_mux4_1(); 
reg [3:0]i; 
reg [1:0] s; 
mux4_1 mm(y,i,s); 
initial

begin
#2{i,s} = 6'b 0000_00; 
#2{i,s} = 6'b 0001_00; 
#2{i,s} = 6'b 0010_01; 
#2{i,s} = 6'b 0100_10; 
#2{i,s} = 6'b 1000_11; 
#2{i,s} = 6'b 0001_00; 
end

initial
$monitor($time," input s = %b,y = %b" ,s,y); 
endmodule

Figure 4.31 Design module and a test bench for a 4-to-1 mux module. 

 //output 
 //#         0 input s = xx ,y = x  
 //#         2 input s = 00 ,y = 0  
 //#         4 input s = 00 ,y = 1  
 //#         6 input s = 01 ,y = 1  
 //#         8 input s = 10 ,y = 1  
 //#        10 input s = 11 ,y = 1  
 //#        12 input s = 00 ,y = 1  

Figure 4.32 Results of running the test bench of the 4-to- mux module in Figure 4.31.
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Figure 4.33 Synthesized output of the 4-to-1 Mux module of Figure 4.31. 

module trimux4_1(o,e,i,s); 
input e; 
input [1:0]s; 
input [3:0]i; 
output o; 
tri o; 
wire y,y1,y2,y3,y4; 
wire [1:0]ss; 
not(ss[0],s[0]),(ss[1],s[1]);
and g1(y1,ss[0],ss[1],i[0]); 
and g2(y2,ss[1],s[0],i[1]); 
and g3(y3,ss[0],s[1],i[2]); 
and g4(y4,s[1],s[0],i[3]); 
or(y,y3,y2,y1,y2);
bufif1 buf2(o,y,e); 
endmodule

//TESTBENCH
module tst_trimux4_1(); 
reg [1:0]s; 
reg [3:0]i; 
reg e; 
wire o; 
trimux4_1 tmx4_1(o,e,i,s); 
initial
begin
e =0;i =2'b00; 
end
always

begin
#6 e=0;s=2'b00;i=4'b0001; 
#6 e=1;s=2'b01;i=4'b0010; 

continued 
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continued 

#6 e=1;s=2'b10;i=4'b0100; 
#6 e=1;s=2'b10;i=4'b1000; 
end

initial $monitor($time ," input e = %b , s= %b , i = %b 
, output o = %b "  ,e,s,i,o); 
initial #48 $stop; 
endmodule

Figure 4.34 Design module and a test bench for a 4-to-1 mux module with tri-state output. 

 output 
 # 0 input e = 0 , s= xx , i = 0000 , output o = z  
 # 6 input e = 0 , s= 00 , i = 0001 , output o = z  
 #12 input e = 1 , s= 01 , i = 0010 , output o = 1  
 #18 input e = 1 , s= 10 , i = 0100 , output o = 1  
 #24 input e = 1 , s= 10 , i = 1000 , output o = 0  
 #30 input e = 0 , s= 00 , i = 0001 , output o = z  
 #36 input e = 1 , s= 01 , i = 0010 , output o = 1  
 #42 input e = 1 , s= 10 , i = 0100 , output o = 1  

Figure 4.35 Results of running the test bench of the 4-to-1 mux module in Figure 4.34. 

Figure 4.36 Synthesized output of the 4-to-1 mux module of Figure 4.34 

module ttrimux2_1(out,e,i,s); 
input[1:0]i;
input e; 
input s; 
output out; 
wire o; 
bufif0  g1(o,i[0],s); 
bufif1  g2(o,i[1],s); 

continued
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continued

bufif1  g3(out,o,e); 
endmodule

//testbench
module ttst_ttrimux2_1(); 
reg e; 
reg [1:0]i; 
reg s; 
ttrimux2_1 mm(out,e,i,s); 
initial
begin
e =0; i = 2'b 00;end 
always

begin
#4 e =0;{i,s} = 3'b 01_0; 
#4 e =1;{i,s} = 3'b 01_0; 
#4 e =1;{i,s} = 3'b 10_1; 
#4 e =1;{i,s} = 3'b 00_1; 
#4 e =1;{i,s} = 3'b 10_1; 
#4 e =1;{i,s} = 3'b 01_0; 
#4 e =1;{i,s} = 3'b 00_0; 
#4 e =1;{i,s} = 3'b 11_0; 
end

initial $monitor($time ," enable e = %b ,
s= %b , input i = %b ,output out = %b ",e ,s,i,out); 
initial #48 $stop; 
endmodule

Figure 4.37 Design module and a test bench for a 2-to-1 mux module formed with tri-state 

buffers.

output
# 0 enable e = 0, s= x, input i = 00,output out = z
# 4 enable e = 0, s= 0, input i = 01,output out = z
# 8 enable e = 1, s= 0, input i = 01,output out = 1
#12 enable e = 1, s= 1, input i = 10,output out = 1
#16 enable e = 1, s= 1, input i = 00,output out = 0
#20 enable e = 1, s= 1, input i = 10,output out = 1
#24 enable e = 1, s= 0, input i = 01,output out = 1
#28 enable e = 1, s= 0, input i = 00,output out = 0
#32 enable e = 1, s= 0, input i = 11,output out = 1
#36 enable e = 0, s= 0, input i = 01,output out = z
#40 enable e = 1, s= 0, input i = 01,output out = 1
#44 enable e = 1, s= 1, input i = 10,output out = 1

Figure 4.38 Results of running the test bench of the 2-to-1 mux module in Figure 4.37.  
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Figure 4.39 Synthesized output of the 2-to-1 mux module of Figure 4.37. 

module ttrimux4_1(out,e,i,s); 
input[3:0]i;
input e; 
input[1:0]s;
output out; 
tri o; 
tri [1:0]o1; 
bufif0  g1(o1[0],i[0],s[0]); 
bufif1  g2(o1[0],i[1],s[0]); 
bufif0  g3(o1[1],i[2],s[0]); 
bufif1  g4(o1[1],i[3],s[0]); 
bufif0  g5(o,o1[0],s[1]); 
bufif1  g6(o,o1[1],s[1]); 
bufif1  g7(out,o,e); 
endmodule

//testbench
module ttst_ttrimux4_1(); 
reg e; 
reg [3:0]i; 
reg [1:0]s; 
ttrimux4_1 mm(out,e,i,s); 
initial

continued 
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continued

begin
 e = 0;  
 i = 4'b 0000; 
end
always

begin
#4 e =0;{i,s} = 6'b 0001_00; 
#4 e =1;{i,s} = 6'b 0001_00; 
#4 e =1;{i,s} = 6'b 0010_01; 
#4 e =1;{i,s} = 6'b 0000_01; 
#4 e =1;{i,s} = 6'b 0100_10; 
#4 e =1;{i,s} = 6'b 0101_10; 
#4 e =1;{i,s} = 6'b 1000_11; 
#4 e =1;{i,s} = 6'b 0000_11; 
end

initial $monitor($time ," enable e = %b , s= %b , input 
i = %b ,output out = %b ",e ,s,i,out); 
initial #48 $stop; 
endmodule

Figure 4.40 Design module and a test bench for a 4-to-1 mux module formed with tri-state 

buffers.

output

# 0 enable e =0,s=xx, input i =0000, output out = z
# 4 enable e =0,s=00, input i =0001, output out = z
# 8 enable e =1, s=00,input i =0001 ,output out = 1
#12 enable e =1, s=01,input i =0010 ,output out = 1
#16 enable e =1, s=01,input i =0000 ,output out = 0

#20 enable e =1, s=10,input i =0100 ,output out = 0
#24 enable e =1, s=10,input i =0101 ,output out = 1
#28 enable e =1, s=11,input i =1000 ,output out = 1
#32 enable e =1, s=11,input i =0000 ,output out = 0

#36 enable e =0, s=00,input i =0001 ,output out = z
#40 enable e =1, s=00,input i =0001 ,output out = 1

#44 enable e =1, s=01,input i =0010 ,output out = 1

Figure 4.41 Results of running the test bench of the 4-to-1 mux module in Figure 4.40.  
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Figure 4.42 Synthesized output of the 4-to-1 mux module of Figure 4.40. 

4.9 EXERCISES 

1. Modify the test bench of Figure 4.1 and test the functionality of each of the 

basic gate primitives namely, OR, NOR, NAND, EXOR, EXNOR, NOT, 

and BUF. 

For all the Exercises below prepare test benches and run the same. 

2. Draw the half-adder circuit in terms of EX-OR gates and AND gate. Prepare 

a half-adder module in terms of EX-OR and AND gate primitive. 

3. Prepare a full-adder module using half-adder module and OR gate Primitive. 

4. Prepare a 4-bit adder module in terms of full-adder and half-adder modules. 

Treat the two 4-bit numbers as vectors for all input combination. 

5. Prepare a module to generate a look-ahead-carry bit for the above problem. 

6. Prepare modules for addition of 16 bit words and 32 bit words. 

7. Prepare a module for conversion of an 8-bit number into its respective 

BCDs.

8. Prepare a module to add 2 BCDs 

9. Prepare a module for the conversion of a pair of BCDs into the 

corresponding byte. 

10. Prepare a module to generate Excess-3 code type of 4-bit output from a 

BCD.

11. Prepare a module to generate a BCD from an Excess-3 code digit. 

12. Prepare an adder module to add Excess-3 coded digits.  
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13. Prepare a module to convert a set of 8 bits in gray code into an equivalent 

binary number. 

14. Prepare an adder module to convert an 8-bit binary number into gray code. 

15. Prepare a half-subtractor module and use it to form a 4-bit subtractor 

module. 

16. Prepare a module to generate the 1's complement of a 4-bit number. 

17. Prepare a module to generate 2's complement of a 4-bit number. 

18. A set of 5-bit numbers is available as vectors – b [4:0]; b[4] is the sign bit. b 

[3:0] represent the number in 1's complement form.    Prepare 

a) a module to add two such numbers 

b) a module to subtract  one such number from the other 

19. Repeat the above problem when the numbers are in 2's complement form. 

20. Prepare a module to multiplex two input bits into one output bit. 

21. Prepare a module to demultiplex one bit into 2 bits. 

22. Use  the 2 to 4 decoder module and prepare 

a) a 4 to 1 multiplexer module 

b) a 1 to 4 demultiplexer module 

23. A is an 8-bit vector.  Prepare a module to form another 8-bit vector B with 

its bits forming the mirror image of A. 

24. A 16-bit barcode driver output is available. Generate the corresponding  4 

bit  output from these (Priority Encoder) 

25. Prepare a module to generate 16-bit barcode driver outputs from a 4-bit 

binary number. 

26. Prepare a module to generate 7-segment driver outputs from a 4-bit number. 

27. Two 4-bit binary numbers a and b are available.  Prepare a comparator 

module.  The comparator module will generate 2 output bits. One bit is 0 if a 

> b and 1 if a < b.  The second bit is 1 if a = b and 0 otherwise. 

28. Prepare a 2-bit ALU module and its test bench.  Let the module inputs – A 

and B – be 2-bit wide. D is the 2-bit output.  Ci is the carry input and Co is 

the carry output.  F is the function select vector.  If F = 1, D = A + B; if  F = 

2, D = A + B + Ci;  if  F = 3, D =A - B; if F = 4, D = A – B - Ci; if F = 5, D 

= A OR B; if F = 6, D = A AND B; if  F = 7, D = A XOR B. 

29. Prepare a module for addition of bytes, instantiating the nibble adder of 

Exercise 4.4 repeatedly. Use the look-ahead-carry output of Exercise 4.5 to 

generate the carry bit from bit position 3 to bit position 4. 

30. Use arrays of instances and redo the 4-to-16 decoder module of Figure 4.13. 
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5.1 INTRODUCTION 

Design of combinational circuits was discussed in detail in the last chapter. Flip-

flops too can be designed in a similar manner - that is, in terms of gate primitives.  

The same can be extended to registers, register files, memory, and so on.  These 

can be combined with combinational circuits to form designs at the MSI level.  

Design of different types of flip-flops is discussed here through a series of 

examples.  Subsequently, constructs available to account for different types of 

propagation delays are discussed.  Constructs to represent source and load 

impedances and their use along with propagation delays are dealt with 

subsequently [IEEE]. 

5.2 DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES 

The basic RS latch can be designed using gate primitives.  Two instantiations of 

NAND or NOR gates suffice here.  More involved flip-flops, registers, etc., can be 

built around these.  Some of the level triggered versions of such flip-flops are 

taken up for design.  Subsequently, the edge-triggered flip-flop of the 7474 type is 

developed in a skeletal form.  More generalized versions are left as exercises. 

Example 5.1 A Simple Latch 

Figure 5.1 shows the design description of a simple latch formed with two NAND 

gates.  A test bench for the same is shown in Figure 5.2 along with the results of 

the simulation run for 20 time steps.  The test-bench has a block within a begin-

end construct which reassigns values to rb and sb at two successive time step 

intervals.  The whole sequence described within the block lasts for 10 ns.  

Defining the block within the always construct repeats the above assignment 

sequence cyclically until the simulation stops. The latch has been synthesized, and 

the synthesized circuit is shown in Figure 5.3. 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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module sbrbff(sb,rb,q,qb); 

input sb,rb; 
output q,qb; 

nand(q,sb,qb);

nand(qb,rb,q);

endmodule

Figure 5.1 A module to instantiate the AND gate primitive and test it. 

module tstsbrbff; //test-bench 
reg sb,rb; 
wire q,qb; 
sbrbff ff(sb,rb,q,qb); 
initial
begin

sb =1'b1; 
rb =1'b0; 

end
always
begin

#2 sb =1'b1;rb =1'b1; 
#2 sb =1'b0;rb =1'b1; 
#2 sb =1'b1;rb =1'b1; 
#2 sb =1'b1;rb =1'b0; 
#2 sb =1'b1;rb =1'b1; 

end
initial $monitor($time, " sb = %b, rb = %b,
q = %b, qb  = %b",sb,rb,q,qb); 
initial #20 $stop; 
endmodule

Simulation results 

#  0 sb = 1 , rb = 0 , q = 0 , qb  = 1 
#  2 sb = 1 , rb = 1 , q = 0 , qb  = 1 
#  4 sb = 0 , rb = 1 , q = 1 , qb  = 0 
#  6 sb = 1 , rb = 1 , q = 1 , qb  = 0 
#  8 sb = 1 , rb = 0 , q = 0 , qb  = 1 
# 10 sb = 1 , rb = 1 , q = 0 , qb  = 1 
# 14 sb = 0 , rb = 1 , q = 1 , qb  = 0 
# 16 sb = 1 , rb = 1 , q = 1 , qb  = 0 
# 18 sb = 1 , rb = 0 , q = 0 , qb  = 1 

Figure 5.2 A test bench for the flip-flop of Figure 5.1 and results of running the test bench.  
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Figure 5.3 Synthesized circuit of the flip-flop module of Figure 5.1. 

Example 5.2 An RS Flip-Flop 

The design module of an RS flip-flop along with a test bench for the same is 

shown in Figure 5.4.  The module is a slight modification of the flip-flop of 

Figure 5.1.  The simulation results are shown in Figure 5.5.  The synthesized 

circuit is shown in Figure 5.6.  One can easily relate the difference between this 

circuit and that of Figure 5.3 to the corresponding difference between the 

respective design modules. 

module srff(s,r,q,qb); 
input s,r; 
output q,qb; 
wire ss,rr; 
not(ss,s),(rr,r);
nand(q,ss,qb);
nand(qb,rr,q);
endmodule

module tstsrff; //test-bench 
reg s,r; 
wire q,qb; 
srff ff(s,r,q,qb); 
initial

continued 
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continued

begin
s =1'b1; 
r =1'b0; 

end
always
begin

#2 s =1'b0;r =1'b0; 
#2 s =1'b0;r =1'b1; 
#2 s =1'b0;r =1'b0; 
#2 s =1'b1;r =1'b0; 
#2 s =1'b0;r =1'b0; 

end
initial $monitor($time, " s = %b, r = %b, q = %b, qb  = 
%b ",s,r,q,qb); 
initial #20 $stop; 
endmodule

Figure 5.4 Module of an RS flip-flop with NAND gates and a test bench for the same. 

#  0 s = 1 , r = 0 , q = 1 , qb  = 0 
#  2 s = 0 , r = 0 , q = 1 , qb  = 0 
#  4 s = 0 , r = 1 , q = 0 , qb  = 1 
#  6 s = 0 , r = 0 , q = 0 , qb  = 1 
#  8 s = 1 , r = 0 , q = 1 , qb  = 0 
# 10 s = 0 , r = 0 , q = 1 , qb  = 0 
# 14 s = 0 , r = 1 , q = 0 , qb  = 1 
# 16 s = 0 , r = 0 , q = 0 , qb  = 1 
# 18 s = 1 , r = 0 , q = 1 , qb  = 0 

Figure 5.5 Results of running the test bench for the flip-flop of Figure 5.4. 

Figure 5.6 Synthesized circuit of the flip-flop module of Figure 5.4. 
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Example 5.3 A Clocked RS Flip-Flop 

The module in Figure 5.7 is for a clocked RS flip-flop.  It is the RS flip-flop of 

Figure 5.4 with the clock signal gating the R and S inputs.  A test bench for the 

flip-flop is also shown in the figure.  The clock waveform in the test bench is a 

square wave with a period of 4 ns [see Example 7.5 for details]. The simulation 

results are shown in Figure 5.8.  Figure 5.9 shows the synthesized circuit of the 

flip-flop. 

module srffcplev(cp,s,r,q,qb); 
input cp,s,r; 
output q,qb; 
wire ss,rr; 
nand(ss,s,cp),(rr,r,cp),(q,ss,qb),(qb,rr,q);
endmodule

module srffcplev_tst;// test-bench 
reg cp,s,r; 
wire q,qb; 
srffcplev ff(cp,s,r,q,qb); 
initial
begin

cp=1'b0;
s =1'b1; 
r =1'b0; 

end
always #2cp=~cp; 
always
begin

#4 s =1'b0;r =1'b0; 
#4 s =1'b0;r =1'b1; 
#4 s =1'b0;r =1'b0; 
#4 s =1'b1;r =1'b0; 
#4 s =1'b0;r =1'b0; 

end
initial $monitor($time,"cp = %b ,s = %b , r = %b , q = 
%b , qb  = %b " ,cp,s,r,q,qb); 
initial #20 $stop; 
endmodule

Figure 5.7 Module of a clocked RS flip-flop with NAND gates and a test bench for the 

same. 
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#  0 cp = 0, s = 1, r = 0, q = x, qb  = x 
#  2 cp = 1, s = 1, r = 0, q = 1, qb  = 0 
#  4 cp = 0, s = 0, r = 0, q = 1, qb  = 0 
#  6 cp = 1, s = 0, r = 0, q = 1, qb  = 0 
#  8 cp = 0, s = 0, r = 1, q = 1, qb  = 0 
# 10 cp = 1, s = 0, r = 1, q = 0, qb  = 1 
# 12 cp = 0, s = 0, r = 0, q = 0, qb  = 1 
# 14 cp = 1, s = 0, r = 0, q = 0, qb  = 1 
# 16 cp = 0, s = 1, r = 0, q = 0, qb  = 1 
# 18 cp = 1, s = 1, r = 0, q = 1, qb  = 0 

Figure 5.8 Results of running the test bench for the flip-flop of Figure 5.7. 

Figure 5.9 Synthesized circuit of the flip-flop module of Figure 5.7. 

Example 5.4 A D-Latch 

The design description of a D latch is given in Figure 5.10.  It has one instantiation 

of the basic flip-flop of Figure 5.1.  A test bench for the latch is also included in 

the figure.  The simulation results are shown in Figure .5.11.  Two versions of the 

synthesized circuit are shown in Figure 5.12 and Figure 5.13, respectively.  The 

basic latch [sbrbff] — which was instantiated in the module of Figure 5.10 — is 

shown as a black box in Figure 5.12.  The internals of the latch are shown in 

Figure 5.13, which brings out the hierarchy clearly. 

module dlatch(en,d,q,qb); 
input d,en; 
output q,qb; 
wire dd; 
wire s,r; 
not n1(dd,d); 
nand (sb,d,en); 
nand g2(rb,dd,en); 

continued 
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continued

sbrbff ff(sb,rb,q,qb);//Instantiation of the sbrbff
endmodule

module tstdlatch; //test-bench 
reg d,en; 
wire q,qb; 
dlatch ff(en,d,q,qb); 
initial
begin

d  = 1'b0; 
en = 1'b0; 

end
always #4 en =~en; 
always #8 d=~d; 
initial $monitor($time," en = %b , d = %b , q = %b , qb
= %b " , en,d,q,qb); 
initial #40 $stop; 
endmodule

Figure 5.10 Module of a D latch and a test bench for the same. 

#  0 en = 0, d = 0, q = x, qb  = x 
#  4 en = 1, d = 0, q = 0, qb  = 1 
#  8 en = 0, d = 1, q = 0, qb  = 1 
# 12 en = 1, d = 1, q = 1, qb  = 0 
# 16 en = 0, d = 0, q = 1, qb  = 0 
# 20 en = 1, d = 0, q = 0, qb  = 1 
# 24 en = 0, d = 1, q = 0, qb  = 1 
# 28 en = 1, d = 1, q = 1, qb  = 0 
# 32 en = 0, d = 0, q = 1, qb  = 0 

# 36 en = 1, d = 0, q = 0, qb  = 1 

Figure 5.11 Results of running the test bench for the D latch of Figure 5.10. 

Figure 5.12 Synthesized circuit of the D latch module of Figure 5.10. 
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Figure 5.13 Synthesized circuit of the D latch module of Figure 5.10 showing hierarchy. 

Example 5.5 An Edge-Triggered Flip-Flop 

Figure 5.14 shows the circuit of an edge-triggered flip-flop.  It is a simplified 

version of the 7474 IC.  The circuit is a combination of three latches – designated 

as FF1, FF2, and FF3 in the figure.  FF3 is similar to the latch considered in 

Example 5.1.  FF1 and FF2 are minor modifications of FF3.  The design modules 

for FF1 and FF2 are given in Figure 5.15.  All three latches are instantiated to form 

the edge-triggered flip-flop.  A test bench for the flip-flop is also included in the 

figure. With a square waveform for the clock – cp – the waveform for the d input 

is chosen to bring out the edge-triggered nature of operation of the flip-flop.  The 

output obtained by running the test bench is shown in Figure 5.16; the respective 

waveforms are shown in Figure 5.17.  One can see that the output changes only at 

the positive edges of the clock, and it assumes the value of the input at that instant 

of time. 

FF3

FF1

FF2

cp

d

q

qb

Figure 5.14 Circuit of a skeletal edge-triggered flip-flop. 
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module dffgatnew1(cp,d,q,qb); 
input d,cp; 
output q,qb; 
wire sb,rb; 
wire s,r; 
sbrbffdff ff1(rb,cp,s); 
sbrbff1 ff2(s,d,cp,r,rb); 
sbrbff ff3(s,r,q,qb); 
endmodule

module tst_dffgatnew1; //test-bench 
reg d,cp; 
wire q,qb; 
dffgatnew1 ff(cp,d,q,qb); 
initial
begin

d =1'b0;cp =1'b0; 
#2 cp =1'b1;#2 cp =1'b0;#2 cp =1'b1;#2 cp =1'b0; 
#2 cp =1'b1;#2 cp =1'b0;#2 cp =1'b1;#2 cp =1'b0; 

end
initial
begin

#3 d=1'b1;#2d=1'b1;#2d=1'b0;#3d=1'b0;#3d=1'b1; 
end
initial $monitor($time," cp = %b , d = %b , q = %b , qb
= %b " , cp,d,q,qb); 
initial #40 $stop; 
endmodule

module sbrbffdff(sb,rb,qb); 
input sb,rb; 
output qb; 
wire q; 
nand(q,sb,qb);
nand(qb,rb,q);
endmodule

module sbrbff1(sb,rb,cp,q,qb); //test-bench 
input sb,rb,cp; 
output q,qb; 
nand(q,sb,cp,qb);
nand(qb,rb,q);
endmodule

Figure 5.15 Module of a positive edge-triggered flip-flop and its test bench. 
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#  0 cp = 0 , d = 0 , q = x , qb  = x 
#  2 cp = 1 , d = 0 , q = 0 , qb  = 1 
#  3 cp = 1 , d = 1 , q = 0 , qb  = 1 
#  4 cp = 0 , d = 1 , q = 0 , qb  = 1 
#  6 cp = 1 , d = 1 , q = 1 , qb  = 0 
#  7 cp = 1 , d = 0 , q = 1 , qb  = 0 
#  8 cp = 0 , d = 0 , q = 1 , qb  = 0 
# 10 cp = 1 , d = 0 , q = 0 , qb  = 1 
# 12 cp = 0 , d = 0 , q = 0 , qb  = 1 
# 13 cp = 0 , d = 1 , q = 0 , qb  = 1 
# 14 cp = 1 , d = 1 , q = 1 , qb  = 0 
# 16 cp = 0 , d = 1 , q = 1 , qb  = 0 

Figure 5.16 Results of running the test bench for the flip-flop of Figure 5.15. 

Figure 5.17 Clock (cp), data input (d), and output waveforms for the edge-triggered flip-

flop with the test bench in Figure 5.15.  

Synthesized circuits of the latches FF1 (sbrbffdff) and FF2 (sbrbff1) are 

shown in Figure 5.18 and Figure 5.19, respectively.  The synthesized circuit for the 

overall flip-flop is shown in Figure 5.20.  FF1, FF2, and FF3 are represented as 

boxes there; only their interconnections are shown.  The comprehensive circuit in 

terms of the elementary gates is not shown. 

Figure 5.18 Synthesized circuit of the flip-flop sbrbffdff of Figure 5.15. 
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Figure 5.19 Synthesized circuit of the flip-flop sbrbff1 of Figure 5.15. 

The flip-flop of Figure 5.14 can be made comprehensive with slight 

modifications.  It can be replicated and with suitable additions, expanded 

substantially into register files and full-fledged memory [see the Exercises at the 

end of the chapter]. 

5.3 DELAYS 

Verilog has the facility to account for different types of propagation delays of 

circuit elements. Any connection can cause a delay due to the distributed nature of 

its resistance and capacitance.  Due to the manufacturing tolerances, these can vary 

over a range in any given circuit [Bignel, Sedra].  Similar delays are present in 

gates too.  These manifest as propagation delays in the 0 to 1 transitions and 1 to 0 

transitions from input to the output.  Such propagation delays can differ for the two 

types of transitions.  A variety of such delays can be accommodated in Verilog.   

Sometimes manufacturers adjust input and output impedances of circuit elements 

to specific levels and exploit them to reduce interface hardware. These too can be 

accommodated in Verilog design descriptions [Ciletti, Palnitkar]. 

Figure 5.20 Synthesized circuit of the flip-flop dffgatnew1 in Figure 5.15. 
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5.3.1 Net Delay  

One of the simplest delays is that of a direct connection – a net.  It can be part of 

the declaration statement 

wire #2 nn; // nn is declared as a net with a propagation delay of 2 time steps 

Here nn is declared as a net with an associated propagation delay of 2 time 

steps.  The delay is the same for the positive as well as the negative transitions.  

The same is illustrated in Figure 5.21(a), which connects two circuit blocks 

through a net nn with a delay of 2 time steps associated with it.  The module in 

Figure 5.22 is a simple realization of the same.  A test bench for the module is also 

shown in the figure. The simulation results are shown in Figure 5.21(b), which 

bring out the effect of the net delay clearly. 

Similar delays can be assigned to other types of nets as well.  Whenever a 

variable or a signal is defined as a net and no delay is specified for it, the 

associated delay is taken as zero.  This is true of instantiations of modules as well.  

The impedance connected as well as the type of loading can differ for the two 

transitions.  The propagation delay too can differ accordingly.  Two such delays 

can be specified as follows:  

Wire # (2, 1) nm; 

Here nm is declared as a net with two distinct propagation delays; the positive 

(0 to 1) transition has a delay of 2 time steps associated with it.  The negative 

2 2

x y

Net nn

Common ground line

x

y

0 5 10
Time steps

Circuit 1 Circuit 2
(a)

(b)

Figure 5.21 A net connecting two circuit blocks and the delay through it: (a) Connection 

diagram  (b) Typical signal waveforms at the input and output ends of the net. 
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module netdelay(x,y); 
input x; 
output y; 
wire #2 nn; 
not (nn,x); //circuit1 in Figure 5.21 
buf y = x; //circuit2 in Figure 5.21 
endmodule

module tst_netdelay ; //test-bench 
reg x; 
wire y; 
netdelay  nd(x,y); 
initial
begin

   x =1'b0; 
#6 x =~x; 

end
initial #20 $stop; 
endmodule

Figure 5.22 A module to illustrate net delay and a test bench for the same.  

(1 to 0) transition has a delay of 1 time step.  The delays are explained in Figure 

5.23. The module of Figure 5.22 has been modified and shown in Figure 5.24; the 

propagation delays are different for rise and fall here. 

(a)

(b)

0 5 10
Time steps

x y

Net nm

Common ground line

Circuit 1 Circuit 2

2 1

x

y

Figure 5.23 A net connecting two circuit blocks and the delays through it: (a) Connection 

diagram (b) Typical signal waveforms at the input and output ends of the net. 
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module netdelay1(x,y); 
input x; 
output y; 
wire #(2,1) nn; 
not (nn,x); 
y=nn;
endmodule

module tst_netdelay1; //test-bench 
reg x; 
wire y; 
netdelay1  nd(x,y); 
initial
begin

   x =1'b0; 
#6 x =~x; 

end
initial #20 $stop; 
endmodule

Figure 5.24 A module to demonstrate different delays for rise and fall times on a net. 

5.3.2 Gate Delay  

Gates too can have delays associated with them.  These can be specified as part of 

the instantiation itself.   

and #3 g ( a, b, c); 

The above represents an AND gate description with a uniform delay of 3 ns 

for all transitions from input to output.  A more detailed description can be as 

follows:  

and #(2, 1) (a, b, c);

With the above statement the positive (0 to 1) transition at the output has a 

delay of 2 time steps while the negative (1 to 0) transition has a delay of 1 time 

step.  Figure 5.25 shows a module to illustrate the delays associated with gate 

primitives.  A test bench for the same is also shown in the figure.  The results of 

running the test bench are shown in Figure 5.27.  The AND gate instantiation in 

Figure 5.25 has different delays for the output transitions; respective waveforms 

are shown in Figure 5.26. 
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module gade(a,a1,b,c,b1,c1); 
input b,c,b1,c1; 
output a,a1; 
or #3gg1(a1,c1,b1); 
and #(2,1)gg2(a,c,b); 
endmodule

module tst_gade();//test-bench 
reg b,c,b1,c1; 
wire c,c1; 
gade ggde(a,a1,b,c,b1,c1); 
initial
begin
b =1'b0;c =1'b0;b1 =1'b0;c1=1'b0; 
end
always
begin

#5 b =1'b0;c =1'b0;b1 =1'b1;c1=1'b1; 
#5 b =1'b1;c =1'b1;b1 =1'b0;c1=1'b0; 
#5 b =1'b1;c =1'b0;b1 =1'b1;c1=1'b0; 
#5 b =1'b0;c =1'b1;b1 =1'b0;c1=1'b1; 
#5 b =1'b1;c =1'b1;b1 =1'b1;c1=1'b1; 
#5 b =1'b1;c =1'b1;b1 =1'b1;c1=1'b1; 

end
initial $monitor($time  ,  "   b= %b , c = %b , b1 = %b 
,c1 = %b , a = %b ,a1 = %b" ,b,c,b1,c1,a,a1); 
initial #30 $stop; 
endmodule

Figure 5.25 Module to demonstrate the delays with gates. 

(a)

b

c

a

Figure 5.26 AND gate instantiation with different delays for the positive and negative 

transitions and associated waveforms: (a) Gate instantiated. 



96 GATE LEVEL MODELING – 2 

(b)

a

c

b

time steps

0 1284 16

2 ts 1 ts

2 ts 1 ts

Figure 5.26 (cont’d) (b) associated waveforms (time step has been abbreviated to “ts” in 

the diagram). 

In a more detailed design description, delays can be associated with nets as 

well as gates.  Consider the design description shown in Figure 5.28(a). It has a 

total of 8 different time delay values specified.  All these are hypothetical and 

different from each other.  It is done intentionally to bring out the effect of each of 

them on the concerned gates and signals.  The circuit for this design description is 

shown in Figure 5.28(b).  Typical waveforms of input signals as well as other 

signals are shown in Figure 5.29, to illustrate the different delays in the design 

description. Figures 5.29(a) and 5.29(b) illustrate how changes in one of the inputs 

– b1 – affect the other signals; the signals and gates affected are shown  

#  0 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = x ,a1 = x 
#  1 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = x ,a1 = 0 
#  3 b= 0, c = 0 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 0 
#  5 b= 0, c = 0 , b1 = 1 ,b1 = 1 , a = 0 ,a1 = 0 
#  7 b= 0, c = 0 , b1 = 1 ,c1 = 1 , a = 0 ,a1 = 1 
# 10 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 1 
# 11 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 0 ,a1 = 0 
# 13 b= 1, c = 1 , b1 = 0 ,c1 = 0 , a = 1 ,a1 = 0 
# 15 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 1 ,a1 = 0 
# 17 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 1 ,c1 = 1 
# 18 b= 1, c = 0 , b1 = 1 ,c1 = 0 , a = 0 ,c1 = 1 
# 20 b= 0, c = 1 , b1 = 0 ,c1 = 1 , a = 0 ,a1 = 1 
# 25 b= 1, c = 1 , b1 = 1 ,c1 = 1 , a = 0 ,a1 = 1 
# 28 b= 1, c = 1 , b1 = 1 ,c1 = 1 , a = 1 ,a1 = 1 

Figure 5.27 Results of running the test bench of above module in Figure 5.25. 
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highlighted in Figure 5.29(a).  Throughout this period, input c1 is taken as at 1 

state while inputs b2 and c2 remain at 0 state.  The propagation delays of signals 

at point P and Q and that for the signal a are shown in Figure 5.29(b).  These 

conform to the delays specified in the design segment of Figure 5.28(a).  

Subsequently, input c1 goes down to 0 state and input b1 remains at 0 state itself.  

Only signal b2 changes.  The affected signals and gates are shown highlighted in 

Figure 5.29(c).  The waveforms of signals affected and the associated propagation 

designs are shown in Figure 5.29(d).  These too conform to the program segment 

of Figure 5.28(a). 

module gates(b1,b2,c1,c2,a); 
input b1,b2,c1,c2; 
wire #(2,1)a1,a2; 
output a; 
and #(3,4)g1(a1,b1,c1); 
and #(5,6)g2(a2,b2,c2); 
or  #(8,7)g3(a,a1,a2); 
endmodule

module tst_gates;//test-bench 
reg b1,b2,c1,c2; 
gates gg(b1,b2,c1,c2,a); 
initial
begin
 b1=1'b0;c1=1'b0;b2=1'b0;c2=1'b0; 
end
initial #100 $stop; 

always
begin

#2b1=1'b0;c1=1'b0;b2=1'b1;c2=1'b1;
#2b1=1'b1;c1=1'b1;b2=1'b0;c2=1'b0;
#2b1=1'b0;c1=1'b1;b2=1'b0;c2=1'b0;
#2b1=1'b0;c1=1'b0;b2=1'b1;c2=1'b0;
#2b1=1'b1;c1=1'b0;b2=1'b1;c2=1'b1;
#2b1=1'b1;c1=1'b1;b2=1'b0;c2=1'b0;
#2b1=1'b1;c1=1'b1;b2=1'b1;c2=1'b0;
#2b1=1'b0;c1=1'b0;b2=1'b1;c2=1'b1;

end
initial $monitor($time," b1= %b , c1 = %b ,b2 = %b , c2 
= %b ,  a = %b ",b1,c1,b2,c2,a); 
endmodule

Figure 5.28(a) A design having eight different time delay values. 
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Figure 5.28(b) The circuit for the module considered in Figure 5.28(a). 
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Figure 5.29 Illustration of signal delays in the design description segment in Figure 5.28: 

(a) The  circuit portion active during changes to signal b1.  (b) Signal waveforms following 

changes to signal b1 (time step has been abbreviated as ts in the diagram). 
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(a)
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Figure 5.29 (cont'd)  (c) The  circuit portion active during changes to signal b2.  (d) Signal 

waveforms following changes to signal b2 (time step has been abbreviated as ts in tbe 

diagrams).

5.3.3 Delays with Tri-state Gates 

For tri-state gates the delays associated with the control signals can be different 

from those of the input as well as the output.  The instantiation inclusive of this is 

shown in Figure 5.30 for a tri-state buffer of the bufif1 type.  Three time delay 

values are specified:  

1. The first number represents the delay associated with the positive (0 to 1) 

transition of the output. 

2. The second number represents the delay associated with the negative (1 to 0) 

transition of the output. 

3.  The third number represents the delay for the output to go to the hi-Z state as 

the control signal changes from 1 to 0 (i.e., ON to OFF command). 
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Delay for the 0 to 1 transition of ao

Delay for the 1 to 0 transition of ao

Delay for the output to  go to the

hi-z state as c changes from 1 to 0

@ (1,  2,  3) b1(ao, ai, c);bufif1

Figure 5.30 Delays associated with a typical tri-state gate. 

Delays for the other tri-state buffers – namely bufif0, notif1 and 

notif0 – may be specified in a similar manner. 

The turn-off time — 2 time steps here — represents the time for which the 

charge will be stored in the output line after the control line turns off.  Values of 

delay time and storage time can be specified in this manner for all the types of tri-

state type gates.  The following are noteworthy here:  

Delays and storage times can be specified on the gate primitives and the nets 

but not on regs.   

All three time values are separately specified in the most versatile case.   

If only two time-values are specified, these are interpreted by Verilog as the 

rise (0 to 1) and fall (1 to 0) time, respectively.  The turn-off time (delay) is 

taken as the smaller of these two. 

If only one time value is specified, it is taken as the rise time, the fall time, 

and the turn-off time. 

If no time value is specified, the rise and fall times at the output are taken as 

zero.  The turn-off is taken as instantaneous. 

Normally the delay time of any IC varies over a range for ICs from different 

production batches (as well as in any one batch).  It is customary for manufacturers 

to specify delays and their range in the following manner:  

Max delay: The maximum value of the delay in a batch; that is, the delay 

encountered in practice is guaranteed to be less than this in the worst case. 

Min. delay: Minimum value of delay in a batch; that is, the specified signal is 

guaranteed to be available only after a minimum of time specified. 

Typ. delay: Typical or representative value of the delay. 

Each of the delays in a gate primitive or for a net can be specified in terms of 

these three values.  For example 

and #(2:3:4) g1(a0, a1, a2); 

can instantiate an AND gate with the following time delay specifications:  
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The 0 to 1 rise time and the 1 to 0 fall time are equal. 

The minimum value of either is 2 time steps.  Typical value is 3 time steps 

and the maximum value is 4 time steps.   

Note that the colon that separates the numbers signifies that the timings 

specified are the minimum, typical, and maximum values.  At the time of 

simulation, one can specify the simulation to be carried out with any of these 

three delay values.  If the same is not specified, the simulation is carried out 

with the typical delay value.   

The group of minimum, typical, and maximum delay values for the 

propagation delays can be specified separately for any gate primitive.  Thus an 

AND gate primitive can be specified as 

and #(1:2:3,  2:4:6) g2(b0, b1, b2); 

Here for the 0 to 1 transition of the output (rise time) the gate has a minimum 

delay value of 1 ns, a typical value of 2 ns, and a maximum value of 3 ns.  

Similarly, for the 1 to 0 transition (fall time) the gate has a minimum delay value 

of 2 ns, a typical delay value of 4 ns, and a maximum delay value of 6 ns.  Such 

delay specifications can be associated with nets as well as tri-state type gates also. 

Examples 

wire #(1:2:3) a; /* The net a has a propagation delay whose minimum, typical 

and maximum values are 1 ns, 2 ns, and 3 ns, respectively*/ 

bufif1 #(1:2:3, 2:4:6, 3:6:9) g3 (a0, b0, c0);   

/* The different delay values for the buffer are as follows: 

The output rise time (0 to 1 transition) has a minimum value of 1 ns, a typical 

value of 2 ns and a maximum value of 3 ns. 

The output fall time (1 to 0 transition) has a minimum value of 2 ns, a typical 

value of 4 ns and a maximum value of 6 ns. 

The output turn-off time (1 to 0) has a minimum value of 3 ns, a typical value 

of 6 ns, and a maximum value of 9 ns. */ 

A typical design can have a number of circuit blocks like gates, flip-flops, 

etc., with associated interconnections.  The individual nets and gates may have 

their own separate delays. The following general observations are in order 

regarding the overall delays through the circuit:  

A normal design can have many gates and nets in its signal paths.  The delay 

through any path for a signal depends on the path and the type of transitions at 

each stage. 



102 GATE LEVEL MODELING – 2 

The cumulative delay for a signal in a path puts an upper limit on the 

maximum operating frequency vis-à-vis the signal. 

A signal may go through multiple paths in a design to arrive at one gate.  It is 

necessary to match the delays within specified tolerances for reliable 

operation of the device.   

In larger designs, one has to identify the longest signal path (critical path).  

This puts an upper limit on the operating frequency apart from causing mal-

operation in a worst-case scenario.  One of the practices in design is to re-

route selected signals or redo selected design segments to reduce critical path 

delays.

5.3.4 General Definitions for Delays 

Specific numerical values have been used for all the delays in the examples so far.  

However, Verilog LRM allows constant expressions to be used for any of the 

delay values.  The expressions used may involve simple algebra in terms of 

integers and known quantities (but not variables). 

5.4 STRENGTHS AND CONTENTION RESOLUTION 

In practical situations, outputs of logic gates and signals on nets in a circuit have 

associated source impedances.  When the outputs of two gates are joined together, 

the signal level is decided by the relative magnitudes of the source impedances.  

Sometimes a disparity between the impedances is intentionally introduced to 

minimize circuit hardware.  Effects of such differences in the impedances are 

indirectly introduced in design descriptions by assigning “strengths” to specific 

signals (see also Section 3.9).  Signal strength declarations are of two types – those 

associated with outputs of gate primitives and those with nets. 

5.4.1 Strengths of Gate Primitives 

Gate output strengths can be specified separately.  Table 5.1 gives the names 

associated with strengths, respective abbreviations, and their order by weight.  

These hold good for logic 1 state as well as the 0 state.   

Table 5.1 Strength levels associated with outputs of gate primitives 

Name supply strong pull weak High impedance 

su1 st1 pu1 we1 HiZ1   
Abbreviations

su0 st0 pu0 we0 HiZ0

Strength Strongest   Weakest   
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Strength of 0 state in the outputStrength of 1 state in the output

(supply1,  pull0)buf (o,  i);

Figure 5.31 Format for specifying strengths in the instantiation of a gate primitive. 

The strengths associated with the output of a gate primitive can be specified 

separately for the two logic levels. The format for the same is shown in 

Figure 5.31 for a specific case; the format remains the same for all types of gate 

primitives. 

5.4.2 Strength Contention in Gate Primitives 

When two signals of opposite polarity and differing strengths drive a line, the 

output status is decided by the stronger signal.  However, if the signals are of equal 

strength, the output is indeterminate.  Different contention possibilities arise here.  

The variety is brought out through examples. 

Example 5.6 Strength Contention  

Consider the module in Figure 5.32.  The logic levels taken by the signal o for 

different combinations of inputs to the two buffers g1 and g2 are shown in 

Table 5.2.  Contentions of signals with other combinations of levels can be 

resolved in the same manner. 

Table 5.2 Outputs for different inputs for the example of Figure 5.32 

Logic value 

of input i1 

Logic value 

of input i2 

Logic value 

of output o 
Remarks

0 0 0 No contention 

0 1 1 
Contention; the stronger  

signal – i2 – prevails 

1 0 1 
Contention; the stronger  

signal – i1 – prevails 

1 1 1 No contention 
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module contres(o,i1,i2);
input i1,i2; 
output o; 
buf(supply1,pull0)g1(o,i1), g2(o,i2);//note that the 
endmodule// same net is driven by both the gates. 

module tst_contres; //TEST BENCH 
reg i1,i2; 
contres cc(o,i1,i2); 
initial
begin
 i1 =0; 
 i2 =0; 
end //no contention 
always
begin

#4 i1 =0; i2 = 1;// contention; the stronger 
#4 i1 =1; i2 = 0;// signal prevails. 
#4 i1 =1; i2 = 1;//no contention. 

end
initial $monitor($time,"i1=%b,i2=%b,o=%b",i1,i2,o); 
initial #40$stop; 
endmodule

output

#                    0 i1 = 0 , i2 = 0 , o = 0 
#                    4 i1 = 0 , i2 = 1 , o = 1 
#                    8 i1 = 1 , i2 = 0 , o = 1 
#                   12 i1 = 1 , i2 = 1 , o = 1 
#                   16 i1 = 0 , i2 = 1 , o = 1 
#                   20 i1 = 1 , i2 = 0 , o = 1 
#                   24 i1 = 1 , i2 = 1 , o = 1 
#                   28 i1 = 0 , i2 = 1 , o = 1 
#                   32 i1 = 1 , i2 = 0 , o = 1 
#                   36 i1 = 1 , i2 = 1 , o = 1 
#                   40 i1 = 0 , i2 = 1 , o = 1 

Figure 5.32 A module to illustrate strength contention; the test bench and simulation results 

are also shown in the figure. 

The outputs for the four input combinations are given in the table.  Whenever there 

is a contention, the logic value of the output is decided by the stronger signal.  In 

fact the design description here realizes an OR gate at the output side without 

additional hardware.  It does not lead to any ambiguity.   
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Consider the Example in Figure 5.33, which is a slightly modified version of 

that in Figure 5.32. The output logic values for different input combinations are 

given in Table 5.3.  The gate outputs are decided by following the same logic as in 

the last case.  However, in one case — when both gates “drag” the output with 

equal strength in opposite directions — the output logic level is indeterminate — 

that is, x.

module contres1(o,i1,i2);
input i1,i2; 
output o; 
buf(strong1 ,pull0)g1(o,i1); buf(pull1,pull0)g2(o,i2);
endmodule

module tst_contres1; //TEST BENCH 
reg i1,i2; 
contres1 cc(o,i1,i2); 
initial
begin
i1 =0;i2 =0;end    //no contention 
always
begin
#4 i1 = 0; i2 = 1; //contention between pull0 due to 
//i1 and pull1 due to i2; output is x
#4 i1 =1; i2 =0;  //contention; output is 1 since
//strong1 of i1 prevails. 
#4 i1 =1 ;i2 = 1; //no contention. 
end
initial $monitor($time  ," i1 = %b , i2 = %b ,o = %b " 
,i1,i2,o);
initial #40 $stop; 
endmodule

output

#                    0 i1 = 0, i2= 0 ,o = 0 
#                    4 i1 = 0, i2= 1 ,o = x 
#                    8 i1 = 1, i2= 0 ,o = 1 
#                   12 i1 = 1, i2= 1 ,o = 1 
#                   16 i1 = 0, i2= 1 ,o = x 
#                   20 i1 = 1, i2= 0 ,o = 1 
#                   24 i1 = 1, i2= 1 ,o = 1 
#                   28 i1 = 0, i2= 1 ,o = x 
#                   32 i1 = 1, i2= 0 ,o = 1 
#                   36 i1 = 1, i2= 1 ,o = 1 

Figure 5.33 Illustration of strength contention resulting in x-type output; the test bench and 

simulation results are also shown in the figure. 
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Table 5.3 Outputs for different inputs in the example of Figure 5.33 

Logic value 

of input i1 

Logic value 

of input i2 

Logic value 

of output o 
Remarks

0 0 0 No contention 

0 1 x 
Contention; both signals being of equal 

strength, the output is indeterminate 

1 0 1 
Contention; the stronger signal i1 prevails 

and forces the output to logic state 1 

1 1 1 No contention 

5.4.3 Net Charges 

Whenever a net is driven by a signal, it takes the logic value of the signal.  When 

the signal source is tri-stated, the net too gets tri-stated.  In practice the net can 

have a capacitor associated with it, which can store the signal level even after the 

signal source dries up (i.e., tri-stated).  To account for this situation, a charge 

storage capacity is associated with the net.  Such nets are declared with the 

keyword trireg.  By virtue of the inherent capacitance associated with them, 

trireg nets can never be in the high impedance state – that is, they can assume 0, 1, 

or x value only.  A trireg net can be in one of two possible states only:  

Driven state: When driven by a source or multiple sources, the net assumes 

the strength of the source.  It can be any of the strengths specified in Table 5.1 

except the high impedance value. 

Capacitive state: When the driven source (sources) is (are) tri-stated, the net 

retains the last value it was in – by virtue of the capacitance associated with it.  

The value can be 0, 1 or x (but not the high impedance value).   

When in the capacitive state, a net can have a storage strength associated with 

it. Three such storage strengths are possible – namely large, medium, and 

small. Their details are shown in Table 5.4.   When a storage strength is not 

specified, it is assigned the default value – medium.  For a trireg net one 

cannot assign storage strength capacity separately for the 0 and the 1 states.   

A trireg net can be driven with possibilities of contention from two or 

more sources; such cases are considered in Chapter 10. 

Table 5.4 Capacitive storage strengths on nets 

Name large medium small 

Strength Strongest  Weakest 
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Example 5.7 Net Storage  

Consider the design in Figure 5.34. As long as the signal control = 1, the signal 

out follows the signal in.  When control goes to 0, out is disconnected from the 

input and it '‘floats.'’  It retains the last value due to the capacitance storage 

capacity.  The storage strength is medium, signifying a medium value of 

capacitance.

module charge(out,in,control); 
output out; 
trireg(medium)out;
input in,control; 
bufif1 g1(out,in,control); 
endmodule

module tst_charge; //TESTBENCH 
reg in, control; 
charge c1(out,in,control); 
initial

begin
in =0;control =0;//when control=0 output is x
#2 control =0;in =0;
#2 control =1;in =0;
#2 control =1;in =1; 
#2 control =0;in =0; // output is retained at
end // the last value 

initial $monitor($time ," in= %b ,control = %b , out= 
%b " ,in,control,out); 
initial #40$stop; 
endmodule

output

#     0 in = 0 , control = x , out=x 
#     2 in = 0 , control = 0 , out=x 
#     4 in = 0 , control = 1 , out=0 
#     6 in = 1 , control = 1 , out=1 
#     8 in = 0 , control = 0 , out=1 

Figure 5.34 Illustration of net storage; the test bench and simulation results are also shown 

in the figure. 
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5.4.4 Contention Between Net and Gate Primitive Outputs 

In case of a contention between a signal output from a gate and the charge on a 

net, the contention is decided by the relative strengths of the signals on each.  

Table 5.5 combines all the strengths – those of the gate outputs as well as those of 

tri-stated nets and – lists them in the order of their relative strengths.  The 

abbreviations associated with the strengths are not repeated here. 

5.4.5 Net Types and Port Assignments 

All input ports of modules have to accept inputs from outside when instantiated 

and respond to changes in them.  Hence they have to be of net type.  Note that 

input ports cannot be of reg type since their values cannot be changed from 

outside.  The output ports of instantiated modules can be of net or reg types. 

Inout ports have to function as input or output ports; hence they too have to be 

of net types.   

The port assignments in an instantiation can be to scalars, vectors, part 

vectors, or concatenated vectors. However, their sizes should match those of the 

ports in the module definitions.  Further, the type restrictions mentioned above 

have to be complied with.   

In many situations the net types in the module definition and its instantiation 

may differ in the case of input and inout ports.  In such cases the resulting net 

type can be of only one type.  Either the net type declared in the module definition 

or that in the instantiation (external type) dominates.  The choice is decided by a 

specific protocol in the LRM.  Table 5.6 gives details.  As can be seen from the 

table, whenever the two net types lead to a logical clash, the external data type 

prevails (identified by an asterisk in the table). 

Table 5.5 Signal strength names and their relative weights 

Signal strength name Strength level 

Supply (drive) Strongest  7 

Strong  (drive)                  6 

Pull (drive)                  5 

Large (capacitance)                  4 

Weak (drive)                  3 

Medium (capacitance)                  2 

Small (capacitance) Weakest   1 

High impedance                  0 
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Table 5.6 Net assignments with port connections 

External net 

Internal net Wire & 

tri

Wand &

triand

Wor &

trior
Trireg Tri0 Tri1 Su0 Su1

Wire & tri E E E E E E E E 

Wand & triand I E * * * * E E 

Wor & trior I I E * * * E E 

Trireg I I * E E E E E 

Tri0 I I * I E * E E 

Tri1 I I * I * E E E 

Su0 I I I I I I E * 

Su1 I I I I I I * E 

Notes  “E” signifies that the external net prevails, and “I” that the internal net prevails. 

 “*” signifies a logical clash; the external net prevails. 

5.5 NET TYPES 

wire is possibly the simplest type of net declaration.  trireg considered in the 

last section is another.  A variety of other net types are possible.  Most of them are 

provided for specific types of contention resolution. 

5.5.1 wand and wor Types of Nets 

Strengths on nets can be decided in ways other than a direct declaration also.  

These offer additional flexibility to the circuit designer.  Consider the example of 

Figure 5.33 for which the input–output values are shown in Table 5.3.  For the 

signal input combination i1 = 0 and i2 = 1, signal o is indeterminate.  However, it 

may be made specific in two alternate ways: ‘wand’ and wor are two types of net 

declarations for such contention resolution.  wand is a wire declaration, which 

resolves to AND logic in case of contention.  wor is a wire declaration, which 

resolves to OR logic in case of a contention.  Use of wand and wor nets is 

illustrated here through two simple examples crafted for the purpose. 

Example 5.8 Illustration of wand type net 

Figure 5.35 shows a design module where the outputs of two buffers drive the 

same net; the net has been declared to be a wand type, and any contention with the 
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possibility of indeterminate output is resolved according to AND logic.  A test 

bench and simulation results are also shown in the figure.  The input and output 

logic values and the nature of contention resolutions wherever it occurs are listed 

out in Table 5.7 also.  Contention can be seen to be resolved in two possible ways: 

1. When i1 = 1 and i2 = 0, the stronger signal i1 at the 1 level prevails and 

o = 1. The contention is resolved according to the strengths. 

2. When i1 = 0 and i2 = 1, both signals being equally strong, the value of o

is decided according to AND logic.   

The synthesized version of the circuit is shown in Figure 5.36; the circuit translates 

into an AND gate which is erroneous (this is not consistent with the desired input–

output relationship shown in Table 5.7). 

module wand1(i1,i2,o); 
input i1,i2; 
output o; 
wand o; 
buf(strong1,pull0)g1(o,i1);
buf(pull1,pull0)g2(o,i2);
endmodule

module tst_wand1; //testbench 
reg i1,i2; 
wand1 ww(i1,i2,o); 
initial
begin
   i1=0;i2=0;//o =0; no contention 
 #2i1=0;i2=1;//o =0; contention resolved  

//according to wand declaration
 #2i1 =1;i2 =0;//out=1; contention resolved by 

//stronger signal 
 #2i1 =1;i2=1;//out =1; no contention. 
end
initial $monitor($time,"i1=%b,i2=%b,o=%b",i1,i2,o); 
endmodule

output

#                    0i1=0,i2=0,o=0 
#                    2i1=0,i2=1,o=0 
#                    4i1=1,i2=0,o=1 
#                    6i1=1,i2=1,o=1 

Figure 5.35 A design module to illustrate use of the wand-type net; a test bench and the 

results of simulation are also shown. 
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Table 5.7 Output values for different inputs of the design in Figure 5.35 

Logic

value of i1
Logic

value of i2
Logic

value of o
Remarks

0 0 0 No contention 

0 1 0 
Contention resolved according to wand

declaration 

1 0 1 Contention resolved by the stronger signal  

1 1 1 No contention 

Example 5.9 Illustration of wor-type net 

Consider the design segment in Figure 5.35 with o being declared as a wor type of 

net instead of a wand type.  The corresponding design module is shown in 

Figure 5.37.  A test bench and simulation results are also shown in the figure. The 

outputs for all possible combinations of inputs are given in Table 5.8.  Contention 

can be seen to be resolved in two possible ways:  

1. When i1 = 1 and i2 = 0, the stronger signal i1 at the 1 level prevails and 

o = 1. The contention is resolved according to the strengths. 

2. When i1 = 0 and i2 = 1, both signals being equally strong, the value of o

is decided according to OR logic.   

The synthesized version of the circuit is shown in Figure 5.38; the circuit 

translates into an OR gate; this is consistent with the desired input–output 

relationship shown in Table 5.8. 

Figure 5.36 Synthesized version of the module with the wand-type net in Figure 5.35 

above.
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module wor1(i1,i2,o); 
input i1,i2; 
output o; 
wor o; 
buf(strong1,pull0)g1(o,i1);
buf(pull1,pull0)g2(o,i2);
endmodule

module tst_wor1;//testbench 
reg i1,i2; 
wor1 ww(i1,i2,o); 
initial
begin
   i1=0;i2=0;//out =0 no contention 
#2 i1=0;i2=1;//out =1 contention resolved according 
//to wor declaration
#2 i1 =1;i2 =0;//out=1 contention resolved by 
//stronger signal 
#2 i1 =1;i2=1;//out =1 no contention. 
end
initial $monitor($time,"i1=%b,i2=%b,o=%b",i1,i2,o); 
endmodule

Output

#               0 i1=0, i2=0, o=0 
#               2 i1=0, i2=1, o=1 
#               4 i1=1, i2=0, o=1 
#               6 i1=1, i2=1, o=1 

Figure 5.37 A design module to illustrate use of the wor-type net; a test bench and the 

results of simulation are also shown. 

Table 5.8 Output values for different inputs of the design in Figure 5.37  

Logic

value of i1
Logic

value of i2
Logic

value of o
Remarks

0 0 0 No contention 

0 1 1 Contention resolved according to wor

declaration 

1 0 1 Contention resolved by the stronger signal  

1 1 1 No contention 
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Figure 5.38 Synthesized version of the module with the wor-type net in Figure 5.37. 

One can see that wand and wor are keywords to implement wired-or type logic. 

Observations: 

Many synthesizers do not support wired-or logic.  wand and wor may be 

used to advantage when supported by the synthesizer. 

The net triand is functionally identical to the net wireand.  Similarly, the 

net trior is functionally identical to the net wireor.

All synthesizers support wire. Triand, trior, tri0, and tri1

(discussed below) may not be supported by some.   

5.5.2 Tri

The keyword tri has a function identical to that of wire.  When a net is driven 

by more than one tri-state gate, it is declared as tri rather than as wire.  The 

distinction is for better clarity.  Similarly, Triand and trior are the 

counterparts of wand and wor, respectively.   

Example 5.10 Illustration of tri-type net 

Consider the design segment in Figure 5.39.  Here the signal on net out is 

controlled by the control signal En.  If En = 1, signal a is steered to the net out
and the output of gate g2 is tri-stated.  On the other hand, if En = 0, signal b is 

steered to the net out and the gate g1 is tri-stated.  If the buffers are controlled by 

independent Enable signals, the output is resolved according to the respective 

strengths.   

. . . 

tri out;

wire a, b, En;

bufif1 g1(out, a, En);

bufif0 g2(out, b, En);

. . . 

Figure 5.39 A segment of a design to illustrate tri type of net.    
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5.5.3 Tri0 and tri1

If the output of a tri-state buffer is to be pulled up to the 1 state when tri-stated, it 

is declared as net tri1.  Similarly, it is declared as tri0 if it is to be pulled 

down to 0 state when tri-stated.  Tri0 and tri1 provide respective default 

outputs and avoid any following circuit having a tri-stated input.  In turn, it may 

manifest as an added load at the concerned gate output.  The example in Figure 

5.40, which shows a design segment, illustrates an application.  Table 5.9 lists the 

output values of signals considered in the design segment of Figure 5.40. 

Referring to the figure (and the table), one can see that when En = 0, all three 

buffers g0, g1, and g2 are off.  Net o3, being a wire is tri-stated and is in z state.  

However, net o1, being of tri0 type, is pulled down to 0 state irrespective of the 

input value.  Net 02, being of tri1 type, is pulled up to 1 state.  When En = 1, all  

three buffers are ON and the respective outputs follow the input.  Thus though g0,

g1, and g2 are functionally identical, they behave differently due to the difference 

in the type of the respective output nets. 

Reset, Chip Enable and similar signals can be pulled up or down as required 

with tri0 or tri1; this signifies the normal status –that is, the chip is disabled or 

the reset is disabled.  As and when the chip is to be enabled, the same is done by 

enabling the buffer for the required period.  Similarly, the reset can be activated 

for a specified period to reset the chip; subsequently, the reset can be deactivated 

to restore normal operation of the chip. 

. .  .  

tri0 o1;

tri1 o2;

wire o3;

bufif1 g0 (o1, I, En), g3 (o2, I, En);

buif1 g1(o3, I, En);

.  .  .  

Figure 5.40 A segment of a design to illustrate tri0 and tri1 types of net. 

Table 5.9 Output values for different inputs of the segment in Figure 5.40  

Logic value of 

I

Logic value of 

En

Logic value of 

o1

Logic value of 

o2

Logic value of 

o3

0 0 0 1 Z

0 1 0 0 0 

1 0 0 1 Z

1 1 1 1 1 
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5.5.4 supply0 and supply1 

supply0 and supply1 are the keywords signifying the high- and low-side 

supplies.  Nets to be connected to the Vcc supply are declared as supply1, and 

those to be grounded are declared as supply0.  Their use is illustrated in Chapter 

10. 

5.5.5 Ambiguous Strengths 

Certain x or z type of input port values of gate primitives can lead to outputs of 

apparently ambiguous strengths.  A number of such situations can arise.  Such 

cases are brought out and illustrated in the LRM.  Nevertheless, such ambiguous 

situations may be avoided in practice. 

5.5.6 Combining Delays & Strengths 

So far we have discussed incorporation of strengths in net declarations and 

instantiations of primitives.  Incorporation of a variety of delays and specifying 

tolerances on them were dealt with in the previous sections.  One can combine 

delays and strengths in net declarations as well as in instantiation of gate 

primitives.  The formats for the same are illustrated below 

Wire (drive_strength_1, drive_strength_0) # (delay_0_1, delay_1_0, 

turn_off_delay) signal1, signal2;

Gate_type (drive_strength_1, drive_strength_0) # (delay_0_1, delay_1_0, 
turn_off_delay) instance_1(signal1, signal2); 

For each of the delays above, one can also specify the minimum, typical, and 

maximum values.  Such values can be specified in terms of constant expressions 

also.  All these have been dealt with separately in detail earlier.  Hence combining 

them and illustrating through examples is not done again here.   

5.6 DESIGN OF BASIC CIRCUITS 

Elementary gates are the basic building blocks of all digital circuits – whether 

combinational, sequential, or involved versions combining both.  Conversely, any 

digital circuit can be split up into constituent elementary gates.  The variety of 

examples of combinational circuits considered in the last chapter, and the 

sequential circuit examples at the beginning of this chapter are testimony to this.  

Any digital circuit however involved it may be, can be realized in terms of gate 

primitives.  The step-by-step procedure to be adopted may be summarized as 

follows:  
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1. Draw the circuit in terms of the gates. 

2. Name gates and signals. 

3. Using the same nomenclature as above, do the design description. 

4. As the functional blocks like encoder, decoder, half-adder, full-adder, etc., get 

more and more involved, treat each as a building block with corresponding 

inputs and outputs.   

5. Make more involved circuits in terms of the building blocks – as far as 

possible.  Each block within another block manifests as an instantiation of one 

module within another. 

Example 5.11 ALU 

We consider the design of an ALU as an example of a relatively complex design.  

The ALU considered carries out four functions: 

Addition of two 4-bit numbers. 

Complementing all the bits of a 4-bit vector. 

Bit-by-bit AND operation on two nibbles. 

Bit-by-bit XOR operation on two nibbles. 

A set of 2 mode select bits selects the function to be carried out from amongst 

the above four.  The design has been evolved in a step-by-step manner.  Figure 

5.41 shows a 4-bit adder module and a test-bench for it.  The simulation results are 

given in Figure 5.42.  The adder module is built up by repeated instantiation of the 

full-adder module considered in Section 4.8. The synthesized version of the adder 

is shown in Figure 5.43.  The full-adder module instantiations appear here as black 

boxes with respective inputs and outputs. 

module add4g(sum,carry,a,b,cin); 
input[3:0]a,b;
input cin; 
output[3:0]sum;
output carry; 
wire [2:0]cc; 
fa a0(sum[0],cc[0],a[0],b[0],cin); 
fa a1(sum[1],cc[1],a[1],b[1],cc[0]); 
fa a2(sum[2],cc[2],a[2],b[2],cc[1]); 
fa a3(sum[3],carry,a[3],b[3],cc[2]); 
endmodule

module tstadd4g; //Test bench 
reg[3:0]a,b;
reg cin; 
wire[3:0]sum;

continued



DESIGN OF BASIC CIRCUITS 117 

continued

wire carry; 
add4g gg(sum,carry,a,b,cin); 
initial
begin
 a =4'h0;b=4'h0;cin=0; 
end
always
begin

#2 a=4'h0;b=4'h0;cin=1'b0;
#2 a=4'h1;b=4'h0;cin=1'b1;
#2 a=4'h1;b=4'h0;cin=1'b1;
#2 a=4'h5;b=4'h3;cin=1'b0; 
#2 a=4'h7;b=4'h0;cin=1'b1;
#2 a=4'h8;b=4'h9;cin=1'b1;
#2 a=4'h0;b=4'h0;cin=1'b0;
#2 a=4'hb;b=4'h7;cin=1'b0; 
#2 a=4'h0;b=4'h0;cin=1'b0;
#2 a=4'hf;b=4'hf;cin=1'b0;
#2 a=4'hf;b=4'hf;cin=1'b1;

end
initial $monitor($time," a = %b, b = %b, cin = %b, 
outsum = %b, outcar = %b ", a, b, cin, sum, carry); 
initial #30 $stop ; 
endmodule

Figure 5.41 A 4-bit adder module and its test bench 

output

# 0 a =0000,b =0000,cin = 0,outsum =0000,outcar =0
# 2 a =0001,b =0000,cin = 0,outsum =0001,outcar =0
# 4 a =0001,b =0000,cin = 1,outsum =0010,outcar =0
# 6 a =0001,b =0001,cin = 1,outsum =0011,outcar =0
# 8 a =0101,b =0011,cin = 0,outsum =1000,outcar =0
#10 a =0111,b =0110,cin = 1,outsum =1110,outcar =0
#12 a =1000,b =1001,cin = 1,outsum =0010,outcar =1
#14 a =1010,b =0001,cin = 1,outsum =1100,outcar =0
#16 a =1011,b =0111,cin = 0,outsum =0010,outcar =1
#18 a =1000,b =1000,cin = 0,outsum =0000,outcar =1
#20 a =1111,b =1111,cin = 0,outsum =1110,outcar =1
#22 a =1111,b =1111,cin = 1,outsum =1111,outcar =1
#24 a =0001,b =0000,cin = 0,outsum =0001,outcar =0
#26 a =0001,b =0000,cin = 1,outsum =0010,outcar =0
#28 a =0001,b =0001,cin = 1,outsum =0011,outcar =0 

Figure 5.42 Simulation results of running the test bench in Figure 5.41. 
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Figure 5.43 Synthesized circuit of the adder module of Figure 5.41. 

Figure 5.44 shows a module to AND two nibbles.  It is done through direct 

instantiation of AND gate primitives for two inputs.  The corresponding 

synthesized circuit is shown in Figure 5.45.   

module andg4(c,a,b); 
input[3:0]a,b;

output[3:0]c;
and(c[0],a[0],b[0]);
and(c[1],a[1],b[1]);
and(c[2],a[2],b[2]);
and(c[3],a[3],b[3]);
endmodule

Figure 5.44 A 4-bit adder module.  
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Figure 5.45 Synthesized circuit of the AND module of Figure 5.44 andg4.

The module in Figure 5.46 carries out the bit-wise XOR operation on 2 nibbles.  

Its synthesized circuit is shown in Figure 5.47.  Similarly, the module in Figure 

5.48 complements 2 nibbles in a bit-wise manner.  The corresponding synthesized 

circuit is shown in Figure 5.49. 

module xorg(c,a,b); 
input[3:0]a,b;
//input cen; 
output[3:0]c;
wire [3:0]cc; 
xor x0(c[0],a[0],b[0]); 
xor x1(c[1],a[1],b[1]); 
xor x2(c[2],a[2],b[2]); 
xor x3(c[3],a[3],b[3]); 
endmodule

Figure 5.46 A 4-bit XOR module.  
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Figure 5.47 Synthesized circuit of the XOR module of Figure 5.46. 

module compl(c,a); 
input[3:0]a;
output[3:0]c;
not(c[0],a[0]);
not(c[1],a[1]);
not(c[2],a[2]);
not(c[3],a[3]);
endmodule

Figure 5.48 A module to complement a 4-bit vector. 

Figure 5.49 Synthesized circuit of the module in Figure 5.48. 
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module dec2_4 (a,b,en); 
output [3:0] a; 
input [1:0]b; 
input en; 
wire [1:0]bb; 
not(bb[1],b[1]),(bb[0],b[0]);
and(a[0],en,bb[1],bb[0]),(a[1],en,bb[1],b[0]),
(a[2],en,b[1],bb[0]),(a[3],en,b[1],b[0]);
endmodule

Figure 5.50 A 2-to-4 decoder module. 

A 2-bit binary number with its 4 distinct states can be used to select any one 

of the 4 desired functions; it calls for the use of a 2-to-4 decoder.  Such a module is 

shown in Figure 5.50, and its synthesized circuit is shown in Figure 5.51.   

As explained above, the decoder outputs can be used to select anyone of the 4 

functional outputs and steer it to the final output; a 4-to-1 mux serves this purpose. 

The mux module is shown in Figure 5.52; its synthesized circuit is in Figure 5.53.   

The overall ALU module is shown in Figure 5.54.  It instantiates all the above 

modules.  Depending on the mode specified, one of the four functions is selected 

by the 2-to-4 decoder; its output is multiplexed on to the output by the 4-to-1 mux.  

The ALU module here has been synthesized and shown in Figure 5.55.  Each 

functional block instantiated in Figure 5.54 appears here as a corresponding 

distinct black box.   

More functions can be added, if desired, to make the ALU more 

comprehensive.  The ALU size can be increased to 16 or 32 bits by repeated 

instantiation (after some minor modifications) of the 4-bit module in a more 

comprehensive module. 

Figure 5.51 Synthesized circuit of the decoder module of Figure 5.50. 
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module mux4_1alu(y,i,e); 
input [3:0] i; 
input e; 
output [3:0]y; 
bufif1 g1(y[3],i[3],e); 
bufif1 g2(y[2],i[2],e); 
bufif1 g3(y[1],i[1],e); 
bufif1 g4(y[0],i[0],e); 
endmodule

Figure 5.52 A 4-to-1 mux module.  

Figure 5.53 Synthesized circuit of the mux module of Figure 5.52. 

module alu_4g(a,b,c,carry,cin,cen,s); 
input [3:0]a,b; 
input[1:0]s;
input cen,cin; 
output [3:0]c; 
output carry; 
wire [3:0] data0,data1,data2,data3,e; 
wire carry1 ; 
dec2_4 m5(e,s,cen); 
add4g m1(data0,carry1,a,b,cin); 

continued
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continued

compl m2(data1,a); 
xorg  m3(data2,a,b); 
andg4 m4(data3,a,b); 
bufif1 g5(carry,carry1,cen); 
mux4_1alu m6(c,data0,e[0]); 
mux4_1alu m7(c,data1,e[1]); 
mux4_1alu m8(c,data2,e[2]); 
mux4_1alu m9(c,data3,e[3]); 
endmodule

Figure 5.54 A 4-bit ALU module. 

Figure 5.55 Synthesized circuit of the ALU module of Figure 5.54. 
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5.7 EXERCISES 

In each of the cases below, prepare the test bench and test the design 

 1. Realize each of the flip-flops below using NOR gates. 

RS flip-flop; D-latch; Clocked RS flip-flop; Edge-triggered D flip-flop; 

Master-slave flip-flop. 

 2. Figure 5.56 shows the circuit of a flip-flop.  Prepare the design module and 

test it.    Explain why it does not work. 

 3. Modify the flip-flop in Figure 5.56 above with 2 ns delay for sb.  Test the 

flip-flop with different waveforms for d and clk; in each case ensure that the 

clock does not remain high continuously for more than 1 ns.  Explain the 

need for this restriction. 

 4. Figure 5.57 shows the basic memory cell built around a d-latch.  One can 

write data into it or read data from it.  

 a. When rd/wrb input is low, the flip-flop is in write mode; data are an input 

line; data on data line are written into the latch, when clk is given a 

positive pulse. 

 b. When rd/wrb input is high, the flip-flop is in read mode; data stored in the 

latch are made available on the data line. 

  Build a module around the d-latch to realize the memory cell.  

 5. Expand the above to form a byte-wide memory cell. 

Q

clk

K

J

Qb

rb

sb

Figure 5.56 A conventional JK flip-flop. 
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d-latch of Figure 5.13

d

en

clk

q

qb

data

rd/wrb

wren

rden

Figure 5.57 A d-latch with necessary additional circuitry to form a memory cell. 

 6. Replicating the memory element above, one can form a memory.  Consider 

a memory of 16 locations addressed by a 4-bit-wide address bus.  The 

memory will have a 4-to-16 address decoder.  It will have an rd/wrb input 

for reading from it and writing data into it. The decoded address can be used 

to gate the rden and wren inputs to the respective tri-state buffers.  Prepare 

the design module for the memory. 

 7. Consider the 4-to-1 mux module in Figure 4.31 and its synthesized circuit in 

Figure 4.33.  Identify the signal paths in which maximum number of gates is 

involved.  What is the number of gates in the path here? 

Identify the signal paths in which the number of gates involved is a 

minimum.  What is the number of gates here and which are these? 

 8. For each of the gate primitives in Exercise 7 above, take the minimum, 

typical, and maximum delays to be 1 ns, 2 ns and 3 ns respectively.  With 

the typical delay values, estimate the minimum and maximum delays of 

transmission.  Verify by simulation.  Repeat the exercise with minimum and 

minimum delay values. 

 9. In Exercise 8 above, assign the minimum delay values for the shortest paths 

and maximum for the longest paths.  Using these, estimate the minimum and 

maximum time delays for the mux (see also the pin-to-pin delay 

specifications in Chapter 11). 

 10. Identify the ALU functions in the 8085 processor.  Design an ALU module 

to carry out these. 

 11. Identify the ALU functions in the 8088 processor.  Design an ALU module 

to carry out these (ignore the instructions for multiplication and division). 

 12. a[1:0] and b[1:0] are two 2-bit numbers.  Their product – designated as 

m[3:0] – is in general a 4-bit number; it is formed as follows: 

Form m[0] by AND operation on a[0] and b[0]. 
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Through a half-adder add the bits a[1]&b[0] and a[0]&b[1].  The sum bit is 

m[1].  Let the carry bt be c. 

Through a half-adder add the bits a[1]&b[1] and c obtained above.  The sum 

bit is m[2] and the carry bit m[3]. 

Design a 2-bit multiplier following the above steps and test it for all possible 

input value combinations. 

 13. Let abcd and efgh be two 4-bit numbers where a, b,…., g, h represent the 

respective bit values.  The 4-bit numbers are multiplied as follows: 

Form the  four 4-bit numbers 00cd, 00gh, ab00, and ef00. 

Form the following four intermediate products using 2-bit multipliers: 

  00cd with 00gh 

  00cd with ef00 

  ab00 with 00gh 

  ab00 with ef00 

Add all the above four intermediate products to get the final 7-bit result. 

Design a 4-bit multiplier module following the above steps.  Instiantiate 2-

bit multiplier module, half- and full-adder modules, etc., wherever 

necessary. 

 14. Following steps analogous to the above, design an 8-bit multiplier. 

 15. Write down the Boolean logic expressions for all the product bits of a 4-bit  

multiplier; using these, design an 8-bit multiplier. 
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6

MODELING AT DATA FLOW LEVEL 

6.1 INTRODUCTION 

Gate level design description makes use of the gate primitives available in Verilog.  

These are repeatedly and judiciously instantiated to achieve the full design 

description.  Digital designers familiar with the basic logic gates and SSI / MSI 

circuits can describe the desired target circuit in terms of them on paper and 

proceed with the design description based on them.  This was the approach 

followed in the last two chapters; it is practical for comparatively smaller designs – 

say those involving tens of gates.  One can define modules in terms of primitives 

involving tens of gates and instantiate them in macro-modules.  This increases the 

complexity of designs that can be handled by one order.  Beyond that the gate 

level design description becomes too complicated to be practical. 

Data flow level description of a digital circuit is at a higher level.  It makes the 

circuit description more compact as compared to design through gate primitives. 

We have a number of operands and operations representing the simulations 

directly or indirectly.  The operations are carried out on the operand(s) in singles 

or in combinations [IEEE].  The results are assigned to nets.  The operand-

operation-assignments representing data flow are carried out repeatedly to 

complete the design description [Thomas & Morby].  Further, these can be 

combined judiciously with the gate instantiations wherever necessary.  With such 

combinations, design description of a comprehensive nature can be 

accommodated. 

6.2 CONTINUOUS ASSIGNMENT STRUCTURES 

A simple two input AND gate in data flow format has the form 

assign c = a && b;

Here

“assign” is the keyword carrying out the assignment operation.  This type 

of assignment is called a continuous assignment. 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1



128 MODELING AT DATA FLOW LEVEL 

 a and b are operands – typically single-bit logic variables.  

 “&&” is a logic operator.  It does the bit-wise AND operation on the two 

operands a and b.

“=” is an assignment activity carried out. 

 c is a net representing the signal which is the result of the assignment.  

In general, an operand can be of any one of the following types:  

A constant number [including real]. 

Net of a scalar or vector type including part of a vector. 

Register variable of a scalar or vector type including part of a vector. 

Memory element. 

A call to a function that returns any of the above.  The function itself can be a 

user-defined or of a system type [see Chapter 9]. 

There are other types of operators as well [see Section 6.5].  All types of 

combinational circuits can be modeled using continuous assignments.  One need 

not necessarily resort to instantiation of gate primitives. 

An AND gate module which uses the above assignment is shown in 

Figure 6.1.  The test bench for the same is shown in Figure 6.2, and the waveforms 

of nets a, b, and c obtained with the simulation are shown in Figure 6.3.  [The 

simulation software used has the facility to capture the waveforms of selected 

signals in the “run” phase; this has been invoked to get the waveforms in 

Figure 6.3.  No separate $monitor command is included in the test bench of 

Figure 6.2.  The same approach has been adopted with many of the test benches 

elsewhere in the book.]  

Multiple assignments can be carried out through a direct extension of the 

structure adopted in the above case.  Consider the AOI gate in Figure 6.4. A few 

patterns of the assignments for the circuit are given in Figure 6.5 to Figure 6.7. 

module andgdf(c,a,b); 
output c; 
input a,b; 
wire c; 
assign c = a&&b; 
endmodule

Figure 6.1 A module with an AND gate at the data flow level. 

module tst_andgdf; //TESTBENCH 
reg a,b; 
wire c; 
initial
begin

continued
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continued

 a = 1'b0; 
 b = 1'b0; 
 #4  a = 1'b1; 
 #4  b = 1'b1; 
 #4  a = 1'b0; 
 #4  b = 1'b0; 
 #4  a = 1'b1; 
end
andgdf g1(c,a,b); 
initial #20 $stop; 
endmodule

Figure 6.2 A test bench for the module in Figure 6.1. 

ns

c

0 10 20

a

b

Figure 6.3 Waveforms of nets a, b, and c obtained with the simulation of the module in 

Figure 6.1 with the test bench in Figure 6.2. 

c

a

b

f

e

d

gg1

Figure 6.4 An A-O-I gate circuit. 
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assign e = a&&b, f = c&&d, g1 = e|f, g = ~g1; 

Figure 6.5 A data flow level assignment statement to realize the A-O-I gate in Figure 6.4.  

assign e = a & b, f = c & d;

assign g1 = e|f, g = ~g1; 

Figure 6.6 Another set of data flow level assignment statements to realize the A-O-I gate in 

Figure 6.4. 

assign e  = a & b; 

assign f  = c & d;

assign g1 = e ! f; 

assign g  = ~g1;

Figure 6.7 Yet another set of data flow level assignment statements to realize the A-O-I 

gate in Figure 6.4. 

Observations: 

The semicolon terminates an assignment statement.  Commas separate 

different assignments in an assignment statement. 

“|” is the bit-wise OR operator and “~” the bit-wise negation operator in 

Verilog.   

All the quantities in the left-hand side of a continuous assignment have to be 

of net type.  Thus e, f, g, and g1 have to be declared as nets. 

All the operations in an assignment are evaluated whenever any of the 

operands in the assignment changes value.  Further, all the assignments are 

carried out concurrently.  Hence the order of the assignments or the statements 

is immaterial.  

The right-hand sides of assignment statements can be nets, regs, or function 

calls.   Here a, b, c, and d can be nets or regs.  All other variables have to be 

nets. 

The module for the A-O-I gate of Figure 6.4 is given in Figure 6.8 – it is formed 

around the assignment statement of Figure 6.5.  The same can be tested through a 

test bench. 



CONTINUOUS ASSIGNMENT STRUCTURES 131 

6.2.1 Combining Assignment and Net Declarations  

The assignment statement can be combined with the net declaration itself making 

the assignment implicit in the net declaration itself.  Thus the two statements 

wire c;

assign c = a & b;

can be combined as  

wire c = a & b;

The above simplification cannot be carried over to multiple declarations.  With this 

proviso, the module of Figure 6.8 can be modified as shown in Figure 6.9.  In the 

modules of Figures 6.8 and 6.9, a, b, c, and d are declared as input and g as 

output.  As was explained in Section 4.2, these would be taken as nets if there 

are no separate declarations concerning their types.  However, the intermediate 

quantities – e, f, and g1– should be declared as wire. Synthesized version of the 

A-O-I circuit is shown in Figure 6.10. 

module aoi2(g,a,b,c,d); 
output g; 
input a,b,c,d; 
wire e,f,g1,g; 
assign e = a && b,f = c && d, g1 = e||f, g=~g1; 
endmodule

Figure 6.8 A compact description of the AOI module at the data flow level. 

module aoi3(g,a,b,c,d); 
output g; 
input a,b,c,d; 
wire g; 
wire  e  = a && b; 
wire  f  = c && d; 
wire  g1 = e||f; 
assign g = ~g1; 
endmodule

Figure 6.9 Alternate design module to realize the A-O-I gate in Figure 6.4. 
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Figure 6.10 Synthesized circuit of the A-O-I gate module of Figure 6.9. 

6.2.2 Continuous Assignments and Strengths 

A net to which a continuous assignment is being made can be assigned strengths 

for its logic levels.  The procedure is akin to the strength allocation to the outputs 

of primitives.  The AOI gate of Figure 6.9 is modified with strength allocations to 

the output and is shown in Figure 6.11.  The assignment to g can be combined with 

the wire declaration into a single statement as  

wire (pull1, strong0)g = ~g1;

As mentioned earlier, one can have only one assignment in the statement here. 

In a bigger design, g in Figure 6.11 can be assigned to other expressions or 

primitives also.  Any resulting contention in the output values will be resolved on 

the lines discussed in Chapter 4. 

module aoi4 (g, a, b, c, d); 

output g; 

input a, b, c, d; 

wire g; 

wire e    = a &&b;

wire f    = c & &d;

wire g1 = e || f;

assign (pull1, strong0)g = ~g1;
endmodule

Figure 6.11 The module of Figure 6.9 modified with strength allocation to the output. 
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6.3 DELAYS AND CONTINUOUS ASSIGNMENTS 

Delays can be incorporated at the data flow level in different ways [Ciletti]. 

Consider the combination of statements in Figure 6.12. The assignment takes 

effect with a time delay of 2 time steps.  If a or b changes in value, the program 

waits for 2 time steps, computes the value of c based on the values of a and b at 

the time of computation, and assigns it to c.  In the interim period, a or b may 

change further, but c changes and takes the new value only 2 time steps after the 

change in a or b initiates it.  Typical waveforms for a, b, and c are shown in 

Figure 6.13.  Note that the changes in a and b of duration less than 2 time steps are 

ignored vis-à-vis assignment to the net c.    The following may be noted with 

respect to the waveforms:  

 a changes at 0 ns, 2 ns, 5 ns, 8 ns, 9 ns, 12 ns and 13 ns; b  changes at 0  ns, 2 

ns, 6 ns, 8 ns and 13 ns.   All these trigger changes to c.

In every case change to c comes into effect with a time delay of 2 time steps – 

that is, at the 2nd, 4th, 7th,  8th, 10th, 11th, 14th and 15th ns, respectively. 

Whenever c changes, its new value is decided by the values of a and b at that 

instant of time.  In effect, c changes at 2nd, 4th and 7th ns only. 

wire c, a, b;

assign #2 c = a & b; 

Figure 6.12 Illustration of combining delays with assignments. 

c

a

b

0 5 10 15

ns

Figure 6.13 Waveforms of signals a, b, and c for the design segment of Figure 6.12. 
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The program segment in Figure 6.14 also gives the same output as shown in 

Figure 6.13.  If the time delay is in the net and not in the assignment proper, its 

effect is not any different.  Consider the program segment in Figure 6.15.  Here the 

changes in the values of d are computed immediately following those in a and b.  

The assignment takes effect immediately.  The delay in the net c causes a delay of 

2 time steps in the assignment to c.  Such a delay is not present for d.  Typical 

waveforms for the program segment are shown in Figure 6.16.  Note the 

following:  

 a changes at 2 ns, 5 ns, 8 ns, 9 ns, 12 ns and 13 ns; b  changes at 2 ns, 6 ns, 8 

ns and 13 ns.   All these trigger changes to c and d also. 

In every case, change to c comes into effect with a time delay of 2 time steps  

–  that is, in effect, c changes at 2nd, 4th and 7th ns only. 

Whenever c changes, its new value is decided by the values of a and b at that 

instant of time. 

In every case, changes to d come into effect immediately. 

wire  a, b;

wire #2 c = a & b;

Figure 6.14 Alternate description for the program segment of Figure 6.10. 

wire  a, b, d;

wire #2 c;

assign c = a & b;

assign d = a & b;

Figure 6.15 Illustration of combining delays with assignments. 

ns

0 5 10 15

a

b

c

d

Figure 6.16 Waveforms of Signals a, b, c, and d for the design segment of Figure 6.15. 
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6.4 ASSIGNMENT TO VECTORS 

The continuous assignments are equally applicable to vectors.  A single statement 

can describe operations involving vectors wherever possible.  This is illustrated in 

the adder module in Figure 6.17, which adds two 8-bit numbers.  Here it is 

assumed that the sum is also of 8 bits.  However to account for the possibility of a 

carry bit being generated in the course of the addition process, it is desirable to 

increase the vector size of c by one bit. 

6.4.1 Concatenation of Vectors 

One can concatenate vectors, scalars, and part vectors to form other vectors.  The 

concatenated vector is enclosed within braces.  Commas separate the components 

–scalars, vectors, and part vectors.   If a and b are 8- and 4-bit wide vectors, 

respectively and c is a scalar 

{a, b, c}

stands for a concatenated vector of 13 bits width.  The vector components are 

formed in the order shown – c is the least significant bit and a[7] the most 

significant bit and the other bits are in between in the order specified.  The 

concatenation can be with selected segments of vectors also.  For example,  

{a(7:4), b(2:0)}

represents a 7-bit vector formed by combining the 4 most significant bits of vector 

a with the 3 least significant bits of vector b.  The size of each operand within the 

braces has to be specified fully to form the concatenated vector.  Hence unsized 

constant numbers cannot be used as operands here.   

Example 6.1 Eight-Bit Adder 

Figure 6.18 shows the design description of an 8-bit adder, where the output vector 

is formed directly by concatenation.  The adder takes a carry input and gives out a 

carry output.  The adder module here can form the “seed” adder block in a multi-

byte adder chain. 

module add_8(a,b,c); 
input[7:0]a,b;
output[7:0]c;
assign c = a + b ;
endmodule

Figure 6.17 An adder module at data flow level where the nets are vectors. 
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module add_8_c(c,cco,a,b,cci); 
input[7:0]a,b;
output[7:0]c;
input cci; 
output cco; 
assign {cco,c} = (a + b + cci);
endmodule

Figure 6.18 A complete 8-bit adder module at data flow level. 

When it is necessary to replicate vectors, scalars, etc., to form other vectors, 

the same can be arrived at in a compact manner using the repetition multiplier 

again through concatenation.  Thus, 

{2{p}} 

represents the concatenated vector  

{p, p} 

and

{2{p}, q}  

represents the concatenated vector  

{p, p, q}.

The two statements

assign GND=supply0;

p={8{GND}}; 

together ground the 8 bits of the vector p.

Concatenation operation can be nested to form bigger vectors when 

component combinations are repeated.  For example, 

{a, 3 {2{b , c}, d}}

is equivalent to the vector 

{a, b, c, b, c, d,  b, c, b, c, d,  b, c, b, c, d } 

6.5 OPERATORS 

A set of operators is available in Verilog. The operator symbols are similar to 

those in C language [Gottfried].  With these operators we can carry out specified 

operations on the operands and assign the results to a net or a vector set of nets as 

the case may be.  A few such operands have already been used in the examples so 

far.  We discuss here the different operators, their types, and the operations carried 

out by each.  Subsequently the use of operators is illustrated through a set of 

examples. 
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6.5.1 Unary Operators 

Unary operators do an operation on a single operand and assign the result to the 

specified net.  The unary operators in Verilog are given in Table 6.1.  All unary 

operators get precedence over binary and ternary operators.  The operators “+” and 

“–“ preceding an integer or a real number change its sign.  These are also unary 

operators, though not separately listed in Table 6.1.  

6.5.2 Binary Operators 

Most operators available are of the binary type.  A binary operator takes on two 

operands; the operator comes in between the two operands in the assignment.  The 

binary operators are grouped into type categories and discussed separately. The 

following are to be noted:  

The arithmetic operators treat both the operands as numbers and return the 

result as a number.   

All net and reg operand values are treated as unsigned numbers. 

Real and integer operands may be signed quantities. 

If either of the operand values has a zero value, the entire result has a zero 

value (?). 

The result of any arithmetic operation — with the “+” or “–” or with any of 

the other arithmetic operators discussed later — will have an x value if any of the 

operand bits has an x  or a z value. 

6.5.2.1 Arithmetic Operators 
The arithmetic operators of the binary type are given in Table 6.2.  The modulus 

operand is similar to that in C language – It provides the remainder of the division 

Table 6.1 Unary operators and their symbols 

Operator type Symbol Remarks

Logical negation ! Only for scalars   

Bit-wise negation ~ 

Reduction AND & 

Reduction NAND ~& 

Reduction OR | 

Reduction NOR ~| 

Reduction XOR ^ 

Reduction XNOR ~^ or ^~ 

For scalars and vectors 

For vectors – yields a single bit output 
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Table 6.2 Arithmetic operators and their symbols 

Operand type Symbol Remarks

Multiplication *  

Division / The result is x if the denominator is zero 

Modulus %  

Addition +  

Subtraction –  

of two numbers.  The module in Figure 6.17 is an example of the illustration of the 

use of the arithmetic binary operator “+” (for addition).  Other arithmetic operators 

are also used in a similar manner. 

Observations:  

In integer division the fractional part of the result is truncated and ignored. 

If any bit of an operand is x or z in an arithmetic operation, the result takes 

the x value.   

If the first operand of a modulus operator is negative, the result is also a 

negative number. 

Depending on the type of definition of a number, a modulus operation can lead to 

different results.  Typical examples are given in Table 6.3. 

6.5.2.2 Logical Operators 
There are two logical operators involving two operands.  The operands concerned 

can be variables or expressions involving variables.  In both cases the result of the 

operation is a single bit of value 1 (true) or 0 (false).  If a bit in one of the operands 

is x or z, the result of evaluation of the expression has an x value.  The operator 

details are shown in Table 6.4. The modules in Figure 6.8 and Figure 6.9 are 

examples of the illustration of the use of logical binary operators. 

6.5.2.3 Relational Operators 
There are four relational operators; their details are shown in Table 6.5.   A 

relational operator treats both the operands as binary numbers and compares them.  

The result is a 1 (true) bit or a 0 (false) bit.  If a bit in either operand is x or z, the 

result has x (unknown) value.  The operands can be variables or expressions 

involving variables.  Operands of net or reg type are treated as unsigned numbers.  

Real and integers can be positive or negative (i.e., signed) numbers. 
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Table 6.3 Typical modulus operations and their results 

Expressions involving 

modulus operator 

Result of the 

operation
Remarks

15 % 5 0 

14 % 5 4 

Results are obvious 

4’hf % 5 0 

4’he % 5 4 

The numbers 4’hf and 4’he are in hex format 

with decimal values of 15 and 14, respectively.  

But the denominator 5 is in decimal form. 

6’o15 % 5 3 6’o15 is an octal number with a decimal value 

of 13. 

–4 % 3 –1  

4 % –3  Illegal form 

Table 6.4 Binary logical operators and their symbols 

Operator type Symbol Possible output value 

AND && 

OR || 
Single-bit output  

Table 6.5 Relational operators and their symbols

Operator type Symbol Possible output value 

Greater than > 

Less than < 

Greater than or equal to >= 

Less than or equal to <= 

Single-bit output  

6.5.2.4 Equality Operators 
The equality operator makes a bit-by-bit comparison of the two operands and 

produces a result bit.  The result bit is a 1 (true) if the operand condition is 

satisfied; otherwise it is 0 (false).  The operands can be variables or expressions 

involving variables.  If the operands are of unequal length, the shorter one is zero 

filled to match the larger operand.  The operators in this category are only of two 

types – those to test the equality and those to test inequality.  The four operators in 

this category are given in Table 6.6. 

6.5.2.5 Bit-wise Logical Operators 
The operator does a specified bit-by-bit operation on the two operands and 

produces a set of result bits.  The result is (bit-wise) as wide as the wider operand. 



140 MODELING AT DATA FLOW LEVEL 

Table 6.6 Equality operators and their symbols 

Operand

symbol 
Description of operand 

Possible 

logical value 

of result 

== (The symbol comprises two consecutive equal signs.)  If the 

two operands are equal bit by bit, the result is 1 (true); else the 

result is 0 (false).  If either operand has a x or z bit, the result is 

x.

0, 1, or x

!= (The symbol comprises of an exclamation mark followed by an 

equal sign.)  A bit-by-bit comparison of the two operands is 

made.  The result is a 1 if there is a mismatch for at least one bit 

position.

0, 1, or x

=== (The symbol comprises of three consecutive equal signs.) The 

operand bits can be 0, 1, x, or z.  If the two operands match 

on a bit by bit basis, the result is a 1 (true) bit; else it is 0 (false).  

Note that the result is never x here. 

0 or 1 

!== (The symbol comprises an exclamation mark followed by 2 

consecutive equal signs). The operand bits can be 0, 1, x, or z.

If the two operands do not match on a bit by bit basis, the result 

is a 1 (true) bit; else it is 0 (false).  Note that the result is never 

x here. 

0 or 1 

If the width of one of the operands is less than that of the other, it is bit-extended 

by filling zero bits and the widths are matched.  Subsequently, the specified 

operation is carried out.  If one of the operands has an x or z bit in it, the 

corresponding result bit is x.  Either operand can be a single variable or an 

expression involving variables.  Table 6.7 gives the four operators of this category. 

6.5.2.6 Operator Truth Table 
The truth tables for different types of bit-wise operators are given in Table 6.8.  

Note that an z input is treated as an x value (Compare these with their counterparts 

for respective gate primitives in Chapter 4.) 

Table 6.7 Bit-wise logical operators and their symbols 

Operator type Symbol Possible result 

AND & 

OR | 

XOR ^ 

XNOR ~^ or ^~ 

0, 1, or x
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Table 6.8 Truth tables for bit-wise operators 

6.5.2.7 Shift Operators 
Table 6.9 shows the two operators of this category.  The << operator executes left 

shift operation, while the >> operator executes the right shift operation.  In either 

case the operand specified on the left is shifted by the number of bits specified on 

the right.  The shifting is done irrespective of whether the bits are 0, 1, x, or z.

The bits shifted out are lost.  The vacated positions created as a result of the 

shifting are filled with zeroes.  If the right operand is x or z, the result has an x 

value.  If the right operand is negative, the left operand remains unchanged. 

6.5.3 Ternary Operator 

Verilog has only one ternary operator – the conditional operator.  It checks a 

condition and does a branching.  It is a versatile and powerful operator.  It 

enhances the potential of design description substantially (as can be seen through 

the examples below).  The general form is  

A?b:c

The conditional operation is made up of two operators – “?” and “:” – and three 

operands.  The two operands separate the three operators in the order shown.  The 

operational sequence of the operation is as follows:  

AND

Input 2 

0 1 X

0 0 0 0 

1 1 0 XIn
p

u
t 

1
 

X 0 X X

OR

Input 2 

0 1 X

0 0 1 X

1 1 1 1 In
p

u
t 

1
 

X X 1 X

XOR

Input 2 

0 1 X

1 1 0 X

In
p

u
t 

1
 

X X X X

XNOR

Input 2 

0 1 X

0 1 1 X

In
p

u
t 

1
 

X X X X

Negation

Input 0 1 X

Output 1 0 X
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Table 6.9 Shift-type operators and their symbols 

Operand
Typical 

usage 
Operation

>> A >> b The set of bits representing A are shifted right repeatedly b times. 

<< A<<  b The set of bits representing A are shifted left repeatedly b times. 

“A” is evaluated first. 

If A is true, b is evaluated. 

If A is false, c is evaluated. 

If A evaluates to an ambiguous result, both b and c are evaluated.  Then they are 

combined on a bit-by-bit basis to form the resultant bit stream.  The result bit can 

have the following three possible values:  

0 if the corresponding bits of b and c are 0. 

1 if the corresponding bits of b and c are 1. 

X otherwise. 

As an example, consider the assignment statement 

assign y = w ? x : z;

where w, x, y and z are binary bits.  If the bit w is true (1), y is assigned the value 

of x: otherwise – that is, if w is false (0) – y is assigned the value of z.  The 

assignment statement here multiplexes x and z onto y; w is the control signal here.   

Consider the assignment 

assign flag = (adr1 == adr2)?1’b1 : 1’b0;

Here adr1 and adr2 are two multibit vectors representing two addresses.  If the 

two are identical, the flag bit is set to zero; else it is reset.   

assgn zero_flag = (|byte)? 0:1;

All the bits of the byte are ORed together here.  The zero_flag is set if the result is 

zero.

assign c = s ? a: b; //The net c is connected to a if s=1; else it is connected to 

b

The statement realizes a 2 to 1 mux.  b and c have to be scalars or vectors of the 

same width.  The assignment can be expanded to realize larger muxes.   

The conditional operator can be nested [see Figure 6.19].  Nesting gives rise 

to a variety of uses of the operator. As an example, consider the formation of an 

ALU.  ALU can be defined in a compact manner using the ternary operator.  

assign d =  (f==add)?(a+b): ((f==subtract)?(a-b): ((f==compl)?~a: ~b));
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Innermost

conditional

operation

Outer conditional operation

Outermost conditional operation

 o = ( s == 2'b00 ) ? I0 : ( ( s == 2'b01 ) ? I1 :assign

( ( s == 2'b10)    ? I2 : I3 )  );

Figure 6.19 Illustration of nested conditional operations. 

In the example here, f is taken as a control word.  If it is equal to the number add,

d is to be equal to the sum of a and b.  If  f is equal to the number subtract, d is to 

be equal to the difference between a and b.  If it is equal to the number compl, d is 

to be the complement of a.  Otherwise (i.e., f = 3) d is taken as the complement of 

b.  As another example consider a mux; the assignment statement in Figure 6.18 

represents a 4-to-1 mux formed with a nested set of ternary operators.  The 

construct in the figure can be judiciously used to form muxes of larger sizes. 

Example 6.2 ALU 

Figure 6.20 shows an ALU module.  It is built around a single executable 

statement present as a continuous assignment.  A test bench for the ALU is also 

shown in the figure.  The synthesized circuit is shown in Figure 6.21.  Results of 

running the test bench are shown in Figure 6.22.  Some of the combinational 

circuit operations required are realized inside the “modgen” blocks of the FPGA 

used.  The nature of the ALU description in the module decides the translation into 

circuit.  Contrast this with the ALU considered at the gate level of design in 

Section 5.7   where each functional block is instantiated separately and the selected 

set of outputs steered to the final output.  Each such instantiated module translates 

into a separate circuit block.  Their outputs are mux’ed into the final output vector.  

There is a one-to-one correspondence between the elements of the design 

description and their respective realizations.    

module alu_df1 (d, co, a, b, f,cci); 

//a SIMPLE ALU FOR ILLUSTRATION PURPOSES 

output [3:0] d; 

output co; 

wire[3:0]d;

continued
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continued

wire co; 

input cci; 

input [3 : 0 ] a, b; 

input [1 : 0] f;//f is a two-bit function select input;

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b)

     :((f==2'b10)? {1'bz,a^b}:{1'bz,~a})); 

/*co is the carry bit in case of addition;it is the 
borrow bit in case of subtraction. In the other two 
cases, co is not required. Hence it is assigned z 
value.*/

endmodule

module tst_aludf1; //test-bench

reg [3:0]a,b; 

reg[1:0] f; 

reg cci; 

wire[3:0]d;

wire co; 

alu_df1 aa(d,co,a,b,f,cci); 

initial

begin

cci= 1'b0; 

f  = 2'b00; 

a  = 4'b0; 

b  = 4'h0; 

end

always

begin

#2 cci = 1'b0;f = 2'b00;a = 4'h1;b = 4'h0; 

#2 cci = 1'b1;f = 2'b00;a = 4'h8;b = 4'hf; 

#2 cci = 1'b1;f = 2'b01;a = 4'h2;b = 4'h1; 

#2 cci = 1'b0;f = 2'b01;a = 4'h3;b = 4'h7; 

#2 cci = 1'b1;f = 2'b10;a = 4'h3;b = 4'h3; 

#2 cci = 1'b1;f = 2'b11;a = 4'hf;b = 4'hc; 

end

initial $monitor($time, " cci = %b , a= %b ,b = %b ,

f = %b ,d =%b ,co= %b ",cci ,a,b,f,d,co); 

initial #30 $stop; 

endmodule

Figure 6.20 A 4-bit 4-function ALU and a test bench for the same. 
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Figure 6.21 Synthesized circuit of the ALU in Example 6.18. 

output listing 

# 0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0
# 2 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0
# 4 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1
# 6 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0
# 8 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1
#10 cci = 1 , a= 0011 ,b = 0011 ,f = 10 ,d =0000 ,co= z
#12 cci = 1 , a= 1111 ,b = 1100 ,f = 11 ,d =0000 ,co= z
#14 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0
#16 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1
#18 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0
#20 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1
#22 cci = 1 , a= 0011 ,b = 0011 ,f = 10 ,d =0000 ,co= z
#24 cci = 1 , a= 1111 ,b = 1100 ,f = 11 ,d =0000 ,co= z
#26 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0
#28 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1 

Figure 6.22 Results of running the test bench for the ALU module in Figure 6.20. 
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Example 6.3 Four-to-One Mux 

Figure 6.23 shows a 4-to-1 mux module realized through repeated similar 

assignments.  It multiplexes one out of four 4-bit-wide buses to the output side.  

The assignments are done through 4-bit-wide switches. (The mux can be built up 

in other ways too; for example, it can be built around the compact assignment 

statement in Figure 6.20.)  The synthesized version of the mux is shown in 

Figure 6.24; it is essentially the vector counterpart of the 4-to-1 mux of 

Figure 4.40.   

module mux_df1(ao, a1, a2, a3, a4, f, en); 
//f is a 2 bit selector input & en is an enable input 
output [3:0] ao; 
input[3:0] a1, a2, a3, a4; 
input en; 
input [1:0]f; 
trireg [3:0]aa0; 
parameter d=4'hz; 
assign aa0=(f==2'b00)?a1:d; 
assign aa0=(f==2'b01)?a2:d; 
assign aa0=(f==2'b10)?a3:d; 
assign aa0=(f==2'b11)?a4:d; 
assign ao =(en)?aa0:d; 
endmodule

Figure 6.23 A 4 to 1 vector multiplexor module at the data flow level. 

Figure 6.24 Synthesized circuit of the mux in Figure 6.21. 
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Example 6.4 BCD Adder  

A BCD adder can be formed through a compact assignment using a ternary 

operator.  The assignment statement has the form 

assign {co, sumd} =  (sumb<=4’b1001)?{1’b0,sumb} : (sumb + 4’b0110; 

The adder module using the above assignment and a test-bench for the same are 

shown in Figure 6.25.  The synthesized version of the circuit is shown in Figure 

6.26.  The results of running the test bench are given in Figure 6.27.   

module bcd(co,sumd,a,b); 
input [3:0]a,b; 
output [3:0]sumd; 
output co; 
wire [3:0]sumb; 
assign sumb = a + b; 
assign{co,sumd}=(sumb<=4'b1001)?{1'b0,sumb}:(sumb+4'b01
10);
endmodule

module tst_bcd;//Test bench 
reg [3:0]a,b; 
wire co; 
wire [3:0]sumd; 
bcd bcc(co,sumd,a,b); 
initial

begin
    a = 4'h0 ; b = 4'h0; 
#2  a = 4'h1 ; b = 4'h0;
#2  a = 4'h2 ; b = 4'h1; 
#2  a = 4'h4 ; b = 4'h5; 
#2  a = 4'h6 ; b = 4'h6;
#2  a = 4'hd ; b = 4'h1; 
#2  a = 4'hf ; b = 4'h0; 
end

initial $monitor($time,"a = %b, b = %b, co = %b, sumd = 
%b",a,b,co,sumd);
initial #16 $stop; 
endmodule

Figure 6.25 A BCD adder module at the data flow level. 
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Figure 6.26 Synthesized circuit of the BCD adder.

# 0 a = 0000 , b = 0000 ,  co = 0 , sumd = 0000 
# 2 a = 0001 , b = 0000 ,  co = 0 , sumd = 0001 
# 4 a = 0010 , b = 0001 ,  co = 0 , sumd = 0011 
# 6 a = 0100 , b = 0101 ,  co = 0 , sumd = 1001 
# 8 a = 0110 , b = 0110 ,  co = 1 , sumd = 0010 
#10 a = 1101 , b = 0001 ,  co = 1 , sumd = 0100 
#12 a = 1111 , b = 0000 ,  co = 1 , sumd = 0101 

Figure 6.27 Results of running the test bench for the BCD adder in Figure 6.24.

6.5.4 Operator Priority 

A clear understanding of the operator precedence makes room for a compact 

design description.  But it may lead to ambiguity and to inadvertent errors.  

Whenever one is not sure of the operator priorities, it is better to resort to the use 

of parentheses and ensure clarity and accuracy of expressions.  Further, some 

synthesizers may not interpret the operator precedence properly.  These too call for 

the apt use of parentheses. 

The operators are arranged in tabular form and shown in Table 6.10.  The 

table brings out the order of precedence.  The order of precedence decides the 

priority for sequence of execution and circuit realization in any assignment 

statement.  The following form the basic rules for the same:  
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Table 6.10 Operator precedence details 

Unary 

operators
!        &        ~&        |        ~|        ^        ~^        +        – 

Highest

precedence 

*          ?           / 

+         - 

<<            >> 

<           <=           >             >= 

==            !=              ===             !== 

&            ^              ~^ 

|

&&

Binary 

operator

|| 

Ternary 

operators
?  : 

Lowest

precedence 

Unary operators have the highest priority and execute first. 

Subsequently the binary operators execute.  Amongst these the algebraic 

operators have the highest precedence. Amongst the algebraic operators *,  / 

and % have precedence over + and – operators. 

Subsequent precedence amongst the binary operators is as shown in the table. 

Conditional operator has the lowest precedence and hence is executed last. 

In any expression, operators associate from left to right.  Ternary operator is 

the only exception to this; it associates from right to left. 

6.5.4.1 Examples 

P = Q – R + S; 

Here R is subtracted from Q and then S is added to the result.  However, operator 

precedence does not cause any ambiguity or change the result here.   

P = Q – R / S; 

In the above case the “divide” operator “/” has precedence over the “subtract” 

operator “–”.  Hence R will be divided by S, and the result will be subtracted from 

Q.  If division of (Q – R) is desired, the expression has to be recast as  

P = (Q – R)  / S; 

In a lengthier expression such as  

P = a1 – a2 / a3 + a4 * a5; 
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the operation is equivalent to  

P = a1 – ( a2 / a3 ) + ( a4 * a5 ); 

Use of parentheses adds to clarity especially in operations involving more than two 

operators.  The operation 

P > Q – R 

is the same as 

P > (Q – R) 

since the relational operator “>” has a lower precedence than the algebraic 

operator “–”.   Similarly, the expression  

P + Q <= R 

is the same as 

( P + Q ) <= R. 

6.5.5 Bit Widths of Expressions 

When expressions are evaluated or continuous assignments are made, the bit width 

of the result is decided by different factors.  Three cases arise here:  

The operators decide the bit width of the result; logical operators like ‘&&’ 

and “||” are examples. 

Widths of all operands are specified and they are consistent in all the 

expressions used.  Bit-wise logic with all the operands having the same width 

are examples of this. 

Widths of all operands are not specified or do not match.  The result of 

expression evaluation and assignments can lead to ambiguity here.  However, 

the rules to resolve these lead mostly to a natural solution. 

Bit widths of results of evaluating expressions are given in Table 6.11 for various 

cases.

6.6 ADDITIONAL EXAMPLES 

The use of operands and their combinations are illustrated through a set of two 

examples here.  They also illustrate how data flow level statements can be 

combined with instantiation of primitives in defining the modules.  The results of 

running the test-benches are shown as waveforms of selected signals.  $monitor

or $display commands are not inserted in the test benches. 
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Table 6.11 Bit widths of expressions: A, B and C represent operands in the table; opr

represents an operator 

Expression Bit width 

Integer, unsized constant number Compiler-specific 

Sized constant number Decided by the specified size 

Opr A where opr is an unary operator 

out of +, - or ~ 

Same as that of A

Opr A where opr is an unary operator 

of Table 6.1 

A opr B where opr is a logical operator 

of Table 6.4, a relational operator of 

Table 6.5 or an equality operator of 

Table 6.6  

1

A opr B where opr is an algebraic 

operator from Table 6.2 or a bit-wise 

logical operator from Table 6.7. 

Width of A or B, whichever is higher 

A opr B where opr is a shift operator 

from Table 6.8 

Same as that of A

C ? A : B Width of A or B, whichever is higher 

{A, . . , B} The sum of the bit widths of all the operands 

{N*{A, . . . , B}} N times the sum of the bit widths of all the 

operands

Example 6.5 Bus Switcher 

Figure 6.28 shows the module of a 4-bit bus switcher.  A is a 4-bit input bus that is 

switched on to a selected 4-bit bus.  The selection is done by a 2-bit select vector 

and carried out through a set of simple ternary operator-based assignments.  The 

synthesized circuit of the switcher is shown in Figure 6.29.  It decodes the 2-bit 

select vector into 4 lines that form the control lines for switching.  The switching is 

done through a 4  4 tri-state buffer bank.  The bus switcher can be easily scaled 

up to form switches of 8- or 16-bit widths. 

module demux_df1(a1, a2, a3, a4, a, f); 
//A 1 to 4 demux module at data flow level:
output[3:0]a1, a2, a3, a4; // output vectors 
input[3:0]a; //a 4 bit input vector 
input[1:0]f; //f is the select vector 
parameter d = 4'hz; 

continued
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continued

assign a1=(f==2'b00)?a:d; 
assign a2=(f==2'b01)?a:d; 
assign a3=(f==2'b10)?a:d; 
assign a4=(f==2'b11)?a:d; 
endmodule

Figure 6.28 A 4-bit switcher module at the data flow level. 

Figure 6.29  Synthesized circuit of the 4-bit switcher. 

Example 6.6 Ring Counter 

A ring counter is built here in a step-by-step manner.  Firstly the simple latch of 

Example 5.1 has been modified to form another latch shown in Figure 6.30.  It has 

two sets of inputs –  sb, rb; and d, db –  in place of the single set of sb and rb in 

Example 5.1. The synthesized circuit is shown in Figure 6.31. The basic cell in the 

design library being a 2-input AND gate, the NAND function is realized with 2 

AND gates followed by a NOT gate.  With the additional set of inputs here – d and 

db – set and reset operations can be carried out independently of the data input. 

module srff7474(sb, d, rb, db, q, qb); 
input sb, rb, d, db; 
output q, qb; 
nand(q,  sb, d ,qb); 
nand(qb, rb, db, q); 
endmodule

Figure 6.30 A basic latch module. 
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Figure 6.31 Synthesized circuit of the basic latch in Figure 6.30. 

A positive edge-triggered flip-flop of the 7474 type is formed by repeated 

instantiation of the latch in the module of Figure 6.30. Such a flip-flop module is 

shown in Figure 6.32; it is an enhanced version of the edge-triggered flip-flop in 

Example 5.5 and in Figure 5.20.  The synthesized circuit is shown in Figure 6.33.  

The srff7474 instantiations are represented there as black boxes. 

Figure 6.34 shows a module, which has 4 instantiations of the above edge-

triggered flip-flop.  This cluster of 4 flip-flops can form the “seed module” of a 

wide variety of sequential circuits.  Figure 6.35 shows the corresponding 

synthesized circuit. 

module dff7474new(cp,d,sd,rd,q,qb); 
input d,cp,sd,rd; 
output q,qb; 
wire sdd,rdd; 
not(sdd,sd);
not (rdd,rd); 
wire n1,n2,n1b,n2b; 
 srff7474 ff1(sdd,n2b,rdd,cp,n1,n1b); 
 srff7474 ff2(n1b,cp,rdd,d,n2,n2b); 
 srff7474 ff3(sdd,n1b,rdd,n2,q,qb); 
endmodule

Figure 6.32 An edge-triggered flip-flop built with the latch in Figure 6.30 and a test bench 

for the same. 
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Figure 6.33 Synthesized circuit of the edge-triggered flip-flop in Figure 6.32. 

The 4 flip-flops in Figure 6.34 and Figure 6.35 have been connected to form a 

simple 4-bit ring counter in Figure 6.36.  Cen is the overall enabling signal for the 

ring counter connection.  The connection is defined through a set of direct 

continuous assignments.  A test-bench for the ring counter is also included in 

Figure 6.36.  Initially the binary number 1000 is loaded into the set of the 4 flip-

flops.  Subsequently the flip-flops are connected in a ring counter fashion by 

enabling Cen.  At every positive edge of the clock the data in the ring counter is 

shifted right by one bit and it circulates.  Waveforms of the 4 flip-flops of the ring 

counter obtained when running the test bench are shown in Figure 6.37.  The 

synthesized circuit of the ring counter is shown in Figure 6.38. 

module unishrg(clk,d,sd,rd,q,qb); 
input clk; 
input[3:0]d,sd,rd;
output[3:0]q,qb;
dff7474new ff1(clk,d[0],sd[0],rd[0],q[0],qb[0]); 
dff7474new ff2(clk,d[1],sd[1],rd[1],q[1],qb[1]); 
dff7474new ff3(clk,d[2],sd[2],rd[2],q[2],qb[2]); 
dff7474new ff4(clk,d[3],sd[3],rd[3],q[3],qb[3]); 
endmodule

Figure 6.34 A module for a general set of 4 edge-triggered flip-flops. 
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Figure 6.35 Synthesized circuit of the module for a general set of 4 edge-triggered flip-

flops in Figure 6.34. 

module rng_ctr(cen,clk,sd,rd,q,qb); 
input clk,cen; 
input[3:0]sd,rd;
output [3:0]q,qb; 
wire [3:0]d; 
unishrg uu(clk,d,sd,rd,q,qb); 
assign d[1]=(cen)? q[0]:1'b0; 
assign d[2]=(cen)? q[1]:1'b0; 
assign d[3]=(cen)? q[2]:1'b0; 
assign d[0]=(cen)? q[3]:1'b0; 
endmodule

module tst_rng_ctr;//test-bench 
reg clk,cen; 
reg[3:0]sd,rd;
wire [3:0]q,qb; 
rng_ctr rsh(cen,clk,sd,rd,q,qb); 
initial
begin

  clk=0;sd=4'b1000;rd=4'b0111; 

continued 
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continued

#3sd=4'b0000;rd=4'b0000;
#2cen=1'b1;

end
always
begin
#2clk =~clk; 
end
initial #50 $stop; 
endmodule

Figure 6.36 A module for a ring counter and a test bench for the same. 

Figure 6.37 Waveforms of a selected set of signals obtained with the test bench in 

Figure 6.36. The numbers below indicate the time steps 

Figure 6.38 Synthesized circuit of the ring counter in Figure 6.36. 
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6.7 EXERCISES 

1.  Use continuous assignment statements to design circuits for the following: 

Byte comparator, Parity generator for one data byte, Binary byte to BCD 

code, a pair of BCD digits to binary, BCD to Ex-3 code, Ex-3 to BCD, byte 

multiplier, BCD nibble to 7-segment decoder [Bignel, Sedra, Tocci]. 

2.  What is the result vector in each of the following concatenation operations? 

  {3{a},b,c}; {3{a},2{b},c};{3{{a},2{b ,c}}};{3{3{a},2{b}},c}; 

 {{3{a},b},c};{3{a},b,2{c,1’b0}};};{3{{a, 2’b10, b},2{c,1’b0}}}. 

3.  Consider the program segment in Figure 6.39; test the segment through a 

test-bench with values of p and q ranging from 0 to 10.  Explain why only

r3 is correct. Declare r1, r2, and r3 to be 5 bits wide: Repeat the test run and 

comment on the results.   

…..

reg[3:0] p, q, r1, r2, r3; 

….

….

….

assign r1 = p + q; 

assign r1 = p + q + 3’b0; 

assign r1 = p + q + 0; 

…..

….

Figure 6.39 Segment of a module for Exercise No. 3 above. 

4.  Realize the edge-triggered flip-flop of Figure 5.14 through continuous 

assignments for the gates.  Test it through a test bench. 

5.  Form the NOR gate counterpart of the edge-triggered flip-flop of Figure 

5.14; realize it through continuous assignments.  Test it through a test bench. 

6.  Use the set of 4 edge-triggered flip-flops of Figure 6.34 as the basis and 

form the following.  In each case, form a test-bench and test the design. 

A left-shift-type shift register. 

An 8-bit shift register of the left shift type. 

A 4-bit Johnson counter. 

Have a select line sl. If sl = 1, q[0], q[1], and q[2] are to be 

connected to the data inputs d[1], d[2], and d[3], respectively and the 

set of flip-flops should function as a right-shift-type shift register.  If 

sl = 0, q[3], q[2], and q[1] are to be connected to d[2], d[1], and 

d[0], respectively, to form a left-shift-type shift register.   
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7.  Use the edge-triggered flip-flop of Figure 6.32 as the basis and form (a) a 

ripple counter of the count up type, (b) a ripple counter of the count-down 

type, (c) an up down counter.  In the case of the up down counter, U_Db is 

the mode signal.  If it is high, the counter will count up.  If it is low, the 

counter will count down. 

8.  Maximum length sequences (Pseudo-random sequences)[Proakis]: Consider 

a set of r flip-flops connected in a shift register fashion.  D[k] and q[k]
represent the data input and output of the kth flip-flop, respectively.  The 

flip-flops are clocked at regular intervals by the clock signal clk. D[1], the 

data input to the first flip-flop, is formed as the XOR function of a select set 

of flip-flop outputs; if these are selected suitably, the binary vector 

representing the outputs of all the flip-flops together takes all possible states 

in a “pseudo-random” fashion and repeats the sequence cyclically. 

Specifically, N – the total number of states the sequence passes through – is 

given by 

N = 2r – 1 

  Table 6.12 gives the flip-flop numbers whose outputs are to be XOR’ed to 

form d[1] to yield the maximum length sequence. Design the Maximum 

length sequence generator for different values of r.  Give the clock input and 

obtain the output waveform. 

Table 6.12 Details for Exercise 8 above 

r 2 3 4 5 6 7 8 9 10 11 12 

N 3 7 15 31 63 127 255 511 1023 2047 4095 

FF numbers to 

be XOR’ed 
2,1 3,1 4,1 5,2 6,2 7,1 8,5,3,1 9,4 10,3 11,1 12,6,4,1 
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7.1 INTRODUCTION 

Design descriptions at data flow level and gate level are close to the circuit.  At 

every stage of the design description process, one can relate the modules and the 

instantiations with the corresponding logic or sequential blocks and their 

interconnections.  The approach is practical and effective as long as the gate count 

remains within a few hundred.  An increase in gate count may still be 

accommodated, if it is due to an increase in vector size –for example, when a 

system designed and tested at the 8-bit level is being scaled up to a 16- or 32-bit 

level.  But with many of the VLSI’s of today, one has to work at a different 

dimension – the circuit can have a million gates. The increase in vector size may 

still be accommodated at the data flow level (e.g., 32- or 64-bit systems), since it 

calls only for scaling of a smaller design.   But increase in terms of functional 

complexity makes the approach almost intractable for many designs.  

Behavioral level modeling constitutes design description at an abstract level.  

One can visualize the circuit in terms of its key modular functions and their 

behavior; it can be described at a functional level itself instead of getting bogged 

down with implementation details.  The description is carried out essentially with 

constructs similar to those in “C” language; the design itself is similar to 

programming in “C” [Gottfried].  For example, one can describe an FFT or a 

digital filter routine in terms of these constructs. The design can be simulated, 

debugged, and finalized.  This completes the system level structure for the design.   

Subsequently, one can expand the design by describing the modules in terms of 

components closer to the data flow and gate level models.  One can simulate and 

debug each such component module, check it for its functionality, integrate it with 

the main design and test conformity.  Constructs for such layered expansion of 

design are available in behavioral modeling.   Proceeding with the layered 

expansion of design, one can have the final design description at the RTL level 

itself.  However, we may add here that such a top-down activity is more in the 

realm of design. 

The constructs available in behavioral modeling aim at the system level 

description.  Here direct description of the design is not a primary consideration in 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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the Verilog standard.  Rather, flexibility and versatility in describing the design are 

in focus [IEEE].  One should be able to describe the design and simulate it for its 

functionality.  Hence the constructs aim essentially at these two aspects of the 

design.  Synthesis tools available from different vendors can synthesize most of 

the constructs at the data flow as well as the gate levels, but not all constructs or 

combinations possible at the behavioral level can be synthesized.  The extent to 

which the constructs at the behavioral level are accommodated in synthesis varies 

with vendors.  The synthesized circuit need not guarantee optimum or near- 

optimum realization either.  These limitations are in line with the basic purpose of 

behavioral level modeling mentioned above – that is, to complete an error or bug- 

free description and identify the functional modules required.  Their synthesis is 

more often done following a more detailed design description at the RTL level. 

7.2 OPERATIONS AND ASSIGNMENTS 

The design description at the behavioral level is done through a sequence of 

assignments.  These are called ‘procedural assignments’ – in contrast to the 

continuous assignments at the data flow level.  Though it appears similar to the 

assignments at the data flow level discussed in the last chapter, the two are 

different. The procedure assignment is characterized by the following:  

The assignment is done through the “=” symbol (or the “<=” symbol) as was 

the case with the continuous assignment earlier.   

An operation is carried out and the result assigned through the “=” operator to 

an operand specified on the left side of the “=” sign –  for example, 

N = ~N;

Here the content of reg N is complemented and assigned to the reg N itself.  

The assignment is essentially an updating activity. 

The operation on the right can involve operands and operators.  The operands 

can be of different types – logical variables, numbers – real or integer and so 

on.

All the operands are given in Tables 6.1 to 6.9.  The format of using them and 

the rules of precedence remain the same.   

The operands on the right side can be of the net or variable type.  They can be 

scalars or vectors.   

It is necessary to maintain consistency of the operands in the operation 

expression – e.g.,  

N = m / l;

Here m and l have to be same types of quantities – specifically a reg,

integer, time, real, realtime, or memory type of data – declared in 

advance. 

The operand to the left of the “=” operator has to be of the variable (e.g.,  

reg) type.  It has to be specifically declared accordingly.  It can be a scalar, a 

vector, a part vector, or a concatenated vector. 
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Procedural assignments are very much like sequential statements in C.  

Normally they are carried out one at a time sequentially.  As soon as a 

specified operation on the right is carried out, the result is assigned to the 

quantity on the left – for example  

N = m + l;

N1 = N * N;

The above form a set of two procedures placed within an always block.  

Generally they are carried out sequentially in the order specified; that is, first 

m and l are added and the result assigned to N.  Then the square of N is 

assigned to N1.  Subsequently the following assignment, if any, is carried out.  

However, there can be exceptions to this which will be discussed later.  The 

sequential nature of the assignments requires the operands on the left of the 

assignment to be of reg (variable) type.  The basic sequential nature of 

assignments here is in direct contrast to the concurrent nature of assignments 

at the data flow level. 

Procedural assignments within a process are of a variety of types.  These are 

discussed later. 

7.3 FUNCTIONAL BIFURCATION 

Design description at the behavioral level is done in terms of procedures of two 

types; one involves functional description and interlinks of functional units.  It is 

carried out through a series of blocks under an “always” banner – discussed 

later. The second concerns simulation – its starting point, steering the simulation 

flow, observing the process variables, and stopping of the simulation process;  all 

these can be carried out under the “always” banner, an “initial” banner, or 

their combinations.  However, each always and each initial block initiates 

an activity flow during simulation.  In general the activity with  all such blocks 

starts at the simulation time and flows concurrently during the whole simulation 

process. The concurrent flow of activity with all processes is characteristic of any 

behavioral level module. A procedure-block of either type – initial or 

always – can have a structure shown in Figure 7.1.  A block starts with the 

declaration of the type of block – that is, initial or always.  It may be 

followed by the definition of a triggering activity and then the body of the block.  

The body may be a single procedural assignment or a group of procedural 

assignments.  In the latter case the block appears within a “begin – end” or 

similar blocks.  The initial and always blocks have distinct characteristics.  

The two are discussed separately. 
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     type_of_block  @(sensitivity_list)

begin; name_of_block

     local variable declarations;

     procedural assignment

statements;

end

Type of block is specified here: only two types

are possible;- initial & always

The symbol signifies an event control (only for

always blocks)

Specifies the event which flags off the execution

of the block (only for always blocks)

The block can be assigned a name which can be

referred

All variables etc., local to the block are declared at

the beginning of the block

The procedural statements form the body of the block

All the activities within the block are enclosed within

the begin-end construct

Figure 7.1 Structure of a typical procedural block. 

7.3.1 begin – end Construct  

If a procedural block has only one assignment to be carried out, it can be specified 

as below:  

initial #2 a=0;
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The above statement assigns the value 0 to variable a at the simulation time of 

2 ns.  It is possibly the simplest initial block.  More often more than one 

procedural assignment is to be carried out in an initial block.  All such 

assignments are grouped together between “begin” and “end” declarations.  

Functionally, the construct is similar to the begin–end construct in Pascal or the 

{  } construct in C language.  The following are to be noted here: 

Every begin declaration must have its associated end declaration.  

begin – end constructs can be nested as many times as desired. 

For clarity in description and to avoid mistakes, nested begin – end blocks 

are separated suitably (see Figure 7.2). 

7.3.2 Name of the Block  

Any block can be assigned a name, but it is not mandatory. Only the blocks which 

are to be identified and referred by the simulator need be named.  Needless to say 

the names assigned to different blocks have to be different.  Names chosen should 

conform to the rules for the selection of names to variables [see Section 3.4].  

Assigning names to blocks serves different purposes:  

Registers declared within a block are local to it and are not available outside.  

However, during simulation they can be accessed for simulation, etc., by 

proper dereferencing [see Section 11.4].   

Named blocks can be disabled selectively when desired [see Section 8.6]. 

begin

...........

assignments

.........

begin

.............

assignments

..............

begin

..........
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............
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end
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Figure 7.2 Nesting of begin-end blocks. 
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7.3.3 Local Variables 

Variables used exclusively within a block can be declared within it.  Such a 

variable need not be declared outside, in the module encompassing the block.  

Such local declarations conserve memory and offer other benefits too.  Regs 

declared and used within a block are static by nature.  They retain their values at 

the time of leaving the block.  The values are modified only at the next entry to the 

block. 

7.4 INITIAL CONSTRUCT  

A set of procedural assignments within an initial construct are executed only 

once – and, that too, at the times specified for the respective assignments.  

Consider the initial process shown in Figure 7.3.  It is characterized by the 

following:  

In any assignment statement the left-hand side has to be a storage type of 

element (and not a net).  It can be a reg, integer, or real type of 

variable.  The right-hand side can be a storage type of variable (reg,

integer, or real type of variable) or a net. 

As already mentioned in Section 7.2, all the operations described in Tables 6.1 

to 6.9 for continuous assignment can be used for procedural assignments as 

well. The context decides whether the assignment is of a continuous type or 

procedural type.  In the latter case it is present within an always or an 

initial construct.   

All the procedural assignments appear within a begin–end block explained 

earlier.

All the procedural assignments are executed sequentially – in the same order 

as they appear in the design description.  The waveforms of a and b
conforming to the assignments in the block are shown in Figure 7.4. 

Initially (at time t = 0 ns), a and b are set equal to zero.   

reg a,b; 
initial

begin

  a = 1'b0; 

  b = 1'b0; 

  #2 a = 1'b1; 

  #3 b = 1'b1; 

  #1 a = 1'b0; 

  #100$stop;
end

Figure 7.3 A typical initial block. 
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a

b

t0 642 104 106

finish

variables

change

value

start

Figure 7.4 Nature of variation of a and b with time in the module of Figure 7.3. 

At time 2 ns a is made equal to 1.  After 3 more nanoseconds – that is, at the 

5th ns – b is made equal to 1. 

After one more ns – that is, at the 6th ns – a is made equal to 0.   

$stop is a system task.  100 ns later – that is, at the 106th ns – the simulation 

comes to an end (see Figure 7.4). 

Integer values have been used here to decide time delay values.  In a more 

general case the delay value can be a constant expression.  It is evaluated and 

decided dynamically as the simulation proceeds.   

The initial block above does three controlling activities during the 

simulation run. 

Initialize the selected set of reg's at the start. 

Change values of reg's at predetermined instances of time. These form the 

inputs to the module(s) under test and test it for a desired test sequence. 

Stop simulation at the specified time. 

Figure 7.4 depicts the events for the above case; t is the time axis here. 

Specific system tasks available in Verilog can be used to tabulate the values of 

selected variables.   Providing such output display in a desired or preferred format 

is the activity of the simulation run.  Two system tasks are useful here – 

$display & $monitor [see Section 3.15 and Chapter 11].  By way of 

illustration consider the simulation routine in Figure 7.5.  It incorporates the block 
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module nil; 

reg a, b; 
initial

begin

 a = 1'b0; 

 b = 1'b0; 

 $display ("display:  a = %b,  b = %b", a, b); 

    #2 a = 1'b1; 

    #3 b = 1'b1; 

    #1 a = 1'b0; 

    #100 $stop;
end

initial

$monitor("monitor:  a = %b,  b = %b", a, b); 
endmodule

Figure 7.5 A typical module with an initial block. 

Figure 7.3 and two system tasks.  The result of the simulation is shown in 

Figure 7.6.  The $display task is a one-time activity.  It is executed when 

encountered.  At that instant in simulation the values of a and b are zero and the 

same are displayed.  In contrast, $monitor is a repeated activity.  It need be 

present only once in a simulation routine – all the specified variables will be 

monitored.  If multiple $monitor tasks are present in the routine, only the last 

one will be active.  All others will be ignored.  In contrast, the $display task 

may appear any number of times in a module.  It is executed every time it is 

encountered.  

Simulators have the facility to observe the waveforms and changes in the 

magnitudes of different variables with simulation time.  The necessary facility is 

provided with the help of user-friendly menus and icons.  Waveforms of a and b
obtained with the test bench of Figure 7.5 are shown in Figure 7.7; they can be 

seen to be consistent with their values shown in Figure 7.6. 

output

# display : a = 0 ,b = 0 
# monitor : a = 0 ,b = 0 
# monitor : a = 1 ,b = 0 
# monitor : a = 1 ,b = 1 
# monitor : a = 0 ,b = 1 

Figure 7.6 Results of running the test bench in Figure 7.5. 
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Figure 7.7 Results of running the test bench in Figure 7.5 shown as waveforms. 

7.4.1 Multiple Initial Blocks 

A module can have as many initial blocks as desired.  All of them are 

activated at the start of simulation.  The time delays specified in one initial

block are exclusive of those in any other block.  Consider the module in Figure 7.8 

which is a modified version of that in Figure 7.5. It has four initial blocks.  

The $monitor task is declared separately (a healthy practice).  The simulated 

results are shown in Figure 7.9. The following observations are in order here:  

module nil1; 

initial  

reg a, b; 

begin 

 a = 1'b0; 

 b = 1'b0; 

 $display ($time,"display:  a = %b,  b = %b", a, b); 

   #2 a = 1'b1; 

   #3 b = 1'b1; 

   #1 a = 1'b0; 

end

initial  #100$stop; 

initial $monitor ($time, “monitor:  a = %b,  b = %b", a, b); 

initial 

 begin 

    #2 b = 1'b1; 

 end 

endmodule 

Figure 7.8   A typical module with multiple initial blocks. 
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output

# display : a = 0 , b = 0 
# monitor : a = 0 , b = 0 
# monitor : a = 0 , b = 1 
# monitor : a = 1 , b = 1 
# monitor : a = 1 , b = 0 
# monitor : a = 1 , b = 1 
# monitor : a = 0 , b = 1 

Figure 7.9 Results of running the test bench in Figure 7.8. 

All changes in a are brought about in one initial block.   

Changes to b are specified in two blocks, and both these blocks are executed 

concurrently. 

The progress of simulation time in different blocks is concurrent.  However, 

those in one block are sequential.  Changes in b are consistent with this.   

The $stop task is in an independent initial block.  Hence simulation is 

terminated at 100 ns.  Contrast this with the previous case (Figure 7.4), where 

sequential execution results in finish of simulation after 106 ns (even though 

in both the cases the statement “#100 $stop” remains the same). 

More than one activity may be scheduled for execution at one time instant.  

Those in one initial block are executed in the same order   as they appear 

– that is, sequentially.   

Thus, the two events 

a = 1'b0; 

b = 1'b0; 

are executed in the same sequential order  – that is, b is set to 0 after a is set to 

0, although both the activities are scheduled for execution at the same time. 

At 2 ns a changes to 1 and b changes to 0.  These two activities are to be done 

concurrently.  They are in different initial blocks.  The order of their 

execution depends upon the implementation.  This does not cause any 

anomaly in the present case.  But it can be a potential source of problem in 

more involved designs and their simulation. 

7.5 ALWAYS CONSTRUCT  

The always process signifies activities to be executed on an “always basis.”  Its 

essential characteristics are:  

Any behavioral level design description is done using an always block.   

The process has to be flagged off by an event or a change in a net or a reg. 

Otherwise it ends in a stalemate. 
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The process can have one assignment statement or multiple assignment 

statements.  In the latter case all the assignments are grouped together within a 

“begin – end” construct.   

Normally the statements are executed sequentially in the order they appear. 

7.5.1 Event Control 

The always block is executed repeatedly and endlessly.  It is necessary to specify 

a condition or a set of conditions, which will steer the system to the execution of 

the block.  Alternately such a flagging-off can be done by specifying an event 

preceded by the symbol “@”.  The event can be a change in the variable specified 

in either direction or a change in a specified direction.  For example, 

@(negedge clk) :  

executes the following block at the negative edge of the reg  (variable) clk.  

@(posedge clk) :  

executes the following block at the positive edge of the reg (variable) clk.  

@clk :  

executes the following block at both the edges of clk. 

The event can be a combination as well. 

@(prt or clr) :  

With the above event the block is executed whenever either of the variables 

prt or clr undergoes a change. 

@(posedge clk1 or negedge clk2) :

With the above event the block is executed in two cases – whenever the clock 

clk1 changes from 0 to 1 state or the clock clk2 changes from 1 to 0.  One can 

specify more elaborate events by OR'ing individual ones.  The following are 

to be noted: 

The events can be changes in reg, integer, real or a signal on a net.  

These should be declared beforehand. 

No algebra or logic operation is permitted as an event.  The OR'ing signifies 

“execute the block if any one of the events takes place.”   

The edge transition on each event is to be specified separately 

Note the difference between the following: 

(posedge clk1 or clk2): means “execute the block following if clk1 

goes to 1 state or clk2 changes state (whether 0 to 1 or 1 to 0).” 

(posedge clk1 or posedge clk2): means “execute the block 

following if clk1 goes to 1 state or clk2 goes to 1 state.” 
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The positive transition for a reg type single bit variable is a change from 0 to1.  

For a logic variable it is a transition from false to true.   

The “posedge” transition for a signal on a net can be of three different 

types: 

0 to1 

0 to x or z

x or z to 1 

The “negedge” transition for a signal on a net can be of three different 

types:- 

1 to 0 

1 to x or z

x or z to 0 

If the event specified is in terms of a multibit reg, only its least significant bit 

is considered for the transition.  Changes in the other bits are ignored. 

The event-based flagging-off of a block is applicable only to the always

block.   

According to the recent version of the LRM, the comma operator (,) plays the 

same role as the keyword or.  The two can be used interchangeably or in a 

mixed form.  Thus the following are identical: 

@ (a or b or c)

@ (a or b, c)

@ (a, b, c)

@ (a, b or c)

7.6 EXAMPLES 

A few simple design examples are considered here [Arnold, Bogart, Navabi]]; they 

are aimed at bringing out the potential flexibility at the behavioral level, despite 

the compactness in the module descriptions.  Some of these examples have already 

been discussed in earlier chapters at the data flow as well as the gate levels. 

Example 7.1 A Versatile Counter 

We consider a versatile up-down counter module with the following facilities:  

Clear input: If it goes high, the counter is cleared and reset to zero. 

U/D input: If it goes high, the counter counts up; if it goes down, the counter 

counts down. 

The counter counts at the negative edge of the clock. 

The counter counts up or down between 0 and N where N is any 4-bit hex 

number. 
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The above counter design specifications are implemented in stages.  The module in 

Figure 7.10 is an up counter which counts up repeatedly from 0 to a preset number 

N.  A test-bench for the counter is also shown in the figure.  N is an input to the 

module.  The count advances at every negative edge of the clock.  When the count 

reaches the value N, the count value a is reset to 0.   The simulation results are 

shown as waveforms in Figure 7.11 (only partially shown).  The periodic clock 

waveform (with a period of 4 ns), the incrementing of a at every negative edge of 

the clock and counting of a from 0 to the set value of N (=1011 in this specific 

module counterup(a,clk,N); 
input clk; 
input[3:0]N;
output[3:0]a;
reg[3:0]a;
initial a=4'b0000; 
always@(negedge clk) a=(a==N)?4'b0000:a+1'b1; 
endmodule

module tst_counterup;//TEST_BENCH 
reg clk; 
reg[3:0]N;
wire[3:0]a;
counterup c1(a,clk,N); 
initial
begin

clk = 0; 
N   = 4'b1011; 

end
always #2 clk=~clk; 
initial $monitor($time,"a=%b,clk=%b,N=%b",a,clk,N); 
endmodule

Figure 7.10   An up counter module. 

Figure 7.11 Partial results of running the test bench in Figure 7.10. 
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Figure 7.12 Synthesized circuit of the up counter in Figure 7.10. 

case) can be seen from the figure.  The synthesized circuit of the counter is shown 

in Figure 7.12.  It has a versatile counter block and a comparator.  The comparator 

compares the value of a with the set value of N and resets the counter when the 

two are equal – as specified in the design module. 

The module of Figure 7.13 is a down counter.  The count a decrements at the 

negative edge of the clock – clk.  The counter counts down from N to zero.  As 

soon as the count reaches the value 0, it is set back to N.  The simulation results 

are shown tabulated in Figure 7.14 and as waveforms in Figure 7.15; these can be 

seen to be consistent with the design module.  The synthesized circuit is shown in 

Figure 7.16.  The basic blocks – namely versatile counter, comparator and buffer 

for the clock – are the same as those for the up counter of Figure 7.12.  The 

comparator output loads the value of N back into the counter every time a reaches 

the set value of N (In contrast, in the case of the up counter above, the comparator 

resets the counter back to zero, whenever a reaches the set value of N.)

module counterdn(a,clk,N); 
input clk; 
input[3:0]N;
output[3:0]a;
reg[3:0]a;
initial a =4'b0000; 

continued
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continued 

always@(negedge clk) a=(a==4'b0000)?N:a-1'b1; 
endmodule

module tst_counterdn();//TEST_BENCH 
reg clk; 
reg[3:0]N;
wire[3:0]a;
counterdn cc(a,clk,N); 
initial
begin

N   = 4'b1010; 
Clk = 0; 

end
always #2 clk=~clk; 
initial $monitor($time,"a=%b,clk=%b,N=%b",a,clk,N); 
initial #55 $stop; 
endmodule

Figure 7.13 Design module of a down counter and a test bench for the same. 

Output

#  0a=1010,clk=0,N=1010 
#  2a=1010,clk=1,N=1010 
#  4a=1001,clk=0,N=1010 
#  6a=1001,clk=1,N=1010 
#  8a=1000,clk=0,N=1010 
# 10a=1000,clk=1,N=1010 
# 12a=0111,clk=0,N=1010 
# 14a=0111,clk=1,N=1010 
# 16a=0110,clk=0,N=1010 
# 18a=0110,clk=1,N=1010 
# 20a=0101,clk=0,N=1010 
# 22a=0101,clk=1,N=1010 
# 24a=0100,clk=0,N=1010 
# 26a=0100,clk=1,N=1010 
# 28a=0011,clk=0,N=1010 
# 30a=0011,clk=1,N=1010 
# 32a=0010,clk=0,N=1010 
# 34a=0010,clk=1,N=1010 
# 36a=0001,clk=0,N=1010 

continued
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continued

# 38a=0001,clk=1,N=1010 
# 40a=0000,clk=0,N=1010 
# 42a=0000,clk=1,N=1010 
# 44a=1010,clk=0,N=1010 
# 46a=1010,clk=1,N=1010 
# 48a=1001,clk=0,N=1010 
# 50a=1001,clk=1,N=1010 
# 52a=1000,clk=0,N=1010 
# 54a=1000,clk=1,N=1010 

Figure 7.14 Results of running the test bench in Figure 7.13.  

Figure 7.15 Results of running the test bench in Figure 7.13 – shown partly as waveform. 

Figure 7.16 Synthesized circuit of the down counter in Figure 7.13. 
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The up and down modes of counting have been combined in the up down 

counter of Figure 7.17.  A test bench is also shown in the figure.  The test results 

are tabulated in Figure 7.18 and also shown as waveforms in Figure 7.19. Figure 

7.20 shows the synthesized circuit; the counter block remains the same as in the 

last two cases; the mode control part of the circuit has been changed to meet the 

enhanced needs.    The counting can be seen to be changing from “up” to the 

“down” type, when the mode control input u_d changes.   

module updcounter(a,clk,N,u_d); 
input clk,u_d; 
input[3:0]N;
output[3:0]a;
reg[3:0]a;
initial a =4'b0000; 
always@(negedge clk) 
a=(u_d)?((a==N)?4'b0000:a+1'b1):((a==4'b0000)?N:a-
1'b1);
endmodule

module tst_updcounter();//TEST_BENCH 
reg clk,u_d; 
reg[3:0]N;
wire[3:0]a;
updcounter c2(a,clk,N,u_d); 
initial
begin

N   = 4'b0111; 
u_d = 1'b0; 
clk = 0; 

end
always #2 clk=~clk; 
always #34u_d=~u_d; 
initial $monitor 
($time,"clk=%b,N=%b,u_d=%b,a=%b",clk,N,u_d,a);
initial #64 $stop; 
endmodule

Figure 7.17 Design module of an up down counter and a test bench for the same. 
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#                 0clk=0,N=0111,u_d=0,a=0111 
#                 2clk=1,N=0111,u_d=0,a=0111 
#                 4clk=0,N=0111,u_d=0,a=0110 
#                 6clk=1,N=0111,u_d=0,a=0110 
#                 8clk=0,N=0111,u_d=0,a=0101 
#                10clk=1,N=0111,u_d=0,a=0101 
#                12clk=0,N=0111,u_d=0,a=0100 
#                14clk=1,N=0111,u_d=0,a=0100 
#                16clk=0,N=0111,u_d=0,a=0011 
#                18clk=1,N=0111,u_d=0,a=0011 
#                20clk=0,N=0111,u_d=0,a=0010 
#                22clk=1,N=0111,u_d=0,a=0010 
#                24clk=0,N=0111,u_d=0,a=0001 
#                26clk=1,N=0111,u_d=0,a=0001 
#                28clk=0,N=0111,u_d=0,a=0000 
#                30clk=1,N=0111,u_d=0,a=0000 
#                32clk=0,N=0111,u_d=0,a=0111 
#                34clk=1,N=0111,u_d=1,a=0111 
#                36clk=0,N=0111,u_d=1,a=0000 
#                38clk=1,N=0111,u_d=1,a=0000 
#                40clk=0,N=0111,u_d=1,a=0001 
#                42clk=1,N=0111,u_d=1,a=0001 
#                44clk=0,N=0111,u_d=1,a=0010 
#                46clk=1,N=0111,u_d=1,a=0010 
#                48clk=0,N=0111,u_d=1,a=0011 
#                50clk=1,N=0111,u_d=1,a=0011 
#                52clk=0,N=0111,u_d=1,a=0100 
#                54clk=1,N=0111,u_d=1,a=0100 
#                56clk=0,N=0111,u_d=1,a=0101 
#                58clk=1,N=0111,u_d=1,a=0101 
#                60clk=0,N=0111,u_d=1,a=0110 
#                62clk=1,N=0111,u_d=1,a=0110 

Figure 7.18 Results of running the test bench in Figure 7.17. 

Figure 7.19 Results of running the test bench in Figure 7.17 – shown partly as waveforms. 
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Figure 7.20 Synthesized circuit of the up down counter in Figure 7.17. 

The counter as described in Figure 7.21 has an additional “clear” input.  With 

this enhancement, it has become versatile (compare with 74196 or 74197).  Note 

that despite the versatility offered by the design, the full counter has been 

described in the single line of executable statement reproduced below:  

always@(negedge clk or posedge clr)

a=(clr)?4'h0:((u_d)?((a==N)?4'b0000:a+1'b1):((a==4'b0000)?N:a-1'b1)); 

module clrupdcou(a,clr,clk,N,u_d); 
input clr,clk,u_d; 
input[3:0]N;
output[3:0]a;
reg[3:0]a;
initial a =4'b0000; 
always@(negedge clk or posedge clr)
 a=(clr)?4'h0:((u_d)?((a==N)?4'b0000:a+1'b1):((a==
4'b0000)?N:a-1'b1));
 /*signals having priority over clk have to be included 
in the sensitivity list*/ 
endmodule

continued
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continued

module tst_clrupdcou;//TEST_BENCH 
reg clr,clk,u_d; 
reg[3:0]N;
wire [3:0]a; 
clrupdcou cc11(a,clr,clk,N,u_d); 
initial
begin

N   = 4'b0111; 
Clr = 1'b1;u_d=1'b1; 
Clk = 0; 

end
always
begin

#2 clk = ~clk; 
   clr = 1'b0; 

end
always  #34 u_d<=~u_d; 
initial $monitor($time
,"clk=%b,clr=%b,u_d=%b,N=%b,a=%b",clk,clr,u_d,N,a);
initial #60 $stop; 
endmodule

Figure 7.21 Design module of an up down counter with clear facility and a test bench for 

the same. 

The test bench for the counter is also shown in the figure.  The test results are 

reproduced in Figure 7.22 as waveforms; the synthesized circuit is shown in 

Figure 7.23. 

Figure 7.22 Results of running the test bench in Figure 7.21 – shown partly as waveforms. 
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Figure 7.23 Synthesized circuit of the up counter in Figure 7.21. 

Example 7.2 Shift Register 

Figure 7.24 shows an 8-bit shift register module along with a test bench for the 

same.  The register shifts by one bit to the right if r_l = 1 and to the left by one bit 

otherwise (i.e., if r_l = 0).  The whole shift register is described in a single line of 

procedural assignment, namely 

always@(negedge clk) a=(r_l)?(a>>1'b1):(a<<1'b1); 

The simulation results are given in tabular form in Figure 7.25 and as 

waveforms in Figure 7.26. 

module shifrlter(a,clk,r_l); 
input clk,r_l; 
output [7:0]a; 
reg[7:0]a;
initial a= 8'h01; 
always@(negedge clk) 

continued 
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continued 

begin
a=(r_l)?(a>>1'b1):(a<<1'b1);

end
endmodule

module tst_shifrlter;//test-bench 
reg clk,r_l; 
wire [7:0]a; 
shifrlter shrr(a,clk,r_l); 
initial
begin

clk =1'b1; 
r_l = 0; 

end
always #2 clk =~clk; 
initial #16 r_l =~r_l; 
initial
$monitor($time,"clk=%b,r_l = %b,a =%b ",clk,r_l,a); 
initial #30 $stop; 
endmodule

Figure 7.24 Design module of a shift register with facility for right or left shift and a test 

bench for the same. 

Output

#  0 clk=1, r_l = 0 , a = 00000001 
#  2 clk=0, r_l = 0 , a = 00000010 
#  4 clk=1, r_l = 0 , a = 00000010 
#  6 clk=0, r_l = 0 , a = 00000100 
#  8 clk=1, r_l = 0 , a = 00000100 
# 10 clk=0, r_l = 0 , a = 00001000 
# 12 clk=1, r_l = 0 , a = 00001000 
# 14 clk=0, r_l = 0 , a = 00010000 
# 16 clk=1, r_l = 1 , a = 00010000 
# 18 clk=0, r_l = 1 , a = 00001000 
# 20 clk=1, r_l = 1 , a = 00001000 
# 22 clk=0, r_l = 1 , a = 00000100 
# 24 clk=1, r_l = 1 , a = 00000100 
# 26 clk=0, r_l = 1 , a = 00000010 
# 28 clk=1, r_l = 1 , a = 00000010 

Figure 7.25 Results of running the test bench in Figure 7.24. 
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Figure 7.26 Results of running the test bench in Figure 7.24 – shown partly as waveforms. 

Example 7.3    Clocked Flip-Flop   

The module for a clocked flip-flop is shown in Figure 7.27.  A test bench for the 

flip-flop is also included in the figure.  The test results are shown in Figure 7.28 

and Figure 7.29 in tabular form and as waveforms, respectively.  The input can be 

seen to be sensed, latched, and presented as output at every negative edge of the 

clock.  Otherwise the output remains frozen at the last latched value.  The 

synthesized circuit of the flip-flop is shown in Figure 7.30. 

module dff(do,di,clk); 
output do; 
input di,clk; 
reg do; 
initial
do=1'b0;
always@(negedge clk) do=di; 
endmodule

module tst_dffbeh();//test-bench 
reg di,clk; 
wire do; 
dff d1(do,di,clk); 
initial
begin

clk=0;
di=1'b0;

end
always #3clk=~clk; 
always #5 di=~di; 
initial
$monitor($time,"clk=%b,di=%b,do=%b",clk,di,do);
initial #35 $stop; 
endmodule

Figure 7.27 Design module of a D-flip-flop and a test bench for the same. 
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Output

#                0clk=0,di=0,do=0 
#                3clk=1,di=0,do=0 
#                5clk=1,di=1,do=0 
#                6clk=0,di=1,do=1 
#                9clk=1,di=1,do=1 
#               10clk=1,di=0,do=1 
#               12clk=0,di=0,do=0 
#               15clk=1,di=1,do=0 
#               18clk=0,di=1,do=1 
#               20clk=0,di=0,do=1 
#               21clk=1,di=0,do=1 
#               24clk=0,di=0,do=0 
#               25clk=0,di=1,do=0 
#               27clk=1,di=1,do=0 
#               30clk=0,di=0,do=0 
#               33clk=1,di=0,do=0 

Figure 7.28 Results of running the test bench in Figure 7.27. 

Figure 7.29 Results of running the test bench in Figure 7.27– shown partly as waveforms. 

Figure 7.30 Synthesized circuit of the D-flip-flop in Figure 7.27. 



EXAMPLES 183 

Example 7.4 D Latch 

Figure 7.31shows the module of a D latch along with its test bench.  Whenever en
is high, the output follows the input; the latch is transparent.  When en goes low 

the output remains frozen at the last value.  The simulation results are shown as 

waveforms in Figure 7.32. 

module dffen(do,di,en); // d-latch 
output do; 
input di,en; 
reg do; 
initial
do=1'b0;
always@(di or en) 
if(en)
do=di;
endmodule

module tst_dffbehen;//test-bench 
reg di,en; 
wire do; 
dffen d1(do,di,en); 
initial
begin

en=0;
di=1'b0;

end
always#7 en =~en; 
always#4 di=~di; 
initial
$monitor($time,"en=%b,di=%b,do=%b",en,di,do);
initial #50 $stop; 
endmodule

Figure 7.31 Design module of a D-latch and a test bench for the same. 

Figure 7.32 Results of running the test bench in Figure 7.31– shown partly as waveforms. 
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Example 7.5 Clock Waveform 

Consider the design description line 

always #3 clk = ~clk;

The sequence of operation taking place within this line segment is as follows: 

When the system comes across the statement, it schedules an activity 3 ns 

later.

At the end of the 3 ns, the value of clk is sensed; the sensed value is 

complemented and then stored temporarily. 

Then the stored value is assigned to the clock, which completes the activity of 

the always block; once again, execution resumes at step 1.   

The clock waveform is shown in Figure 7.33. 

7.7 ASSIGNMENTS WITH DELAYS 

Specific delays can be associated with procedural assignments.  The delay refers to 

the specific activity it qualifies.  A variety of possibilities of specifying delays to 

assignments exist.  A clear understanding makes room for flexibility through their 

judicious use; the absence of a clear understanding can be disastrous!  The variety 

and flexibility are brought here through simple illustrations.  

Consider the assignment 

always #3 b = a; 

simulator encounters this at zero time and posts the entire activity to be done 3 ns 

later.  Further, by virtue of the always nature of the activity, the assignment is 

scheduled to be repeated every 3 ns, irrespective of whether a changes in the 

meantime. Values of a at the 3rd, 6th, 9th, etc., ns are sampled and assigned to b.

Figure 7.35 shows the waveforms of a and b with the above assignment and 

execution of the module in Figure 7.34.  Changes in the values of a lasting less 

than 3 ns may be ignored.  Specifically, in this case, a took the value of 1 during 

the interval 4th ns to the 5th ns which is not passed on to b.

t

clk

Figure 7.33 The clock waveform with an always block of one statement to generate a 

clock.  
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module del1;

reg a,b;

always  #3 b=a;
Initial

begin

a = 1’b1;  
  b = 1’b0;

      #1 a = 1’b0;
  #3 a = 1’b1;  

     #1 a = 1’b0;     
  #2 a = 1’b1;  

       #3 a = 1’b0; 
end

initial $monitor($time, " a = %d,  b = %d", a, b);

initial #20 $finish;
endmodule

Figure 7.34 A module to illustrate delayed assignment. 

The module of figure 7.36 is a modified version of that in Figure 7.34.  The 

activities within the always block (of a single statement) are carried out whenever 

the value of a changes.  The sole activity is that of assigning the value of a to b
with a delay of 2 ns – that is, 2 ns after a changes sign.  The waveform assigned to

a as well as the resulting waveform of b is shown in Figure 7.37.  If a were to 

remain invariant, b will have no assignment here.  In contrast in the previous case 

(Figure 7.35), b is given an assignment (=a) at every 3rd ns. 

0 84
t

a

b

a is sensed and its value assigned to b at these instants

Figure 7.35 Waveforms of a and b with the simulation of the module in Figure 7.34. 
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module del2;

reg a,b;

always @(a) #2 b=a;

Initial

begin

a = 1’b1;  
  b = 1’b0;

     #1 a = 1’b0; 
    #3 a = 1’b1;  
    #1 a = 1’b0;     
              #2 a = 1’b1;  

      #3 a = 1’b0; 
end

initial $monitor($time, " a = %d,  b = %d", a, b);

initial #20 $finish;
endmodule

Figure 7.36 A modified version of the module in Figure 7.34. 

t

a

b

0 84 12

Figure 7.37 Waveforms of a and b obtained with the simulation of the module in 

Figure 7.36. 

Consider a more detailed example – that of Figure 7.38. The always block 

has two assignments.  These are carried out sequentially and repeatedly.  At the 

3rd ns the assignment b = a is executed.  The assignment that follows is executed 

1 ns later – that is, at the 4th ns.  Again 3 ns later – that is, at the 7th ns – the first 

assignment is executed, and so on.  The results obtained are shown in Table 7.1.  

Only the values of a, b, and c at the first few time step values are shown in the 

table. 
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module del3;

integer a,b, c;
always

begin

  # 3 b = a;
    # 1 c = a; 
 end

initial
begin

a = 0;
  b = 0;  
  c = 0; 
         #2 a = 1;   

#2 a = 2;  
#2 a = 3;  
#2 a = 4;   
#2 a = 5;   
#2 a = 6; 

end

initial $monitor($time, " a = %d,  b = %d", a, b);

initial #20 $finish;
endmodule

Figure 7. 38 A module where b and c are versions of a with different delays. 

7.7.1 Intra-assignment Delays 

An assignment delay of the type discussed above, delays execution of the whole 

assignment by the specified time duration. In contrast, the “intra-assignment” 

delay carries out the assignment in two parts.  An assignment with an intra-

assignment has the form 

A = # dl expression; 

Here the expression is scheduled to be evaluated as soon as it is encountered.  

However, the result of the evaluation is assigned to the right-hand side quantity a

Table 7.1 Values of variables in the module of Figure 7.38 

t 0 1 2 3 4 5 6 7 8 9 10 11 12 

a 0 0 1 1 2 2 3 3 4 4 5 5 6 

b 0 0 0 1 1 1 1 3 3 3 3 5 5 

c 0 0 0 0 2 2 2 2 4 4 4 4 6 
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after a delay specified by dl. dl can be an integer or a constant expression [see 

Section 7.7.2].   Consider the example in Figure 7.39. b is assigned the value of a
with an intra-assignment delay of 2 ns.  The value of a is sensed at zero ns and 

assigned to b after 2 ns.  Until that time, b retains its old value.  Again at the 2nd 

ns, a is sensed and b is assigned the new value of a at the 4th ns, and so on. Partial 

results of simulation are shown in Table 7.2. The following points are to be noted 

here: 

The value of a is sensed at time instants 2, 4, 6, etc.

Values at other instants of time are not sensed. 

All assignments are carried out with a delay of 2 ns. 

Changes in a which do not last for 2 ns may be ignored. 

Module del4; 

Integer a, b; 

Always b = #2 a; 

Initial 

begin 

 a = 0;   b = 0;   #2    a =1;   #2    a =2;   #2 a =3; 

   #2 a =4;   #2 a = 5;   #2     a =6;  #2    a =7;   #2 a =8; 

end

initial $monitor($time, "  a = %d,  b = %d", a, b); 

initial #20 $finish; 

endmodule 

Figure 7.39 A module to illustrate delayed assignment. 

Delays tied to different segments of an assignment have different effects.  The 

subtle differences are brought out through two more examples crafted specifically 

for the purpose.  Consider the module in Figure 7.40.  The integer a is assigned the 

value 0 at 0th ns and the value 1 at 1 ns.  Subsequently, it is incremented every 2 

ns until the end of simulation.  Values are assigned to b, c, and d – declared as 

integers.  These assignments are done with specific delays.  The results of the 

simulation are given in Table 7.3.  Changes to b, c, and d and the reasons for the 

same in each case are explained in the remarks columns of the table.  A few 

observations are in order here: 

Table 7.2 Partial output with the simulation of the module in Figure 7.39 

t a b Remarks

0 0 0 

2 1 x

4 2 1 

6 3 2 

8 4 2 

There are two assignment statements to a at 2 ns intervals – namely 

the one in the always block and the other one in the initial block; 

both are concurrent.  The simulator decides the precedence.  The 

output here shows that the assignment in the always block has the 

precedence. 
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Module del_dem4; 

Integer a,b,c,d,n; 

Always   

begin 

   #2  b = a;  

  c = #1 a; 

  d = a; 

end

initial  

begin 

a = 0; b = 0; c = 0; d = 0;  

          #1 a = 1;  #2 a = 2;  #2 a = 3;  #2 a = 4;   

          #2 a = 5;  #2 a = 6;  #2 a = 7;  #2 a = 8; #2 a = 9; #2 a = 10; 

end

initial $monitor ($time, "  a = %d,  b = %d,  c = %d,  d = %d", a, b, c, d); 

endmodule 

Figure 7.40 A module to illustrate combinations of delays. 

The always block extends for three time steps.  Thereafter it is repeated 

cyclically.

The assignment statements in the always block are sequential assignment 

statements.   

Precedence of assignments slotted for a specific time instant, when they are in 

one block, is clear.  However, when they are in different blocks, the compiler 

decides the precedence.  But this does not cause any discrepancy in the 

present case. 

Table 7.3 Output obtained with the simulation of the module in Figure 7.40 (shown 

rearranged)

Time a b c d Remarks

0 0 0 0 0 … 

1 1 0 0 0 … 

2 1 1 0 0 
The value of a at 2nd ns is assigned to b; the same is 

stored for assignment to c, 1 ns later 

3 2 1 1 2 
c is assigned the value of a 1 ns earlier; the present value 

of a is assigned to d.

5 3 3 1 2 

All assignments within the always block are done; the 

assignment sequential is repeated; no change at the 4th 

ns; at the 5th ns b is assigned the value of a and so on. 

6 3 3 3 3 … 

7 4 3 3 3 … 
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Consider the module of Figure 7.41, which is a slight variant of the above in 

Figure 7.40.  The assignments to b and c in the module of Figure 7.40 have been 

interchanged to form the module here.  The simulated results are shown in 

Table 7.4.  The following additional observations are in order here: 

The always block is repeated after every 3 ns – the total assignment time for 

the sequential. 

At t = 0, a is sampled and the sampled value is stored for assignment to c at  

t = 1; the sampling precedes the assignment a = 0 at zero time.  Hence the 

value of c at zero time is not decided. 

The increment to a and (the samples of a for subsequent assignment to c) at 

0th, 3rd, 6th etc., ns values are concurrent.  The compiler decides their 

precedence.  With the specific compiler used, the value of a is sampled and 

only then a is incremented.  Hence the assignment to c at the 4th ns is the 

value of a sampled at the 3rd ns before its increment – that is, 1.  Similar is 

the case with the subsequent assignment changes to c.    

At the 3rd, 6th, 9th, etc., ns values, a is sampled and assigned to b as well as 

d.  Hence changes in b and d are identical.  Contrast this with the previous 

example where the assignment sequence 

c = #1 a; 
d = a; 

results in different sampling instances and assignments to c and d.

module del_dem5; 

integer a,b,c,d; 

always

begin 

               c = #1 a; 

 #2  b = a;  

  d = a; 

end

initial  

begin 

a = 0; b = 0; c = 0; d = 0; 

  #1 a = 1; #2 a = 2; #2 a = 3; #2 a = 4; #2 a = 5; #2 a = 6; #2 a = 7; #2 a = 8; 

  #2 a = 9; #2 a = 10; 

end

initial $monitor ($time, "  a = %d,  b = %d,  c = %d,  d = %d", a, b, c, d); 

endmodule 

Figure 7.41 Another module to illustrate combinations of delays. 
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Table 7.4 Simulated results of the module of Figure 7.41  

t 0 1 3 4 5 6 7 9 10 11

a 0 1 2 2 3 3 4 5 5 6 

b 0 0 1 1 1 3 3 5 5 5 

c 0 X X 1 1 1 3 3 5 5 

d 0 0 1 1 1 3 3 5 5 5 
          

t 12 13 15 16 17 18 19 21 22

a 6 7 8 8 9 9 10 10 10  

b 6 6 8 8 8 9 9 10 10  

c 5 6 6 8 8 8 9 9 10  

d 6 6 8 8 8 9 9 10 10  

7.7.2 Delay Assignments 

In all the illustrations above, delay was specified as a number.  It may be a variable 

or a constant expression.  In case it is an expression, it is evaluated and execution 

delayed by the number of time steps.  If the number evaluates to a negative 

quantity, the same is interpreted as a 2’s complement value.  In the statement  

always #b a = a + 1;

a and b are variables.  The execution incrementing a is scheduled at b ns.  If b
changes, the execution time also changes accordingly.  As another example 

consider the procedural assignment 

always #(b + c)  a = a + 1;

Here a, b, and c are variables.  The algebraic addition of variables b and c is to be 

done.  The scheduler schedules the incrementing of a and reassigning the 

incremented values back to a with a time delay of (b + c) ns.  As an additional 

example consider the assignment below with an intra-assignment delay. 

always  #(a + b) a = #(b + c) a +1; 

Here the simulator evaluates (a + b) during simulation.  After a lapse of (a + b)

ns, execution of the statement is taken up; (a + 1) is evaluated and assigned as the 

new value of a – but the assignment is delayed by (b + c) ns.   

7.7.3  Zero Delay 

A delay of 0 ns does not really cause any delay.  However, it ensures that the 

assignment following is executed last in the concerned time slot.  Often it is used 

to avoid indecision in the precedence of execution of assignments. 
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7.8 wait CONSTRUCT 

The wait construct makes the simulator wait for the specified expression to be 

true before proceeding with the following assignment or group of assignments.  Its 

syntax has the form 

wait (alpha) assignment1;

alpha can be a variable, the value on a net, or an expression involving them.  If 

alpha is an expression, it is evaluated; if true, assignment1 is carried out. One 

can also have a group of assignments within a block in place of assignment1.  
The activity is level-sensitive in nature, in contrast to the edge-sensitive nature of 

event specified through @.  Specifically the procedural assignment  

@clk a = b;

assigns the value of b to a when clk changes; if the value of b changes when clk is 

steady, the value of a remains unaltered.  In contrast, with 

wait(clk) #2 a = b;

the simulator waits for the clock to be high and then assigns b to a with a delay of 

2 ns.  The assignment will be refreshed as long as the clk remains high.  The use of 

wait construct is brought out here through two examples.   

Example 7.6 

Figure 7.42 shows one version of the up-down counter module along with a test 

bench.  It is a modification of the up down counter of Figure 7.10 and uses a wait 

construct.  It has an enable input En.  The counter is active and counts only when 

En = 1, that is, from the 5th ns to the 25th ns.  The simulation results reproduced in 

Figure 7.43 confirm this. 

module ctr_wt(a,clk,N,En); 

input clk,En; 

input[3:0]N; 

output[3:0]a; 

reg[3:0]a; 

initial a=4'b1111; 

always

begin 

 wait(En) 

 @(negedge clk) 

 a=(a==N)?4'b0000:a+1'b1; 

end

endmodule 

continued
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continued

//TEST_BENCH 

module tst_ctr_wt; 

reg clk,En; 

reg[3:0]N; 

wire[3:0]a; 

ctr_wt c1(a,clk,N,En); 

initial 

begin 

clk=0;N=4'b1111;En=1'b0;#5 En=1'b1;#20 En=1'b0; 

end

always

#2 clk=~clk; 

initial #35 $stop; 

initial $monitor($time,"clk=%h,En=%b,N=%b,a=%b",clk,En,N,a,); 

endmodule 

Figure 7.42 A counter module to illustrate the use of wait construct.  The test bench is 

also shown in the figure. 

 //output 

#                     0clk=0,En=0,N=1111,a=1111 

#                     2clk=1,En=0,N=1111,a=1111 

#                     4clk=0,En=0,N=1111,a=1111 

#                     5clk=0,En=1,N=1111,a=1111 

#                     6clk=1,En=1,N=1111,a=1111 

#                     8clk=0,En=1,N=1111,a=0000 

#                   10clk=1,En=1,N=1111,a=0000 

#                   12clk=0,En=1,N=1111,a=0001 

#                   14clk=1,En=1,N=1111,a=0001 

#                   16clk=0,En=1,N=1111,a=0010 

#                   18clk=1,En=1,N=1111,a=0010 

#                   20clk=0,En=1,N=1111,a=0011 

#                   22clk=1,En=1,N=1111,a=0011 

#                   24clk=0,En=1,N=1111,a=0100 

#                   25clk=0,En=0,N=1111,a=0100 

#                   26clk=1,En=0,N=1111,a=0100 

#                   28clk=0,En=0,N=1111,a=0101 

#                   30clk=1,En=0,N=1111,a=0101 

#                   32clk=0,En=0,N=1111,a=0101 

#                   34clk=1,En=0,N=1111,a=0101 

Figure 7.43 Simulation results of the module in Figure 7.42.p 



194 BEHAVIORAL MODELING — 1

Example 7.7 

Figure 7.44 shows a rudimentary and crude version of a serial receiver module and 

its test bench.  Simulation results are shown in Figure 7.45.  The module receives 

serial data on the di line.  The data are synchronized to the clock clk.  The 

sequence of operations carried out by the module is as follows: 

Wait for recv input to go high. 

Once recv=1, latch the next 4 successive bits of incoming data into respective 

bit positions of the do register.   

 //Example for 'wait' 

module sr_rec(do, ack, clk, di, recv); 

output [3:0] do; output ack; 

input clk, recv, di; 

reg [3:0] do; reg ack; 

initial ack = 1'b0; 

always  begin 

  wait(recv) 

  @(negedge clk) do[0]=di; 

  @(negedge clk) do[1]=di; 

  @(negedge clk) do[2]=di; 

  @(negedge clk) do[3]=di; 

  @(negedge clk) ack = 1'b1; 

 end 

endmodule 

module tst_sr_rec; 

reg clk, di, recv; 

wire [3:0]do; wire ack; 

initial begin 

 clk=1'b0; recv=1'b0; di=1'b0;  #5 recv=1'b1; 

 end 

always #2clk = ~clk; 

initial begin 

 #7di=1'b1; #4di=1'b0; #8di=1'b1; #8di=1'b0; 

 end 

initial $monitor($time, "clk=%d, recv=%b, di=%b, do=%b, ack=%b", 

 clk, recv, di, do, ack); 

sr_rec rrcc(do, ack, clk, di, recv); 

initial #25 $stop; 

endmodule 

Figure 7.44 A rudimentary serial transmitter module. 
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//output 

#                     0clk=0, recv=0, di=0, do=xxxx, ack=0 

#                     2clk=1, recv=0, di=0, do=xxxx, ack=0 

#                     4clk=0, recv=0, di=0, do=xxxx, ack=0 

#                     5clk=0, recv=1, di=0, do=xxxx, ack=0 

#                     6clk=1, recv=1, di=0, do=xxxx, ack=0 

#                     7clk=1, recv=1, di=1, do=xxxx, ack=0 

#                     8clk=0, recv=1, di=1, do=xxx1, ack=0 

#                   10clk=1, recv=1, di=1, do=xxx1, ack=0 

#                   11clk=1, recv=1, di=0, do=xxx1, ack=0 

#                   12clk=0, recv=1, di=0, do=xx01, ack=0 

#                   14clk=1, recv=1, di=0, do=xx01, ack=0 

#                   16clk=0, recv=1, di=0, do=x001, ack=0 

#                   18clk=1, recv=1, di=0, do=x001, ack=0 

#                   19clk=1, recv=1, di=1, do=x001, ack=0 

#                   20clk=0, recv=1, di=1, do=1001, ack=0 

#                   22clk=1, recv=1, di=1, do=1001, ack=0 

#                   24clk=0, recv=1, di=1, do=1001, ack=1 

Figure 7.45 Simulation results of the module in Figure 7.44. 

Once the above nibble receipt is accomplished, set acknowledgment flag high.   

If recv continues to remain high, the subsequent serial bits will be loaded into 

the do nibble, again and again in groups of 4 bits.   

If at any time recv goes low, the receipt and the serial to parallel conversion 

will come to a stop. 

7.9 MULTIPLE ALWAYS BLOCKS 

All the activities within an always block are scheduled for sequential execution.  

The activities can be of a combinational nature, a clocked sequential nature, or a 

combination of these two. (A design description involving such combinations is 

conventionally called the ‘Register Transfer Level’ description.)  Basically, any 

circuit block whose end-to-end operation can be described as a continuous 

sequence can be described within an always block.  A typical circuit block 

conforming to the above description is shown in Figure 7.46.  It has three activities 

termed A1, A2, and A3.  These three are to be done in that order.  Activity A1 

accepts x as input, and it generates output B and p. p and y form inputs to activity 

A2.  Similarly activity A2 generates outputs c and q after activity A1 is completed. 
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Figure 7.46 A module where execution proceeds through three blocks sequentially. 

q and z form outputs of A2.  After activity A2 is completed, activity A3 is 

scheduled.  It accepts z and q as inputs and generates D as output.  Here if A1, A2, 

and A3 are logical activities, the whole block can be synthesized as a 

combinational logic unit.  If one or more of these are clocked events, execution 

may be sequential.  The design examples considered so far are broadly of this 

category.

In a comparatively bigger IC, the activity flow can be more complex.  One 

with an additional level of complexity is shown in Figure 7.47.  The activities are 

marked A1-A2-A3 and B1-B2-B3, These are the two streams in the circuit.  It is 

possible that the intermediate results of one may affect the flow of the other.  

Functioning of two timers  – dependent on each other –is a typical example.  A 

processor servicing serial reception and serial transmission simultaneously is 

another example.  In all these cases, each sequential activity is described in a 

separate always block.   

A design of the type in Figure 7.47 can be described with two always blocks.  

In some others, three or more always blocks may be called for.  Examples of such 

designs are considered later.   
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Figure 7.47 A module where execution proceeds concurrently through two groups of 

blocks.
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Activities within one always block are normally sequential – as with the 

examples considered so far.  If necessary, they can be made selectively concurrent. 

(see Section 7.11).  But when designs are spread out in two or more always blocks 

(with design structures as in Figure 7.47), they are necessarily concurrent. Thus the 

blocks P and Q in Figure 7.47 are concurrent while the “sub-blocks” within each 

(namely A1, A2, and A3 within block P and B1, B2, and B3 within block Q) are 

sequential.  In short, with behavioral level descriptions, one can organize the 

activities to be in concurrent form, in sequential form, or in combinations.  In 

contrast, all design descriptions involving constructs at gate and data flow levels 

are necessarily concurrent.   

7.10 DESIGNS AT BEHAVIORAL LEVEL 

All simple algebraic as well as logical expressions can be described at the 

behavioral level.  One can also mix them with blocks at the gate level as well as 

the data flow level to form composite as well as more involved modules.  The 

simple A-O-I gate is taken as an example below to bring out the possibilities. 

Example 7.8 

Figure 7.48 shows a module of an AOI gate and its test bench; Figure 7.49 shows 

the simulation results, and the synthesized circuit is shown in Figure 7.50. The A-

O-I gate module has two vector inputs – a and b – both being two bits wide. The 

bits of the two vectors are ANDed; the ANDed bits are subsequently used as the 

inputs to the following NOR gate to form the output.  Note the following:  

All the input bits are to figure in the sensitivity list specified to trigger 

execution.  If any one is left out, a change in that will not be reflected in the 

output immediately.   

The block becomes active, if any bit in the sensitivity list changes value.   

The assignments specified are executed out sequentially – but all at the same 

time step.  Some elaboration is in order here.  All the four assignments within 

the aoibeh module of Figure 7.48 are sequentially executed but at the same 

time step.  The values of a and b displayed at the end of the respective time 

steps in Figure 7.49 confirm this.  Concurrency of the assignments here also 

leads to a combinational circuit in synthesis. 

All quantities that appear to the left of the assignment statements have to be of 

the variable type; they have been declared as reg here. 
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module aoibeh(o,a,b); 
output o; 
input[1:0]a,b;
reg o,a1,b1,o1; 
always@(a[1] or a[0]or b[1]or b[0]) 
begin
 a1=&a; 
 b1=&b; 
 o1=a1||b1; 
 o=~o1; 
end
endmodule

module tst_aoibeh; 
reg [1:0]a,b; /*  specicific values will be assigned to 
a1,a2,b1, and b2 and these connected
to input ports of the gate insatntiations; 
hence these variables are declared as reg */ 
wire o; 
initial
begin

a[0]=1'b0;a[1] =1'b0;b[0]=1'b0;b[1] =1'b0; 
#3 a[0] =1'b1; 
#3 a[1] =1'b1; 
#3 b[0] =1'b1; 
#3 b[1] =1'b0; 
#3 a[0] =1'b1; 
#3 a[1] =1'b0; 
#3 b[0] =1'b0; 

end
initial #100 $stop;//the simulation ends after running 
for 100 tu's. 
initial $monitor($time, "o =%b,a[0]=%b,a[1]=%b, b[0] = 
%b ,b[1] = %b ",o,a[0],a[1],b[0],b[1]); 
aoibeh gg(o,a,b); 
endmodule

Figure 7.48 An A-O-I gate module at the behavioral level and its test bench. 

# 0  o = 1,a[0]=0,a[1]=0,b[0]=0,b[1]=0 
# 3  o = 1,a[0]=1,a[1]=0,b[0]=0,b[1]=0 
# 6  o = 0,a[0]=1,a[1]=1,b[0]=0,b[1]=0 
# 9  o = 0,a[0]=1,a[1]=1,b[0]=1,b[1]=0 
#18  o = 1,a[0]=1,a[1]=0,b[0]=1,b[1]=0 
#21  o = 1,a[0]=1,a[1]=0,b[0]=0,b[1]=0 

Figure 7.49 Simulation results of the module in Figure 7.48. 
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Figure 7.50 Synthesized circuit of the A-O-I module in Figure 7.48. 

Example 7.9 

Figure 7.51 shows an alternate but more compact description of the A-O-I gate 

again at the behavioral level.    Since the full assignment is realized in one line, no 

begin-end type construct is called for.  Simulation results are identical to those 

of Figure 7.49 and are not repeated. 

Example 7.10  

The AOI gate in Figure 7.51 has again been described as a module in Figure 7.52.  

Here the AND functions are realized as and-gate primitives.  The NOR function 

alone is realized in behavioral mode.  The sensitivity list includes the two outputs 

of the AND gates.  The gate primitives describe a set of two continuous AND 

functions.  In contrast, the NOR function is activated only when a1 or b1 changes.  

Though conceptually different, the latter also results in outputs identical to the 

continuous assignments.   The test bench in Figure 7.51 can be used here by 

changing the instantiation statements suitably. 

module aoibeh1(o,a,b); 
output o; 
input[1:0]a,b;
reg o; 
always@(a[1]ora[0]or b[1]orb[0]) o=~((&a)||(&b)); 
endmodule

Figure 7.51 Another realization of the AOI gate at the behavioral level. 
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module aoibeh2(o,a,b); 
output o; 
input[1:0]a,b;
wire a1,b1; 
reg o; 
and g1(a1,a[1],a[0]),g2(b1,b[1],b[0]); 
always@(a1 or b1) 
o=~(a1||b1);
endmodule

Figure 7.52 AOI gate realization by the combined use of primitive instantiations and 

procedural assignments. 

Example 7.11  

Figure 7.53 shows another realization of the AOI gate.  Here the AND functions 

are realized as continuous assignments.  The NOR function is realized as an 

always block. 

module aoibeh3(o,a,b); 
output o; 
input[1:0]a,b;
wire a1,b1; 
reg o; 
assign a1=&a,b1=&b; 
always@(a1 or b1)o=~(a1||b1); 
endmodule

Figure 7.53 The AOI gate realized by combining continuous assignments and procedural 

assignments. 

Figure 7.54 shows another realization of the AOI gate where a gate primitive, a 

continuous assignment (at data flow level), and an always block are present.   

The examples above bring out the variety of possibilities in design 

description.  Designers’ expertise as well as constraints and facilities in the 

simulation and synthesis tools often limit the choice.  More often the same design 

may have to be described differently as one proceeds from a system level design 

and simulation to circuit synthesis [Navabi, Palnitkar].   
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module aoibeh4(o,a,b); 
output o; 
input[1:0]a,b;
wire a1,b1; 
reg o; 
assign a1=&a; 
and g2(b1,b[1],b[0]); 
always@(a1 or b1) 
o=~(a1||b1);
endmodule

Figure 7.54 The AOI gate realized by combining primitive instantiation, continuous 

assignment, and procedural assignment. 

7.11 BLOCKING AND NONBLOCKING ASSIGNMENTS 

All assignment within an initial or an always block considered so far are done 

through an equality (“=”) operator. These are executed sequentially – that is, one 

statement is executed, and only then the following one is executed.  Such 

assignments block the execution of the following lot of assignments at any time 

step.  Hence they are called “blocking assignments”.  Further, when such a 

blocking assignment has time delays associated with it, the delay is applicable to 

the following assignment or activity also.  Different examples of groups of 

blocking assignments have been considered in the preceding sections.   

One comes across situations where assignments are to be effected 

concurrently (as with the continuous assignments considered in the preceding 

chapter).  A facility called the “nonblocking assignment” is available for such 

situations.  The symbol “<=” signifies a non-blocking assignment.  The same 

symbol signifies the “less than or equal to” operator in the context of an operation.  

The context decides the role of the symbol.  The main characteristic of a non-

blocking assignment is that its execution is concurrent with that of the following 

assignment or activity.  A discussion of the features of nonblocking assignments 

and their comparison with blocking assignments are in order here. 

Consider the set of nonblocking assignments in Figure 7.55.  All three 

assignments are executed concurrently – that is, A, B, and C are assigned the 

values 00 01 and 11concurrently and not sequentially. Figure 7.56 shows the same 

non-blocking assignments with time delays.  All three assignments are taken up for 

execution concurrently.  If the block is entered at time step t1, 

 A is assigned the value 00 at time step t1. 

 B is assigned the value 01 with a time delay of 2 ns – that is, at time t1 + 2 ns. 

 C is assigned the value 11 with a delay of 1 ns – that is, at time t1 + 1 ns (and 

not at time 3 ns as happens with blocking assignments). 
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A <= 2'b00; 
B <= 2'b01;  
C <= 2'b11; 

A <= 2'b00; 
#2 B <= 2'b01; 
#1 C <= 2'b11;

Figure 7.55 A group of nonblocking 

assignments. 

Figure 7.56 A group of nonblocking 

assignments with time delays. 

Nonblocking assignments are essentially two-step affairs.  For all the non-blocking 

assignments in a block, the right-hand sides are evaluated first.  Subsequently the 

specified assignments are scheduled.  Consider the block of assignments in Figure 

7.57.  First A is assigned the binary value 00, and then B is assigned the value 01.  

These two assignments are sequential.  The subsequent two assignments are 

concurrent.  The assignment 

A <= b 

“reads” the value of B, stores it separately, and then assigns it to A.  The new value 

of a is 01.  The assignment  

B <= A ; 

takes the value of A– i.e., 00 – stores it separately and assigns it to B.  Thus the 

new value of B is 00.  After the block is executed, A has the value 01 while B has 

the value 00.  Contrast this with the set of blocking assignments in Figure 7.58.  

All four assignments here are sequential in nature.  The third one, namely  

A = B; 

assigns the value 01 to a; subsequently the fourth and following assignment  

B = A ; 

assigns the present value of A (i.e., 01)   to b; The value of b remains at 01 itself.  

Consider the block of Figure 7.59.  It has three nonblocking assignments.  The 

sequence of execution of the three assignments is as follows:  

1. At the positive edge of the clock, values of A, B, and C are read and stored 

and B &(~c) are computed.   

A = 2'b00; 
B = 2'b01; 
A <= B; 
B <= A; 

A = 2'b00; 
B = 2'b01; 
A = B; 
B = A; 

Figure 7.57 Swapping variable values 

through nonblocking assignments. 

Figure 7.58 Another group of blocking 

assignments. 
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initial

begin

A=  1'b0; 
B=  1'b1; 
C = 1'b0; 

end

always @(posedge clk) 
begin

A <= B;
@(negedge clk) C <= B &(~c); 

#2 B< = C; 
end

Figure 7.59 Segment of a module involving blocking and nonblocking assignments. 

2. A is assigned the stored value of B (=1); this and the activity in (1) above are 

carried out concurrently in the same time step. 

3. At the next negative clk edge, C is assigned the value of B & (~C) evaluated 

and stored earlier (=1) – mentioned in (1) above. 

4. Two nanoseconds after the positive edge of clk (i.e., after the entry to the 

block), B is assigned the value of C stored earlier (=0). 

In the segment in Figure 7.60, two always blocks do assignments concurrently; 

both of these are of the blocking variety.  The values assigned to A and B are 

decided by the structure of the simulator.  The block has the potential to create a 

race condition.  In contrast, in the segment of Figure 7.61, the two assignments are 

of the nonblocking type; A is assigned the previous value of B, while B is assigned 

the previous value of A.  The race condition is avoided here. 

Observations :  

In a design whenever a number of concurrent data transfers take place after a 

common event, nonblocking assignments are preferred.  The common event 

forms the sensitivity list followed by the nonblocking assignments. 

always @(posedge clk)

A = B;

always @(posedge clk)

B = A; 

always @(posedge clk)

A <= B;
always @(posedge clk) 

B <= A; 

Figure 7.60 A set of assignments with a 

potential race condition. 

Figure 7.61 The assignments of Figure 

7.60 modified to avoid race condition. 
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All nonblocking assignments in a block are executed concurrently.  However, 

the scheduling is done in the same order as the specified statements.  If two 

assignments are done to a reg in a time step, the latter prevails.  For example 

with the following sequence of statements in a block,  

A <= 1; 
A <= 0; 

A is assigned the value of zero.  

Although blocking and nonblocking assignment can be mixed in a block, 

many synthesis tools may not support such combinations. 

7.11.1 Nonblocking Assignments and Delays 

Delays – of the assignment type and the intra-assignment type – can be associated 

with nonblocking assignments also.  The principle of their operation is similar to 

that with blocking assignments.  As explained earlier, the delay values can be 

constant expressions.  Blocking and nonblocking assignments, together with 

assignment and intra-assignment delays, open up a variety of possibilities.  They 

can be used individually and in combinations to suit different situations.  The 

subtle differences in their use are brought out here through a series of simple 

illustrations. Some further clarifications regarding assignments and time delays are 

in order here. 

Example 7.12  

Consider the module of Figure 7.62, which has a delay of 3 ns for the blocking 

assignment to c1.  If a or b changes, the always block is activated.  Three ns later, 

(a&b) is evaluated and assigned to c1.  The event “(a or b)” will be checked for 

change or trigger again.  If a or b changes, all the activities are frozen for 3 ns. If a
or b changes in the interim period, the block is not activated.  Hence the module 

does not depict the desired output. 

module nil1 (c1, a, b);

output c1;

input a, b;

reg c1;

always @(a or b)

 #3  c1 = a&b;
endmodule

module nil2 (c2, a, b);

output c2;

input a, b;

reg c2;

always @(a or b)

c2 = #3  a&b;
endmodule

Figure 7.62 A time delay in an evaluation.  Figure 7.63 An intra-assignment delay. 
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module nil3 (c3, a, b); 

output c3;

input a, b;

reg c3;

always @(a or b)

 #3  c3 <= a&b;
endmodule

module nil4 (c4, a, b); 

output c4;

input a, b;

reg c4;

always @(a or b)

c4 <= #3 a&b;
endmodule

Figure 7.64 A time delay in a non-

blocking assignment. 

Figure 7.65 An intra-assignment delay in 

a nonblocking assignment. 

Consider the module of Figure 7.63 with an intra-assignment delay of 3 ns to 

the assignment to c2.  The always block is activated if a or b changes.  (a & b) is 

evaluated immediately but assigned to c2 only after 3 ns.  However, the behavior 

is not acceptable on two counts:  

The output assignment has to wait for 3 ns after the change.  

Only after the delayed assignment to c2, the event (a or b) checked for 

change.  If a or b changes in the interim period, the block is not activated. 

The module in Figure 7.64 has a blocking delay of 3 ns; but the assignment is 

of the nonblocking type.  The block is entered if the value of a or b changes but 

the evaluation of a&b and the assignment to c3 take place with a time delay of 3 

ns.  If a or b changes in the interim period, the block is not activated.  The module 

in Figure 7.65 possibly represents the best alternative with time delay.  The always 

block is activated if a or b changes.  (a&b) is evaluated immediately and 

scheduled for assignment to c4 with a delay of 3 ns.  Without waiting for the  

assignment to take effect (i.e., at the same time step as the entry to the block), 

control is returned to the event control operator.  Further changes to a or b – if any 

– are again taken cognizance of.  The assignment is essentially a delay operation. 

Figure 7.66 shows the waveforms for c1, c2, c3, and c4 in the modules of 

Figures 7.62 to 7.65 for representative waveforms of a and b.  One can clearly see 

that c4 has a representation of a & b, which is the most acceptable of the lot.   

7.12 THE case STATEMENT 

The case statement is an elegant and simple construct for multiple branching in a 

module.  The keywords case, endcase, and default are associated with the 

case construct.  Format of the case construct is shown in Figure 7.67.  First 

expression is evaluated.  If the evaluated value matches ref1, statement1 is 

executed; and the simulator exits the block; else expression is compared with 
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Figure 7.66 Waveforms of c1, c2, c3, and c4 of the modules in Figures 7.62 to 7.65 for 

representative values of a and b.

ref2 and in case of a match, statement2 is executed, and so on.  If none of the 

ref1, ref2, etc., matches the value of expression, the default statement is 

executed. 

Case (expression)

Ref1 : statement1; 
Ref2 : statement2; 
Ref3 : statement3;

.. . 

. . . 

default: statementd;
endcase

Figure 7.67 Structure of the case statement. 
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Observations:  

A statement or a group of statements is executed if and only if there is an 

exact – bit by bit – match between the evaluated expression and the specified

ref1, ref2, etc.   

For any of the matches, one can have a block of statements defined for 

execution.  The block should appear within the begin-end construct. 

There can be only one default statement or default block.  It can appear 

anywhere in the case statement. 

One can have multiple signal combination values specified for the same 

statement for execution.  Commas separate all of them. 

Example 7.13 

Consider the module in Figure 7.68 for a 2-to-4 decoder.  The test bench is also 

included in the figure.  One of the 4 output bits goes high, depending on the binary 

value of {i1, i2}.  If i1, i2, or both take x or z values, there is no match and the 

default block is executed.  The simulation results are shown in Figure 7.69. 

module dec2_4beh(o,i); 
output[3:0]o;
input[1:0]i;
reg[3:0]o;
always@(i)
begin
case(i)
 2'b00:o=4'h0; 
 2'b01:o=4'h1; 
 2'b10:o=4'h2; 
 2'b11:o=4'h4; 
default:
begin
 $display ("error"); 
 o=4'h0; 
end
endcase
end
endmodule

continued
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continued

//test bench 
module tst_dec2_4beh(); 
wire [3:0]o; 
reg[1:0] i; 
//reg en; 
dec2_4beh dec(o,i); 
initial
begin
     i =2'b00; 
 #2i =2'b01; 
 #2i =2'b10; 
 #2i =2'b11; 
 #2i =2'b11; 
 #2i =2'b0x; 
end
initial $monitor ($time  ,  " output o =  %b  , input i
= %b " , o ,i); 
endmodule

Figure 7.68 A 2-to-4 decoder using the case statement. 

Example 7.14 

Consider the module in Figure 7.70, which is a modified version of the decoder 

module in Figure 7.68.  A test bench is also included in the figure. Here if either 

bit is at x state, all the output bits are in the x state.  Default corresponds to one or 

both of the input bits being z or both the bits being at x state.  In such a case an 

error message is also output by the simulator.  The simulation results are shown in 

Figure 7.71. 

output

# 0 output o =  0000  , input i  = 00
# 2 output o =  0001  , input i  = 01
# 4 output o =  0010  , input i  = 10
# 6 output o =  0100  , input i  = 11
# error 
# 10 output o =  0000  , input i = 0x

Figure 7.69 Simulation results of the decoder module in Figure 7.69. 
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module dec2_4beh1(o,i); 
output[3:0]o;
input[1:0]i;
reg[3:0]o;
always@(i)
begin
case(i)
 2'b00:o[0]=1'b1; 
 2'b01:o[1]=1'b1; 
 2'b10:o[2]=1'b1; 
 2'b11:o[3]=1'b1; 
 2'b0x,2'b1x,2'bx0,2'bx1:o=4'b0000; 
default:  begin 
   $display ("error"); 
   o=4'h0; 
  end 
endcase
end
endmodule

module tst_dec2_4beh1;//test bench
wire [3:0]o; 
reg[1:0] i; 
dec2_4beh1 dec(o,i); 
initial
begin
    i =2'b00; 
 #2i =2'b01; 
 #2i =2'b10; 
 #2i =2'b11; 
 #2i =2'b11; 
 #2i =2'b1x; 
 #2i =2'b0x; 
 #2i =2'bx0; 
 #2i =2'bx1; 
 #2i =2'bxx; 
 #2i =2'b0z; 
end
initial $monitor ($time  ,  " output o =  %b  , input i
= %b " , o ,i); 
endmodule

Figure 7.70 A 2-to-4 decoder where all the outputs are forced to zero, if any of the inputs is 

at x state. 
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# 0 output o =  xxx1  , input i  = 00
# 2 output o =  xx11  , input i  = 01
# 4 output o =  x111  , input i  = 10
# 6 output o =  1111  , input i  = 11
# 10 output o = 0000  , input i  = 1x
# 12 output o = 0000  , input i  = 0x
# 14 output o = 0000  , input i  = x0
# 16 output o = 0000  , input i  = x1
# error 
# 18 output o = 0000  , input i  = xx
# error 
# 20 output o = 0000  , input i  = 0z 

Figure 7.71 Results of the simulation run with the test bench in Figure 7.70. 

Example 7.15 ALU 

Figure 7.72 shows an ALU module along with a test bench.  The ALU function 

has been realized through a block with a case construct.  The ALU realization 

can be seen to be compact and elegant compared to the versions considered thus 

far.  Additional functions can be added to the ALU by a direct expansion of the 

case block.  The ALU size too can be altered to suit requirements. Results of the 

simulation run with the test bench in Figure 7.72 are shown in Figure 7.73 and 

Figure 7.74.  The synthesized circuit is shown in Figure 7.75.  

module  alubeh(c,s,a,b,f); 
output[3:0]c;
output s; 
input [3:0]a,b; 
input[1:0]f;
reg s; 
reg[3:0]c;
always@(a or b or f)  
begin

case(f)
 2'b00: c=a+b;   
   2'b01: c=a-b; 
 2'b10: c=a&b; 
 2'b11: c=a|b; 

endcase

continued 
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continued

end
endmodule

module tst_alubeh;//test-bench
reg[3:0]a,b;
reg[1:0]f;
wire[3:0]c;
wire s; 
alubeh aa(c,s,a,b,f); 
initial
begin
f=2'b00;a=2'b00;b=2'b00;
end
always
begin

#2 f=2'b00;a=4'b0011;b=4'b0000; 
#2 f=2'b01;a=4'b0001;b=4'b0011; 
#2 f=2'b10;a=4'b1100;b=4'b1101; 
#2 f=2'b11;a=4'b1100;b=4'b1101; 

end
initial $monitor($time,"f=%b,a=%b,b=%b,c=%b",f,a,b,c); 
initial #10 $stop; 
endmodule

Figure 7.72 A simple ALU module along with its test bench. 

0f=00,a=0000,b=0000,c=0000
#2f=00,a=0011,b=0000,c=0011
#4f=01,a=0001,b=0011,c=1110
#6f=10,a=1100,b=1101,c=1100
#8f=11,a=1100,b=1101,c=1101
#10f=00,a=0011,b=0000,c=0011

Figure 7.73 Results of the simulation run with the test bench in Figure 7.72. 
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Figure 7.74 Results of the simulation run with the test bench in Figure 7.73 – another view. 

7.12.1 Casex and Casez

The case statement executes a multiway branching where every bit of the case

expression contributes to the branching decision.  The statement has two variants 

where some of the bits of the case expression can be selectively treated as don’t 

cares – that is, ignored.  Casez allows z to be treated as a don’t care.  “?” 

character also can be used in place of z. casex treats x or z as a don’t care.  An 

illustrative example using casez construct follows. 

Figure 7.75 Synthesized circuit of the ALU module in Figure 7.73. 
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Example 7.16 

A module for a priority encoder and a test bench for it are shown in Figure 7.76.  

The encoder gives a 2-bit output.  The binary output represents the position of the 

first one bit in the 4-bit input combination.  The simulation results are shown in 

Figure 7.77. The synthesized circuit is shown in Figure 7.78.   

module pri_enc(a,b); 
output[1:0]a;
input[3:0]b;
reg[1:0]a;
always@(b)
casez(b)
4'bzzz1:a=2'b00;
4'bzz10:a=2'b01;
4'bz100:a=2'b10;
4'b1000:a=2'b11;
endcase
endmodule

module pri_enc_tst;//test-bench 
reg [3:0]b; 
wire[1:0]a;
pri_enc pp(a,b); 
initial b=4'bzzz0; 
always
begin

#2 b=4'bzzz1; 
#2 b=4'bzzz1; 
#2 b=4'bzz10; 
#2 b=4'bz100; 
#2 b=4'b1000; 

end
initial $monitor($time, "input b =%b,a  =%b ",b,a); 
initial #40 $stop; 
endmodule

Figure 7.76 A design module for a 2-bit priority encoder using the casez statement; a test 

bench is also shown. 
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    0input  b  =   zzz0   ,a  =  01
    2input  b  =   zzz1   ,a  =  00
    6input  b  =   zz10   ,a  =  01
    8input  b  =   z100   ,a  =  10
   10input  b  =   1000   ,a  =  11
   12input  b  =   zzz1   ,a  =  00
   16input  b  =   zz10   ,a  =  01
   18input  b  =   z100   ,a  =  10
   20input  b  =   1000   ,a  =  11
   22input  b  =   zzz1   ,a  =  00
   26input  b  =   zz10   ,a  =  01
   28input  b  =   z100   ,a  =  10
   30input  b  =   1000   ,a  =  11
   32input  b  =   zzz1   ,a  =  00
   36input  b  =   zz10   ,a  =  01
   38input  b  =   z100   ,a  =  10

Figure 7.77 Results of simulating the test bench in Figure 7.76. 

Figure 7.78 Synthesized circuit of the priority encoder in Figure 7.76. 

7.13 SIMULATION FLOW 

Different constructs for design description and simulation have been dealt with so 

far.  These can be at different levels of abstraction – gate, data flow, or behavioral 

level.  The constructs to be discussed in the following chapters add to the variety 

and flexibility.  Such elements in different combinations make up the design and 

simulation modules in Verilog.  Further, as an HDL, Verilog has to be an 

inherently parallel processing language.  The fact that all the elements of a digital 

circuit (or any electronic circuit for that matter) function and interact continuously 

conforming to their interconnections demands parallel processing.  In Verilog the 

parallel processing is structured through the following [IEEE]:  



SIMULATION FLOW 215 

Simulation time: Simulation is carried out in simulation time.  The simulator 

functions with simulation time advancing in (equal) discrete steps. 

At every simulation step a number of active events are sequentially carried 

out.   

The simulator maintains an event queue – called the “Stratified Event Queue” 

– with an active segment at its top.  The top most event in the active segment 

of the queue is taken up for execution next.   

The active event can be of an update type or evaluation type.   

The evaluation event can be for evaluation of variables, values on nets, 

expressions, etc.

Refreshing the queue and rearranging it constitutes the update event. 

Any updating can call for a subsequent evaluation and vice versa.

Only after all the active events in a time step are executed, the simulation 

advances to the next time step. 

Completion of the sequence of operations above at any time step signifies the 

parallel nature of the HDL.   

A number of active events can be present for execution at any simulation time 

step; all may vie for “attention.”  Amongst these, an event specified at #0 time is 

scheduled for execution at the end – that is, before simulation advances to the next 

time step.  The order, in which the other events are executed, is essentially 

simulator-dependent.   

7.13.1 Stratified Event Queue 

The events being carried out at any instant give rise to other events – inherent in 

the execution process.  All such events can be grouped into the following 5 types:  

Active events – explained above. 

Inactive events – The inactive events are the events lined up for execution 

immediately after the execution of the active events.  Events specified with 

zero delay are all inactive events. 

Blocking Assignment Events – Operations and processes carried out at 

previous time steps with results to be updated at the current time step are of 

this category. 

Monitor Events – The Monitor events at the current time step – $monitor

and $strobe – are to be processed after the processing of the active events, 

inactive events, and nonblocking assignment events. 

Future events – Events scheduled to occur at some future simulation time are 

the future events. 

The simulation process conforming to the stratified event queue is shown in 

flowchart form in Figure 7.79. 
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Figure 7.79 Flowchart for the simulation flow. 
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7.14 EXERCISES  

Prepare design modules for the following operations [Sedra, Tocci, Wakerly].  In 

each case prepare a suitable test bench and test the design module. 

1.   Add two BCD nibbles. 

2.   Add two pairs of BCD nibbles – 2 decimal numbers each of two digits. 

3.   Interrupt Service Routine (ISR):  An ISR receives an Interrupt Request 

(IRQ).  The PC content is saved on a stack – 4 bytes deep.  Then a specific 

byte 5a5ah is loaded into the PC.  The ISR sets an INTA flag high and 

returns.  Use the ‘wait’ construct and design the module. 

4.  Form an ALU for two input bytes.  All the operations are to be carried out 

using the “case” construct.  Use the algebraic and logic instructions 

available with 8085, 6805, 6502 z80, and the PIC series of processors as the 

basis [in all 5 ALUs].  Designate the two input vectors as ba and bb.  Output 

is on ba.  All the flags are to be on bb. 

5.   Memory Block: Have a 1 kb size memory with a 10-bit Memory Address 

Register.  Use clock beta for memory read and memory write.  Use Wr and 

Rd as two separate control input lines.   The operations to be realized are: 

Wr=1: Write into the location specified by the MAR.   

RD=1: Read from location specified by MAR. 

Wr=0 & Rd=0: Condition to be satisfied to write into the MAR. 

Data input and data output are to be through an 8-bit-wide bus “ba.” 

6.  Change the always block in Example 7.6 (Figure 7.42) to the following: 

always

begin 

 @(negedge clk) 

 a=(En)?((a==N)?4’b0000:a+1’b1):a); 

end

How does the block here differ from that in the Example? Prepare a test 

bench, simulate, and explain. 

7.  A priority encoder is used to prioritize service to interrupt requests in a 

microcontroller.  The priority encoder in Example 7.15 can be expanded to 

suit the desired role here.  It receives a byte (IRQ byte) and outputs a byte 

(vector address).  The vector address has to be 32 times the serial number of 

the leading one bit in the IRQ byte. Prepare the necessary design module 

and synthesize it. 
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8.1 INTRODUCTION 

Comparatively simple and direct behavioral level constructs were discussed in the 

last chapter.  They are essentially centered on the algebraic or logic operators.  

Different combinational and sequential circuits can be realized using them.  The 

case construct and its variants enhance the possibilities of design description 

considerably.  A few constructs are available for looping and branching. Their 

usage can make the design description compact and elegant.  Further such 

constructs enhance the modeling capabilities substantially [Navabi].  These 

constructs mostly follow their counterparts in C language [Gottfried].  These 

constructs and certain other facilities that add to the flexibility of test benches are 

discussed here.  Their use is illustrated through appropriate examples. 

8.2 if AND if-else CONSTRUCTS 

The if construct checks a specific condition and decides execution based on the 

result.  Figure 8.1 shows the structure of a segment of a module with an if

statement. After execution of assignment1, the condition specified is checked.  If 

it is satisfied, assignment2 is executed; if not, it is skipped.  In either case the 

execution continues through assignment3, assignment4, etc.  Execution of 

assignment2 alone is dependent on the condition.  The rest of the sequence 

remains.  The flowchart equivalent of the execution is shown in Figure 8.2.  If the 

. . .  
assignment1; 
if (condition) assignment2; 
assignment3; 
assignment4; 
. . . 

Figure 8.1 Use of if construct.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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condition

assignment2

assignment4

assignment3

assignment1

yes no

Figure 8.2 Flowchart of the if loop. 

number of assignments associated with the if condition is more than 1, the whole 

set of them can be grouped within a begin-end block. Figure 8.3 shows a 

segment of a design using the if construct.  It is a ring counter, which shifts one 

bit right at every clock pulse.  The shift operation shifts the a byte right by one bit 

and fills the vacated bit – a[7] – with a zero.  It is set to 1 if the bit shifted out last 

– a[0] – was a 1.  The same is carried out through the if statement. The if-

else construct is more common and turns out to be more useful than the if

construct taken alone.  Figure 8.4 shows the use in a typical design description. 

Figure 8.5 shows the same in flowchart form.  The design description has two 

branches; the alternative taken is decided by the condition:

Reg[7:0] a;

Reg c;

always@(posedge clk)
begin

c = a[0];
a = a>>1'b1; // Since the vacated bit of a is filled with a zero, it need be  

if( c ) a[7] = c;// set only if a[0] =1 
end

Figure 8.3 A Ring counter description using the if construct. 



if AND if-else CONSTRUCTS 221 

. . . 

assignment1; 

if(condition)

begin // Alternative 1 

  assignment2;  

  assignment3; 
 end

else

begin //alternative 2 

  assignment4;  

  assignment5; 
end

assignment6; 

. . . 

. . . 

Figure 8.4 Use of the if–else construct. 

condition

assignment2 assignment4

assignment3

assignment1

yes no

assignment6

assignment5

Figure 8.5 Flowchart of execution of the if-else loop. 
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After the execution of assignment1, if the condition is satisfied, alternative1 

is followed and assignment2 and assignment3 are executed.  

Assignment4 and assignment 5 are skipped and execution proceeds with 

assignment6. 

If the condition is not satisfied, assignment2 and assignment3 are skipped 

and assignment4 and assignment5 are executed.  Then execution continues 

with assignment6.

Example 8.1 

Figure 8.6 shows a 2 to 4 demux module.  The whole demux module is realized 

through the if-else-if sequence of constructs.  The selected channel is 

connected to the output, and all other channels are tri-stated.  A test bench for the 

demux module is also shown in the figure.  Partial results of simulation are shown 

in Figure 8.7; the synthesized circuit is shown in Figure 8.8.   

In fact the use of case statement to realize mux, demux, direct encoders, and 

decoders makes the design description simple and direct – in contrast to the use of 

if-else-if construct.  But the if-else-if construct is more general.  It can 

accommodate different types of conditions at each branching.  In contrast the 

case construct does a direct multiway branching.  

module demux(a,b,s); 
output [3:0]a; 
input b; 
input[1:0]s;
reg[3:0]a;
always@(b or s) 
begin
 if(s==2'b00) 
 begin 
  a[2'b0]=b; 
  a[3:1]=3'bZZZ; 
 end 
 else if(s==2'b01) 
 begin 
  a[2'd1]=b; 
  {a[3],a[2],a[0]}=3'bZZZ; 
 end 
else if(s==2'b10) 
 begin 
  a[2'd2]=b; 
  {a[3],a[1],a[0]}=3'bZZZ; 

continued 
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continued

 end 
else
 begin 
  a[2'd3]=b; 
  a[2:0]=3'bZZZ; 
 end 
end
endmodule

//tst_bench
module tst_demux(); 
reg b; 
reg[1:0]s;
wire[3:0]a;
demux d1(a,b,s); 
initial
b=1'b0;
always
begin
 #2 s=2'b00;b=1'b1; 
 #2 s=2'b00;b=1'b0; 
 #2 s=2'b01;b=1'b0; 
 #2 s=2'b10;b=1'b1; 
 #2 s=2'b11;b=1'b0; 
end
initial
$monitor("t=%0d, s=%b,b=%b,output =%b",$time,s,b,a); 
initial #30 $stop; 
endmodule

Figure 8.6 A 2-to-4 demux module using the if-else-if construct:  A testbench is also shown 

in the figure. 

# t=0, s=xx,b=0,output a=0zzz 
# t=2, s=00,b=1,output a=zzz1 
# t=4, s=00,b=0,output a=zzz0 
# t=6, s=01,b=0,output a=zz0z 
# t=8, s=10,b=1,output a=z1zz 
# t=10, s=11,b=0,output a=0zzz 

Figure 8.7 Partial results of the simulation of the testbench in Figure 8.6. 
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Figure 8.8 The synthesized circuit of the 2-to-4 demux module in Figure 8.6. 

Example 8.2 

Figure 8.9 shows the design description of a mod-n up-counter module along with 

a test-bench for it.  At every clock pulse the counter advances by one bit.  As soon 

as the count reaches the binary value n, the counter is reset to zero.  The initial 

value of n is specified within the module itself.  It is changed at a later stage.  The 

simulation results are shown in Figure 8.10 (only partial results are shown). 

Observations:  

The $write is a system task; it is similar to the $display task except in 

one respect: When $write is executed, the simulator does not advance to 

the new line after the specified display [see Chapter 11 for details]. 

The value of n can be changed only from within the module. If necessary, the 

constraint can be removed by making n as an input to the module.  

The character set ‘%0d’ within the $write statement ensures that the 

concerned quantity is displayed in decimal form with the minimum number of 

digits necessary for it.  It makes the display elegant.  

For convenience the value of time is displayed in decimal form.  Other 

quantities are in hex form. 

 The counter can be easily modified to function as a down counter, a clock 

divider, or an up / down counter.  It can be made more versatile with 

additional control inputs for Preset, Reset, and Enable.  
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//counter using if else if; 
module countif(a,clk); 
output[7:0]a;
input clk; 
reg[7:0]a,n;
initial
begin
 n=8'h0a; 
 a=8'b00000000; 
  #45 n=8'h23; 
end
always@(posedge clk) 
begin
 $write ("time=%0d ",$time); 
 if(a==n) 
 a=8'h00; 
 else a=a+1'b1; 
end
endmodule

module tst_countif();//test-bench 
reg clk; 
wire[7:0]a;
countif c1(a,clk); 
initial clk =1'b0; 
always
#2clk=~clk;
initial
$monitor("  n=%h, a=%h",c1.n,a); 
initial #200 $stop; 
endmodule

Figure 8.9 A counter realized using the if-else construct. 

8.3 assign–deassign CONSTRUCT 

A behavior block is activated by the event at the beginning.  A proper operation 

demands that all variables with assignments within the block are to be included in 

the sensitivity list.  The assign – deassign constructs allow continuous 

assignments within a behavioral block.  By way of illustration, consider the 

following simple block: 
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   n=0a, a=00 

 time=2     n=0a, a=01 

 time=6     n=0a, a=02 

 time=10   n=0a, a=03 

 time=14   n=0a, a=04 

 time=18   n=0a, a=05 

 time=22   n=0a, a=06 

 time=26   n=0a, a=07 

 time=30   n=0a, a=08 

 time=34   n=0a, a=09 

 time=38   n=0a, a=0a 

 time=42   n=0a, a=00 

  n=23, a=00 

time=46   n=23, a=01 

time=50   n=23, a=02 

time=54   n=23, a=03 

time=58   n=23, a=04 

time=62   n=23, a=05 

time=66   n=23, a=06 

time=70   n=23, a=07 

time=74   n=23, a=08 

time=78   n=23, a=09 

time=82   n=23, a=0a 

time=86   n=23, a=0b 

time=90   n=23, a=0c 

time=94   n=23, a=0d 

time=98   n=23, a=0e 

Figure 8.10 Partial results of running the test bench in Figure 8.9. 

always@(posedge clk) a = b;

By way of execution, at the positive edge of clk the value of b is assigned to 

variable a, and a remains frozen at that value until the next positive edge of clk.

Changes in b in the interval are ignored.   

As an alternative, consider the block 

always@(posedge clk) assign c = d;

Here at the positive edge of clk, c is assigned the value of d in a continuous 

manner; subsequent changes in d are directly reflected as changes in variable c:

The assignment here is akin to a direct (one way ) electrical connection to c from d
established at the positive edge of clk.

Again consider an enhanced version of the above block as  

Always

Begin

@(posedge clk) assign c = d;

  @(negedge clk) deassign c;
end

The above block signifies two activities:  

1. At the positive edge of clk, c is assigned the value of d in a continuous 

manner (as mentioned above). 

2. At the following negative edge of clk, the continuous assignment to c is 

removed; subsequent changes to d are not passed on to c; it is as though c
is electrically disconnected from d.

The above sequence of twin activities is repeated cyclically. 
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In short, assign allows a variable or a net change in the sensitivity list to 

mandate a subsequent continuous assignment within.  deassign terminates the 

assignment done through the assign-based statement. The assignment to c in 

the above two cases is referred to as a “Procedural Continuous Assignment.”   

Example 8.3 A 2 to 4 Demux through Procedural Continuous Assignment 

Consider the mux module in Figure 8.11.  It is activated whenever s changes. But 

the assignment is continuous to reg b.  It is achieved through the use of the 

//an alternate realization of the demux using the assign construct 

module demux1(a0,a1,a2,a3,b,s); 

output a0,a1,a2,a3; 

input b; 

input [1:0]s; 

reg a0,a1,a2,a3; 

always@(s)  

 if(s==2'b00) 

 assign {a0,a1,a2,a3}={b,3'oz}; 

 else if(s==2'b01) 

 assign {a0,a1,a2,a3}={1'bz,b,2'bz}; 

 else if(s==2'b10) 

 assign {a0,a1,a2,a3}={2'bz,b,1'bz}; 

 else if(s==2'b11) 

 assign {a0,a1,a2,a3}={3'oz,b}; 

endmodule 

module tst_demux1(); 

reg b; 

reg[1:0]s; 

demux1 d2(a0,a1,a2,a3,b,s); 

initial begin b=1'b0;s=2'b0; end 

always

begin 

#1 s=s+1'b1;  

$display("t=%0d, s=%b, b=%b,  {a0,a1,a2,a3} =%b",$time,s,b,{a0,a1,a2,a3}); 

#1b=~b; 

$display("t=%0d, s=%b, b=%b,  {a0,a1,a2,a3} =%b",$time,s,b,{a0,a1,a2,a3}); 

end

initial #14 $stop; 

endmodule 

Figure 8.11 An alternate realization of the demux using the assign construct. 
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# t=1, s=01, b=0,  {a0,a1,a2,a3} =0zzz 

# t=2, s=01, b=1,  {a0,a1,a2,a3} =z0zz 

# t=3, s=10, b=1,  {a0,a1,a2,a3} =z1zz 

# t=4, s=10, b=0,  {a0,a1,a2,a3} =zz1z 

# t=5, s=11, b=0,  {a0,a1,a2,a3} =zz0z 

# t=6, s=11, b=1,  {a0,a1,a2,a3} =zzz0 

# t=7, s=00, b=1,  {a0,a1,a2,a3} =zzz1 

# t=8, s=00, b=0,  {a0,a1,a2,a3} =1zzz 

# t=9, s=01, b=0,  {a0,a1,a2,a3} =0zzz 

# t=10, s=01, b=1,  {a0,a1,a2,a3} =z0zz 

# t=11, s=10, b=1,  {a0,a1,a2,a3} =z1zz 

# t=12, s=10, b=0,  {a0,a1,a2,a3} =zz1z 

# t=13, s=11, b=0,  {a0,a1,a2,a3} =zz0z 

Figure 8.12 Results of simulating the test bench of Figure 8.11. 

“assign” construct.  Specifically, if s = 2'b01, a[1] is connected to b and 

remains so connected so long as s remains unchanged.  If b changes value, a[1] 

follows it even though b is not included in the sensitivity list.   A test bench is also 

included in Figure 8.11.Simulation results are shown in Figure 8.12. 

Example 8.4 A D Flip-Flop through assign – deassign Constructs 

Consider the module Figure 8.13, which represents a D flip-flop with Preset and 

Clear.  If Clear or Preset becomes true, the output is forced to the Preset or Set 

condition, respectively.  It is ensured by the first always block with the quasi-

continuous assignments.  If both Preset and Clear are false, the quasi-continuous 

assignment is removed.  The second always block provides the assignment to q at 

every positive edge of the clk.  It can take effect only if the asynchronous set–reset 

block is not active.  Thus the asynchronous set/reset through Preset/Clear override 

the synchronous set/reset decided by the value of di at the clock edge.  A test 

bench for the D flip-flop module is also included in the figure. 

Observations: 

Some (many) synthesizers may not support the quasi-continuous assign-

deassign constructs.   

The quasi-continuous assignment is made only to a variable (reg type); it can 

be a scalar or a full vector but not a part vector.   

The quasi-continuous assignment overrides all other assignments to the 

variable.   
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module dffassign(q,qb,di,clk,clr,pr); 
output q,qb; 
input di,clk,clr,pr; 
reg q; 
assign qb=~q; 
always@(clr or pr) 
begin
 if(clr)assign q = 1'b0;//asynchronous clear and  
 if(pr) assign q = 1'b1;// preset of FF overrides  
 else deassign q;// the synchronous behaviour 
end
always@(posedge clk) 
 q = di;//synchronous (clocked)value assigned to q 
endmodule

//test-bench
module dffassign_tst(); 
reg di,clk,clr,pr; 
wire q,qb; 
dffassign dd(q,qb,di,clk,clr,pr); 
initial
begin
 clr=1'b1;pr=1'b0;clk=1'b0;di=1'b0; 
end
always
begin
 #2 clk=~clk;clr=1'b0; 
end
always
# 4 di =~di; 
always
#16 pr=1'b1; 
always
#20 pr =1'b0; 
initial  $monitor("t=%0d, clk=%b, clr=%b, pr=%b,
di=%b, q=%b ",    $time,clk,clr,pr,di,q); 
initial #46 $stop; 
endmodule

Figure 8.13 Design description of a D_flip-flop with Preset and Clear facilities:  The 

module illustrates the use of the assign–deassign construct. 



230 BEHAVIORAL MODELING II

# t=0, clk=0, clr=1, pr=0,  di=0, q=0
# t=2, clk=1, clr=0, pr=0,  di=0, q=0
# t=4, clk=0, clr=0, pr=0,  di=1, q=0
# t=6, clk=1, clr=0, pr=0,  di=1, q=1
# t=8, clk=0, clr=0, pr=0,  di=0, q=1
# t=10, clk=1, clr=0, pr=0,  di=0, q=0
# t=12, clk=0, clr=0, pr=0,  di=1, q=0
# t=14, clk=1, clr=0, pr=0,  di=1, q=1
# t=16, clk=0, clr=0, pr=1,  di=0, q=1
# t=18, clk=1, clr=0, pr=1,  di=0, q=1
# t=20, clk=0, clr=0, pr=0,  di=1, q=1
# t=22, clk=1, clr=0, pr=0,  di=1, q=1
# t=24, clk=0, clr=0, pr=0,  di=0, q=1
# t=26, clk=1, clr=0, pr=0,  di=0, q=0
# t=28, clk=0, clr=0, pr=0,  di=1, q=0
# t=30, clk=1, clr=0, pr=0,  di=1, q=1
# t=32, clk=0, clr=0, pr=1,  di=0, q=1
# t=34, clk=1, clr=0, pr=1,  di=0, q=1
# t=36, clk=0, clr=0, pr=1,  di=1, q=1
# t=38, clk=1, clr=0, pr=1,  di=1, q=1
# t=40, clk=0, clr=0, pr=0,  di=0, q=1
# t=42, clk=1, clr=0, pr=0,  di=0, q=0
# t=44, clk=0, clr=0, pr=0,  di=1, q=0 

Figure 8.14 Simulation results of the test bench in Figure 8.13. 

Example 8.5 Another D Flip-Flop with if and if-else

Figure 8.15 shows a module of a flip-flop again using the if-else-if

construct.  clr, pr, and clk are all included in the sensitivity list itself.  A test bench 

is also included in the figure.  The synthesized circuit of the module is shown in 

Figure 8.16.  Simulation results are in Figure 8.17. 

module dffalter(q,qb,di,clk,clr,pr); 
output q,qb; 
input di,clk,clr,pr; 
reg q; 
assign qb =~q;//continous assignment 
always@(posedge clr or posedge pr or posedge clk) 
 begin 
  if(clr) q=1'b0; 

continued
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continued

  else if(pr) q=1'b1; 
  else q=di; 
 end 
endmodule

//test-bench
module dffalter_tst(); 
reg di,clk,clr,pr; 
wire q; 
dffalter dff(q,qb,di,clk,clr,pr); 
initial
begin
 clr=1'b1;pr=1'b0;clk=1'b0;di=1'b0; 
end
always
begin
 #2 clk=~clk;clr=1'b0; 
end
always  # 4 di =~di; 
always  #16 pr=1'b1; 
always  #20 pr =1'b0; 
initial  $monitor("t=%0d, clk=%b, clr=%b, pr=%b,
di=%b, q=%b ",   $time,clk,clr,pr,di,q); 
initial #46 $stop; 
endmodule

Figure 8.15 An alternate description of the D_FF module and its test bench. 

Figure 8.16 Synthesized circuit of the flip-flop of Example 8.5. 
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# 0clk = 0,  clr = 1, pr = 0, di = 0, q = 0
# 2clk = 1,  clr = 0, pr = 0, di = 0, q = 0
# 4clk = 0,  clr = 0, pr = 0, di = 1, q = 0
# 6clk = 1,  clr = 0, pr = 0, di = 1, q = 1
# 8clk = 0,  clr = 0, pr = 0, di = 0, q = 1
# 10clk = 1, clr = 0, pr = 0, di = 0, q = 0
# 12clk = 0, clr = 0, pr = 0, di = 1, q = 0
# 14clk = 1, clr = 0, pr = 0, di = 1, q = 1 
# 16clk = 0, clr = 0, pr = 1, di = 0, q = 1
# 18clk = 1, clr = 0, pr = 1, di = 0, q = 1
# 20clk = 0, clr = 0, pr = 0, di = 1, q = 1
# 22clk = 1, clr = 0, pr = 0, di = 1, q = 1
# 24clk = 0, clr = 0, pr = 0, di = 0, q = 1
# 26clk = 1, clr = 0, pr = 0, di = 0, q = 0
# 28clk = 0, clr = 0, pr = 0, di = 1, q = 0
# 30clk = 1, clr = 0, pr = 0, di = 1, q = 1
# 32clk = 0, clr = 0, pr = 1, di = 0, q = 1
# 34clk = 1, clr = 0, pr = 1, di = 0, q = 1
# 36clk = 0, clr = 0, pr = 1, di = 1, q = 1
# 38clk = 1, clr = 0, pr = 1, di = 1, q = 1
# 40clk = 0, clr = 0, pr = 0, di = 0, q = 1
# 42clk = 1, clr = 0, pr = 0, di = 0, q = 0
# 44clk = 0, clr = 0, pr = 0, di = 1, q = 0 

Figure 8.17 Simulation results for the test bench of Figure 8.15. 

Examle 8.6 A Counter with a Continuous Procedural Assignment 

Figure 8.18 shows the module of an up counter with Preset and Clear facilities.  

Preset and Clear are carried out through Procedural Continuous Assignments. If clr
goes high, a is reset to zero.  If pr goes high, a is set to the number specified as n.

Either of these assignments will remain as long as either Clear or Preset is active 

as the case may be.  If both these asynchronous control signals go low, the module 

increments the value of a at every positive edge of the clock.  The module can 

easily be modified to function as a down counter, an up–down counter, or a 

counter to any other modulus.   
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module ctr_a(a,n,clr,pr,clk); 

output [7:0]a; 
input [7:0]n; 
input clr,pr,clk; 
reg[7:0]a;
initial a =8'h00; 

always@(posedge clk) 
a=a+1'b1;
always@(clr or pr)
 if (clr)assign a =7'h00; 

  else if(pr)assign a =n; 
   else deassign a; 
endmodule

module counprclrasgn_tst();//test-bench 
reg [7:0]n; 

reg clr,pr,clk; 
wire[7:0] a; 
ctr_a cc(a,n,clr,pr,clk); 
initial
begin

 n=8'h55; clr=1'b1; 
 pr=1'b0;clk=1'b0; 
end
always

begin
 #2 clk=~clk;clr=1'b0; 
end
always #16 pr=1'b1; 

always #20 pr =1'b0; 
initial  $monitor(   $time  ,  "clk  = %b , clr =  %b
, pr  =   %b  ,   a  =  %b ", clk,clr,pr,a); 
initial #44 $stop; 

endmodule

Figure 8.18 Design description of an up counter with Preset and Clear facilities. 
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      0clk  = 0 , clr =  1  , pr  =   0  ,   a  =  00000000  
      2clk  = 1 , clr =  0  , pr  =   0  ,   a  =  00000001  
      4clk  = 0 , clr =  0  , pr  =   0  ,   a  =  00000001  
      6clk  = 1 , clr =  0  , pr  =   0  ,   a  =  00000010  
      8clk  = 0 , clr =  0  , pr  =   0  ,   a  =  00000010  
    10clk  = 1 , clr =  0  , pr  =   0  ,   a  =  00000011  
    12clk  = 0 , clr =  0  , pr  =   0  ,   a  =  00000011  
    14clk  = 1 , clr =  0  , pr  =   0  ,   a  =  00000100  
    16clk  = 0 , clr =  0  , pr  =   1  ,   a  =  01010101  
    18clk  = 1 , clr =  0  , pr  =   1  ,   a  =  01010101  
    20clk  = 0 , clr =  0  , pr  =   0  ,   a  =  01010101  
    22clk  = 1 , clr =  0  , pr  =   0  ,   a  =  01010110  
    24clk  = 0 , clr =  0  , pr  =   0  ,   a  =  01010110  
    26clk  = 1 , clr =  0  , pr  =   0  ,   a  =  01010111  
    28clk  = 0 , clr =  0  , pr  =   0  ,   a  =  01010111  
    30clk  = 1 , clr =  0  , pr  =   0  ,   a  =  01011000  
    32clk  = 0 , clr =  0  , pr  =   1  ,   a  =  01010101  
    34clk  = 1 , clr =  0  , pr  =   1  ,   a  =  01010101  
    36clk  = 0 , clr =  0  , pr  =   1  ,   a  =  01010101  
    38clk  = 1 , clr =  0  , pr  =   1  ,   a  =  01010101  
    40clk  = 0 , clr =  0  , pr  =   0  ,   a  =  01010101  
    42clk  = 1 , clr =  0  , pr  =   0  ,   a  =  01010110 

Figure 8.19 Simulation results of the test bench in Figure 8.18. 

Example 8.7 

Consider the module in Figure 8.20 which is a variant of the flip-flop in Figure 

8.15.  A test bench for the flip-flop is also included in the figure.  Here the 

always block is activated at every positive edge of the clock.  At that instant if 

clr = 1, the flip-flop is cleared.  If pr = 1, the flip-flop is set.  If clr = 0 and pr = 0, 

the flip-flop output takes on the value of d.  Here all the assignments to q take 

effect at the positive edge of the clock.  Hence the behavior is fully synchronous.  

This is not necessarily the case with the flip-flop of Figure 8.15.  The synthesized 

circuit of the flip-flop is shown in Figure 8.21. 

module dff_1beh(q,qb,di,clk,clr,pr); 
output q,qb; 
input di,clk,clr,pr; 
reg q; 
assign qb=~q; 
always@(posedge clk) 
begin
 if(clr)q = 1'b0; 

continued
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continued

 else if(pr) q = 1'b1; 
 else  q=di; 
end
endmodule

//test-bench
module dff_1beh_tst(); 
reg di,clk,clr,pr; 
wire q,qb; 
dff_1beh dd(q,qb,di,clk,clr,pr); 
initial
begin
clr=1'b1;pr=1'b0;clk=1'b0;di=1'b0;
end
always
begin
 #2 clk=~clk;clr=1'b0; 
end
always # 4 di =~di; 
always #16 pr=1'b1; 
always #20 pr =1'b0; 
always #24 clr=1'b1; 
always #28 clr =1'b0; 
initial  $monitor( "t=%0d, clk=%b, clr=%b, pr=%b,
di=%b,  q=%b ", $time, clk,clr,pr,di,q); 
initial #46 $stop; 
endmodule

Figure 8.20 Another design description of a flip-flop and its test bench. 

Figure 8.21 Synthesized circuit of the flip-flop in Figure 8.20. 
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8.4 repeat CONSTRUCT 

The repeat construct is used to repeat a specified block a specified number of 

times.  Typical format is shown in Figure 8.22.  The quantity a can be a number or 

an expression evaluated to a number.  As soon as the repeat statement is 

encountered, a is evaluated.  The following block is executed “a” times.  If “a”

evaluates to 0 or x or z, the block is not executed.   

Example 8.8 

The repeat construct is well-suited to repeat a block of assignments a fixed 

number of times.  Figure 8.23 shows a block in a module using it.  The block has a 

set of 16 registers each 8 bits wide.  A repeat block is used to load a set of 

numbers into them.  Subsequently, the content of each register is displayed 

sequentially again through a repeat block.  The simulation results are shown in 

Figure 8.24.   

…
repeat (a)

begin

assignment1; 
  assignment2;  

  …  
 end

 …  

Figure 8.22 Structure of a repeat block.  

module trial_8b; 

reg[7:0] m[15:0]; 

integer i; 

reg clk; 

always

begin 

 repeat(8) 

 begin 

  @(negedge clk) 

  m[i]=i*8; 

  i=i+1; 

 end 

 repeat(8) 

 begin 

  @(negedge clk) 

  i=i-1; 

  $display("t=%0d,  i=%0d,  m[i]=%0d", $time,i,m[i]); 

continued
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continued

 end 
end
initial 
begin  
 clk = 1'b0;  
 i=0;  
 #70 $stop; 
end
always #2 clk=~clk; 
endmodule 

Figure 8.23 A module to illustrate the use of the repeat construct.

# t=32,  i=7,  m[i]=56 

# t=36,  i=6,  m[i]=48 

# t=40,  i=5,  m[i]=40 

# t=44,  i=4,  m[i]=32 

# t=48,  i=3,  m[i]=24 

# t=52,  i=2,  m[i]=16 

# t=56,  i=1,  m[i]=8 

# t=60,  i=0,  m[i]=0  

Figure 8.24 Results of simulating the test bench in Figure 8.23. 

Example 8.9 

The module in Figure 8.25 outputs n successive words.  The data to be output are 

available in n successive locations of memory.  out is the output port.  The output 

activity takes place at the positive edge of clk and is completed in n cycles of clk.

. . . 
always
 begin 
  repeat(n-1'b1) 
  begin 
   @(posedge clk) 
   begin 
    out = m(mar); 
    mar = mar + 1'b1; 
   end 
  end 
 end 

Figure 8.25 A block in a module to output n successive bytes using the repeat construct. 
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8.5 for LOOP 

The for loop in Verilog is quite similar to the for loop in C; the format of the 

for loop is shown on Figure 8.26.  It has four parts; the sequence of execution is 

as follows: 

1. Execute assignment1.

2. Evaluate expression.

3. If the expression evaluates to the true state (1), carry out statement.  Go 

to step 5. 

4. If expression evaluates to the false state (0), exit the loop. 

5. Execute assignment2.  Go to step 2. 

Operation of the loop is shown in Figure 8.27 in flowchart form.  It may be 

compared with Figure 8.5 for the if-else-if construct.  In general, whenever 

one has to accommodate alternatives for execution, the if and if-else

constructs are preferred.  Whenever a sequence of assignments is to be done 

repeatedly with an index for termination, the for construct is preferred. 

. . . . 
for(assignment1; expression; assignment 2) 

statement;

. . . 

Figure 8.26 Structure of the for loop. 

expression

execute block

assignment

no yes

assignment2

Figure 8.27 Flowchart of execution of the for loop. 
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Examle 8.10 

The earlier memory-load example – Example 8.8 – has been redone here with the 

for loop.  The changed module and the simulation results are shown in Figure 

8.28.  The simulation results can be compared with those in Figure 8.24. 

module trial_8a; 
reg[7:0] m[15:0]; 
integer i; 
reg clk; 
always 
begin 
 for(i=0;i<8;i=i+1) 
 @(negedge clk) 
 m[i]=i*8; 
 for(i=0;i<8;i=i+1) 
 @(negedge clk) 
 $display("t=%0d,  i=%0d,  m[i]=%0d", $time,i,m[i]); 
end
initial clk = 1'b0; 
always #2 clk=~clk; 
initial #70 $stop; 
endmodule 

//Simulation results 
# t=32,  i=0,  m[i]=0 
# t=36,  i=1,  m[i]=8 
# t=40,  i=2,  m[i]=16 
# t=44,  i=3,  m[i]=24 
# t=48,  i=4,  m[i]=32 
# t=52,  i=5,  m[i]=40 
# t=56,  i=6,  m[i]=48 
# t=60,  i=7,  m[i]=56 

Figure 8.28 A module to illustrate the use of the for construct to load a memory block. 

Example 8.11  

Figure 8.29 shows the design description of an 8-bit adder module using the for

loop.  The module waits for En to go high; then the adder block is executed.  

Addition is carried out sequentially on a bit-by-bit basis starting with the 0th bit. 

Carry bit c[1] is generated when adding the bits in the 0th position.  It is the carry 

input to the addition in the first bit position, and so on.  Since all the assignments 

are of the blocking type, execution is sequential; but all are carried out at the same 

time step.  A test bench is also included in the figure.  Simulation results are in 

Figure 8.30.  
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module addfor(s,co,a,b,cin,en); 
output[7:0]s;
output co; 
input[7:0]a,b;
input en,cin; 
reg[8:0]c;
reg co; 
reg[7:0]s;
integer i; 
always@( posedge en ) 
begin
 c[0] =cin; 
 for(i=0;i<=7;i=i+1) 
 begin 
  {c[i+1],s[i]}=(a[i]+b[i]+c[i]); 
 end 
 co=c[8]; 
end
endmodule

//testbench
module tst_addfor(); 
wire [7:0]s; 
wire co; 
reg [7:0]a,b; 
reg en,cin; 
addfor add(s,co,a,b,cin,en); 
always #2 en=~en; 
initial
begin
 #0 en=1'b0; 
 #1 cin=1'b0;a=8'h01;b=8'h00; 
 #2 cin=1'b0;a=8'h01;b=8'h00; 
 #2 cin=1'b0;a=8'h01;b=8'h01; 
 #2 cin=1'b0;a=8'h01;b=8'h01; 
 #2 cin=1'b1;a=8'h01;b=8'h02; 
 #2 en=1'b1;cin=1'b1;a=8'h01;b=8'h03; 
 #2 cin=1'b0;a=8'h01;b=8'h09; 
 #2 cin=1'b1;a=8'h01;b=8'h09; 
 #2 cin=1'b0;a=8'hff;b=8'hff; 
 #2 cin=1'b1;a=8'hff;b=8'hff; 
 #2 cin=1'b1;a=8'hff;b=8'hff; 
end
initial $monitor( "t=%0d, en = %b, cin = %b, a = %0h, b 
= %0h, s = %0h, co = %b ",$time,en,cin,a,b,s,co); 
initial #30 $stop; 
endmodule

Figure 8.29 An adder module using the for loop. 
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# t=0, en = 0, cin = x, a = x, b = x, s = x, co = x

# t=1, en = 0, cin = 0, a = 1, b = 0, s = x, co = x

# t=2, en = 1, cin = 0, a = 1, b = 0, s = 1, co = 0

# t=4, en = 0, cin = 0, a = 1, b = 0, s = 1, co = 0

# t=5, en = 0, cin = 0, a = 1, b = 1, s = 1, co = 0

# t=6, en = 1, cin = 0, a = 1, b = 1, s = 2, co = 0

# t=8, en = 0, cin = 0, a = 1, b = 1, s = 2, co = 0

# t=9, en = 0, cin = 1, a = 1, b = 2, s = 2, co = 0

# t=10, en = 1, cin = 1, a = 1, b = 2, s = 4, co = 0

# t=11, en = 1, cin = 1, a = 1, b = 3, s = 4, co = 0

# t=12, en = 0, cin = 1, a = 1, b = 3, s = 4, co = 0

# t=13, en = 0, cin = 0, a = 1, b = 9, s = 4, co = 0

# t=14, en = 1, cin = 0, a = 1, b = 9, s = a, co = 0

# t=15, en = 1, cin = 1, a = 1, b = 9, s = a, co = 0

# t=16, en = 0, cin = 1, a = 1, b = 9, s = a, co = 0 

# t=17, en = 0, cin = 0, a = ff, b = ff, s = a, co = 0 

# t=18, en = 1, cin = 0, a = ff, b = ff, s = fe, co = 1 

# t=19, en = 1, cin = 1, a = ff, b = ff, s = fe, co = 1 

# t=20, en = 0, cin = 1, a = ff, b = ff, s = fe, co = 1 

# t=22, en = 1, cin = 1, a = ff, b = ff, s = ff, co = 1 

# t=24, en = 0, cin = 1, a = ff, b = ff, s = ff, co = 1 

# t=26, en = 1, cin = 1, a = ff, b = ff, s = ff, co = 1 

# t=28, en = 0, cin = 1, a = ff, b = ff, s = ff, co = 1 

Figure 8.30 Results of simulating the test bench in Figure 8.29. 

Example 8.12 

Figure 8.31 shows an alternate realization of the adder along with a test bench.  

Here again the addition proceeds sequentially starting with the 0th bit.  The 0th 

bits are added at the first positive edge of clk.  The next set of bits is added at the 

subsequent positive edge of clk, and so on.  The adder is realized as a one-bit 

adder doing the 8-bit addition.  The synthesis tool will minimize hardware but will 

demand maximum time for execution as the price. The simulation results are 

shown in Figure 8.32. 
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module addfor1(s,co,a,b,cin,en,clk); 
output[7:0]s;
output co; 
input[7:0]a,b;
input en,cin,clk; 
reg[8:0]c;
reg co; 
reg[7:0]s;
integer i; 

//assign c[0]=cin; 
always@(posedge en) 
begin
 for(i=0;i<=7;i=i+1) 
 @(posedge clk) 
 begin 
  if(i==0)c[0]=cin; 
  {c[i+1],s[i]}=(a[i]+b[i]+c[i]); 
 end 
 co=c[8]; 
end
endmodule

//testbench
module tst_addfor1(); 
wire [7:0]s; 
wire co; 
reg [7:0]a,b; 
reg en,cin,clk; 
addfor1 add1(s,co,a,b,cin,en,clk); 
initial
begin
 clk=1'b0;en=1'b0;cin=1'b0;a=8'h00;b=8'h00; 
end
always #2 clk =~clk; 
initial
begin
 #1  en=1'b1; #34 en=1'b0; 
 #1  cin=1'b0;a=8'h01;b=8'h00; 
 #1  en=1'b1; #34 en=1'b0; 
 #1  cin=1'b1;a=8'h05;b=8'h02; 
 #1  en=1'b1; #34 en=1'b0; 
 #1  cin=1'b1;a=8'h06;b=8'h03; 

continued 
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continued

 #1  en=1'b1; #34 en=1'b0; 
 #1  cin=1'b0;a=8'h07;b=8'h09; 
 #1  en=1'b1; #34 en=1'b0; 
 #1  cin=1'b1;a=8'h01;b=8'h09; 
 #1  en=1'b1; #34 en=1'b0; 
 #1  cin=1'b0;a=8'hff;b=8'hff; 
 #1  en=1'b1; #34 en=1'b0; 
 #1  cin=1'b1;a=8'hff;b=8'hff; 
end
always@(negedge en) 
$display("t=%0d, clk=%0b, en=%0b, cin=%0b, a=%0h, 
b=%0h, s=%0h, co=%0b",$time,clk,en,cin,a,b,s,co); 
initial #300 $stop; 
endmodule

Figue 8.31 Another module for byte addition using the for construct. 

# t=0, clk=0, en=0, cin=0, a=0, b=0, s=x, co=x
# t=35, clk=1, en=0, cin=0, a=0, b=0, s=0, co=0
# t=71, clk=1, en=0, cin=0, a=1, b=0, s=1, co=0
# t=107, clk=1, en=0, cin=1, a=5, b=2, s=8, co=0
# t=143, clk=1, en=0, cin=1, a=6, b=3, s=a, co=0
# t=179, clk=1, en=0, cin=0, a=7, b=9, s=10, co=0
# t=215, clk=1, en=0, cin=1, a=1, b=9, s=b, co=0
# t=251, clk=1, en=0, cin=0, a=ff, b=ff, s=fe, co=1 

Figure 8.32 Simulation output with the test-bench in Figure 8.31.  

Example 8.13 

Figure 8.33 shows a segment of a test bench to test the adder module for all input 

combinations.  At every time step, one out of a total of 8 bits (4 of a, 4 of b, and 

one cin) changes.  The test is carried out for a total of 29 possibilities.  The test 

bench uses nested for loops as well as the if construct along with the for loop.  

The test bench description can be seen to be compact. 
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. . .  
initial
begin

a = 4'h0; 
 b = 4'h0; 

 cin = 1'b0;
end
initial
begin

for (k = 0; k <=1; k = k + 1'b0)
begin

  #1 if (k)  cin = 1'b1;

    else cin = 1'b0;

       for (I = 0; I <= 3’o7; I = I+1'b1)
begin

    #1 a[I] = a[I] + 1'b1; 
for (j = 0; j <= 3'o7; j = j + 1'b0)
begin

     #1  b[j] = b[j] + 1'b0;
    end

end
end

end

. . .  

. . .  

Figure 8.33 A segment of a test bench for the 8-bit adder of Example 8.6. 

8.6 THE disable CONSTRUCT 

There can be situations where one has to break out of a block or loop.  The 

disable statement terminates a named block or task.  Control is transferred to 

the statement immediately following the block.  Conditional termination of a loop, 

interrupt servicing, etc., are typical contexts for its use.  Often the disabling is 

carried out from within the block itself.  The disable construct is functionally 

similar to the break in C [Gotttfried]. 

Example 8.14 

Figure 8.34 shows a module that uses a disable statement.  The module realizes 

an OR gate in an elegant manner.  The OR gate output b is assigned the value 0 

initially.  All bits of the input a are examined sequentially within a for loop.  If 

any bit is 1, the OR gate output is set to 1 and execution is terminated (since 
examining the other input bits is superfluous).  A master enable signal (en) is also 
included in the module.  The simulation results are in Figure 8.35.  NOR, AND, 
and NAND gates too can be realized in a similar manner. 



THE disable CONSTRUCT 245 

module or_gate(b,a,en); 
input [3:0]a; 
input en; 
output b; 
reg b; 
integer i; 
always@(posedge en) 
 begin:OR_gate 
 b=1'b0; 
  for(i=0;i<=3;i=i+1) 
   if(a[i]==1'b1) 
   begin 
    b=1'b1; 
   disable OR_gate; 
    end 
 end 
endmodule

//test-bench
module tst_or_gate(); 
reg[3:0]a;
reg en; 
wire b; 
or_gate gg(b,a,en); 
initial
begin
 a  = 4'h0; 
 en = 1'b0; 
end
initial begin 
 #2 en=1'b1; #2 a =4'h1; #2 en=1'b0; 
 #2 en=1'b1; #2 a =4'h2; #2 en=1'b0; 
 #2 en=1'b1; #2 a =4'h0; #2 en=1'b0; 
 #2 en=1'b1; #2 a =4'h3; #2 en=1'b0; 
 #2 en=1'b1; #2 a= 4'h4; #2 en=1'b0; 
 #2 en=1'b1; #2 a=4'hf; 
   end 
initial $monitor("t=%0d, en = %b, a = %b, b = 
%b",$time,en,a,b);
initial #60 $stop; 
endmodule

Figure 8.34 An OR gate module to demonstrate the use of the disable construct. A test 

bench is also included in the figure. 
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# t=0, en = 0, a = 0000, b = x 
# t=2, en = 1, a = 0000, b = 0 
# t=4, en = 1, a = 0001, b = 0 
# t=6, en = 0, a = 0001, b = 0 
# t=8, en = 1, a = 0001, b = 1 
# t=10, en = 1, a = 0010, b = 1 
# t=12, en = 0, a = 0010, b = 1 
# t=14, en = 1, a = 0010, b = 1 
# t=16, en = 1, a = 0000, b = 1 
# t=18, en = 0, a = 0000, b = 1 
# t=20, en = 1, a = 0000, b = 0 
# t=22, en = 1, a = 0011, b = 0 
# t=24, en = 0, a = 0011, b = 0 
# t=26, en = 1, a = 0011, b = 1 
# t=28, en = 1, a = 0100, b = 1 
# t=30, en = 0, a = 0100, b = 1 
# t=32, en = 1, a = 0100, b = 1 
# t=34, en = 1, a = 1111, b = 1 

Figure 8.35 Simulation results of the test bench in Figure 8.34. 

The synthesized circuit of the module is in Figure 8.36.  Since the OR activity 

is triggered at the edge of en, the output is made available through a latch; the 

latching is done at the positive edge of en as specified.  The circuit does not 

respond to the subsequent changes in the input quantities until en is made to go 

through 0 and 1 once again and latches the OR gate output.   

Figure 8.36 Synthesized circuit of the OR gate module in Figure 8.34. 
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Example 8.15 

Figure 8.37 is a module to illustrate the conditional termination of a for loop. a is 

a byte of pending interrupt vectors.  The b0 position represents the highest-priority 

interrupt, and b7 represents the lowest-priority one.  The module is activated by 

en going high.  Each of the bits of a is examined in succession.  The module 

returns n as  the serial number of the first interrupt flag that is active.  If no 

interrupt flag is active, n takes the value 8. Simulation results are shown in Figure 

8.38.  Whenever en changes from 0 to 1 (positive edge) the value of a is updated – 

specifically at the 5th, 20th, and 35th ns as can be seen from the test bench included 

in the figure.  The synthesized circuit is shown in Figure 8.39. 

module int(n,a,en); 
output [3:0]n; 
input en; 
input[7:0]a;
reg [3:0]n; 
integer i; 
always@(posedge en) 
begin:source
 n=4'b0001; 
 for(i=0;i<=7;i=i+1'b1) 
  if (a[i]==1'b0) 
  begin 
   n=n+1'b1; 
   if(n==4'b1001) 
   n=1'b0; 
  end 
  else disable source; 
end
endmodule

//test-bench
module tst_int(); 
reg en; 
reg [7:0]a; 
wire [3:0]n; 
int ii(n,a,en); 
initial
begin
 en=1'b0; 
 a=8'h00; 
end

continued 
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continued

initial
begin
 #5 en=1'b1; #5 a=8'h02; #5 en=1'b0; 
 #5 en=1'b1; #5 a=8'hb0; #5 en=1'b0; 
 #5 en=1'b1; 
end
initial $monitor( "t=%0d, n= %b, a = %b, en=%b 
",$time,n,a,en);
initial #50 $stop;
endmodule

Figure 8.37 A module identify the highest-priority pending Interrupt; a test bench is also 

included. 

# t=0, n= xxxx, a = 00000000, en=0
# t=5, n= 0000, a = 00000000, en=1
# t=10, n= 0000, a = 00000010, en=1
# t=15, n= 0000, a = 00000010, en=0
# t=20, n= 0010, a = 00000010, en=1
# t=25, n= 0010, a = 10110000, en=1
# t=30, n= 0010, a = 10110000, en=0
# t=35, n= 0101, a = 10110000, en=1 

Figure 8.38 Simulation results of the test bench in Figure 8.37. 

Figure 8.39 Synthesized circuit of the design module in Figure 8.37. 
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Observations: 

The disable statement has to have a block (or task) identifier tagged to it – 

in this respect it differs from “break” in C. 

Once encountered, it terminates execution of the block; the following 

statements within the block are not executed. 

Typically it can be used to handle exceptions to regularly assigned activities 

for example, Interrupt, Hold, Reset, etc.

8.7 while LOOP 

The format for the while loop is shown in Figure 8.40.  The Boolean expression
is evaluated.  If it is true, the statement (or block of statements) is executed 

and expression evaluated and checked.  If the expression evaluates to false,

the loop is terminated and the following statement is taken for execution.  If the 

expression evaluates to true, execution of statement (block of statements) is 

repeated.  Thus the loop is terminated and broken only if the expression evaluates 

to false. The flowchart for the while loop is shown in Figure 8.41. 

while (expression) statement ; 

Figure 8.40 Structure of the while loop. 

expression

execute block

assignment

false true

Figure 8.41 Flowchart for the execution of the while loop.
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Observations : 

Whenever the while construct is used, event or time-based activity flow 

within the block has to be ensured.   

With the while construct the expression associated with the keyword while

must become false through the execution of assignments inside the block.  

Otherwise we end up with an endless looping within the block, causing a 

deadlock. 

There may be situations where we have to wait in a loop while an event 

external to it changes to trigger an activity.  The wait construct is to be used 

for such situations and not while.  With the wait construct the activity is 

scheduled and execution continued with the other activities.  With the while

construct until the associated loop is not complete, other activities are not 

taken up. 

Example 8.16 

Figure 8.42 shows a module which illustrates the use of the while construct for 

the generation of a pulse of definite width.  It accepts clk and  an 8-bit number n as 

inputs and gives out a single-bit output – b. b is normally low.  n represents the 

desired pulse width. It is loaded into a register a maintained within the module.  

As soon as en goes high, b becomes 1 and countdown of a starts within a while

loop.  As a becomes 0, the loop is terminated and b brought back to 0.  The pulse 

width represented by the high state of b can be changed by changing the value of 

n.  Simulation results are shown in Figure 8.43(a) in tabular form and in Figure 

8.43(b)  as waveforms. 

module while2(b,n,en,clk); 
input[7:0]n;
input clk,en; 
output b; 
reg[7:0]a;
reg b; 
always@(posedge en) 
begin
 a=n; 
 while(|a) 
 begin 
  b=1'b1; 
  @(posedge clk) 
  a=a-1'b1; 

continued
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continued 

 end 
 b=1'b0; 
end
initial b=1'b0; 
endmodule    

module tst_while2(); 
reg[7:0]n;
reg en,clk; 
wire b; 
while2 ww(b,n,en,clk); 
initial
begin
 n  = 8'h10;clk = 1'b1;en = 1'b0; 
  #3  en = 1'b1; 
  #60 en = 1'b0; 
end
initial $monitor( " t=  %0d, output b = %b ,ww.a = %0d 
,en = %b ,clk = %b ",$time,b,ww.a,en,clk); 
always
#2 clk =~clk; 
initial #80 $stop; 
endmodule

Figure 8.42 A module to illustrate the use of while construct: It generates a pulse of definite 

width.

  t=  0, output b = 0 ,ww.a = x ,en = 0 ,clk = 1  

  t=  2, output b = 0 ,ww.a = x ,en = 0 ,clk = 0  

  t=  3, output b = 1 ,ww.a = 16 ,en = 1 ,clk = 0  

  t=  4, output b = 1 ,ww.a = 15 ,en = 1 ,clk = 1  

  t=  6, output b = 1 ,ww.a = 15 ,en = 1 ,clk = 0  

  t=  8, output b = 1 ,ww.a = 14 ,en = 1 ,clk = 1  

  t=  10, output b = 1 ,ww.a = 14 ,en = 1 ,clk = 0  

  t=  12, output b = 1 ,ww.a = 13 ,en = 1 ,clk = 1  

  t=  14, output b = 1 ,ww.a = 13 ,en = 1 ,clk = 0  

  t=  16, output b = 1 ,ww.a = 12 ,en = 1 ,clk = 1  

t=  18, output b = 1 ,ww.a = 12 ,en = 1 ,clk = 0  

t=  20, output b = 1 ,ww.a = 11 ,en = 1 ,clk = 1 

t=  22, output b = 1 ,ww.a = 11 ,en = 1 ,clk = 0   

continued 
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continued

  t=  24, output b = 1 ,ww.a = 10 ,en = 1 ,clk = 1  

  t=  26, output b = 1 ,ww.a = 10 ,en = 1 ,clk = 0  

  t=  28, output b = 1 ,ww.a = 9 ,en = 1 ,clk = 1  

  t=  30, output b = 1 ,ww.a = 9 ,en = 1 ,clk = 0  

  t=  32, output b = 1 ,ww.a = 8 ,en = 1 ,clk = 1  

  t=  34, output b = 1 ,ww.a = 8 ,en = 1 ,clk = 0  

  t=  36, output b = 1 ,ww.a = 7 ,en = 1 ,clk = 1  

  t=  38, output b = 1 ,ww.a = 7 ,en = 1 ,clk = 0  

  t=  40, output b = 1 ,ww.a = 6 ,en = 1 ,clk = 1  

  t=  42, output b = 1 ,ww.a = 6 ,en = 1 ,clk = 0  

  t=  44, output b = 1 ,ww.a = 5 ,en = 1 ,clk = 1  

  t=  46, output b = 1 ,ww.a = 5 ,en = 1 ,clk = 0  

  t=  48, output b = 1 ,ww.a = 4 ,en = 1 ,clk = 1  

  t=  50, output b = 1 ,ww.a = 4 ,en = 1 ,clk = 0  

t=  52, output b = 1 ,ww.a = 3 ,en = 1 ,clk = 1 

  t=  54, output b = 1 ,ww.a = 3 ,en = 1 ,clk = 0  

  t=  56, output b = 1 ,ww.a = 2 ,en = 1 ,clk = 1  

  t=  58, output b = 1 ,ww.a = 2 ,en = 1 ,clk = 0  

  t=  60, output b = 1 ,ww.a = 1 ,en = 1 ,clk = 1  

  t=  62, output b = 1 ,ww.a = 1 ,en = 1 ,clk = 0  

  t=  63, output b = 1 ,ww.a = 1 ,en = 0 ,clk = 0  

  t=  64, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 1  

  t=  66, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 0  

  t=  68, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 1  

  t=  70, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 0  

  t=  72, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 1  

  t=  74, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 0  

  t=  76, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 1  

t=  78, output b = 0 ,ww.a = 0 ,en = 0 ,clk = 0 

Figure 8.43(a) Simulation results of the test bench in Figure 8.42. 

Figure 8.43(b) Simulation results of the test bench in Figure 8.42 showing the signal 

waveforms.



while LOOP 253 

Example 8.17 

Figure 8.44 shows a module that uses the while loop for the “memory load” 

function considered in Example 8.8.  The test bench is also included in the figure.  

The simulation results are given in Figure 8.45.  The loading is done on successive 

negative edges of clk; the loaded values are displayed with an “initializing” tag 

preceding.  Subsequently the memory is read, and the read value is displayed with 

a “reading” tag preceding.  The reading is done through a for loop again at 

successive negative edges of clk.

module trial_8c; 

reg[7:0] m[15:0]; 

integer i; 

reg clk; 

always

begin 

 #0 while(i<8) 

 @(negedge clk) 

 begin 

  m[i]=i*8; 

  $display("initializing: tt=%0d,  mm[%0d]=%0d", $time,i,m[i]); 

  i=i+1; 

 end 

 #3 begin  

  for(i=7;i>=0;i=i-1) 

  @(negedge clk)    

  $display("reading:t=%0d,  m[%0d]=%0d", $time,i,m[i]); 

 end 

end

initial 

begin  

 clk = 1'b0; i=0; #65 $stop; 

end

always #2 clk=~clk; 

endmodule 

Figure 8.44 A module to illustrate the use of while and for loops to load a memory and 

read the same. 
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# initializing: tt=4,  mm[0]=0 

# initializing: tt=8,  mm[1]=8 

# initializing: tt=12,  mm[2]=16 

# initializing: tt=16,  mm[3]=24 

# initializing: tt=20,  mm[4]=32 

# initializing: tt=24,  mm[5]=40 

# initializing: tt=28,  mm[6]=48 

# initializing: tt=32,  mm[7]=56 

# reading:t=36,  m[7]=56 

# reading:t=40,  m[6]=48 

# reading:t=44,  m[5]=40 

# reading:t=48,  m[4]=32 

# reading:t=52,  m[3]=24 

# reading:t=56,  m[2]=16 

# reading:t=60,  m[1]=8 

# reading:t=64,  m[0]=0 

Figure 8.45 Results of simulating the module of Figure 8.44. 

8.7.1 Selection for Conditional Execution 

Conditional execution can be directly described in a module using a conditional 

operator, the case construct, or the if-else-if construct.  Looping can be 

effected with for or while.  The conditional operator too can be employed here, 

though it makes the description a bit cumbersome.  Depending upon the context or 

application, design description with one may be simpler compared to that with 

others.  Practice makes the choice easier.  Often, personal preferences too dictate 

choice.

8.8 forever LOOP 

Repeated execution of a block in an endless manner is best done with the 

forever loop (compare with repeat where the repetition is for a fixed number of 

times).  Typical illustrative examples follow.   

Example 8.18 

Consider the module in Figure 8.46.  It uses a forever block to generates a 

clock waveform (Compare with the clock using the always construct in Example 

7.5).  The clock toggles every 4 time steps as decided by the forever block.  A 

code segment of this type appears typically in a test bench.  A code segment of the 

type in Example 7.5 which generates the clock with the always construct appears 

typically in a design description. 
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module clk; 

reg clk, en; 

always @(posedge en) 

forever#2 clk=~clk; 

initial  

begin 

 clk=1'b0; en=1'b0;#1 clk=1'b1; #4 en=1'b1;#30 $stop; 

end

initial $monitor("clk=%b, t=%0d, en=%b ", clk,$time,en); 

endmodule 

Figure 8.46 A module to generate a clock waveform using the forever construct. 

Example 8.19 

Figure 8.47 shows a module wherein the memory load and read operations done in 

earlier examples are carried out in forever loops. In either case the loop is 

terminated through disable statements. The test bench is also included in the 

figure.  Simulation results are as in Figure 8.45 and not shown again. 

module trial_8d; 

reg[7:0] m[15:0]; 

integer i; 

reg clk; 

always

begin:load 

 forever@(negedge clk) 

 begin 

  if(i>=8)disable load; 

  m[i]=i*8; 

  $display("initializing :tt=%0d, mm[%0d]=%0d", $time,i,m[i]); 

  i=i+1; 

 end 

end

always#36 

begin:mem_dsply 

 forever 

 @(negedge clk) 

 begin 

continued 



256 BEHAVIORAL MODELING II

continued

  if(i>15)disable mem_dsply;  

  $display("reading: t=%0d, m[%0d]=%0d", $time,i-8,m[i-8]); 

  i=i+1; 

 end 

end

initial 

begin  

 clk = 1'b0;  

 i=0;  

 #70 $stop; 

end

always #2 clk=~clk; 

endmodule 

Figure 8.47 A module that uses disable with forever to load and read a memory file. 

Example 8.20 

During normal operation a microprocessor fetches an instruction from a program 

memory pointed by the PC, increments the PC, fetches the next instruction, and so 

on.  The cycle is repeated eternally [Hill & Peterson, Heuring & Jordan].  An 

interrupt input breaks the sequence and shifts execution to a different program 

segment. Figure 8.48 shows a module using the forever type of loop; it links 

the PC, the IR, and the program memory in the normal cyclic operation.  The cycle 

is interrupted only by the external Interrupt input.  The module uses a look-up-

table (LUT) type of decoder.  The instruction is decoded as part of the loop 

execution.  The program memory and the LUT are initialized before program 

execution commences.  The module has three inputs   clk, en, and int.  The loop 

operation commences with en going high; it continues until int goes high and then 

stops.  The interrupt service has to be organized separately.  A test bench is also 

included in the figure.  The simulation results are in Figure 8.49. 

module mup_opr(clk,int,en);//mup operation 

input clk, int,en; 

reg[7:0] pgm_mem[15:0], irdc[255:0],ir,pc,dcop; //pgm_mem : program memory  

integer i; // irdc: IR decoder output 

//ir : Instruction register; pc : Program counter;  dcop : decoded output 

continued 
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continued 

always@(posedge en )  

begin 

 forever 

 begin:mup_work 

  if(int) disable mup_work; 

  wait(clk)ir=pgm_mem[pc];//fetch instruction 

  wait(!clk) 

  begin 

   dcop=irdc[ir];//execute instruction 

   pc=pc+1;//increment program counter 

  end 

 end 

end

initial 

begin 

 pc=0; 

 for(i=0;i<16;i=i+1)pgm_mem[i]=i*8; 

 for(i=0;i<255;i=i+1)irdc[255-i]=i;  

end

endmodule 

module tst_mup; 

reg clk,en,int; 

initial 

begin 

   int=1'b0;clk=1'b0;en=1'b0; 

  #5 en=1;     

  #34 int=1'b1; 

end

always #2 clk=~clk; 

initial $monitor("clk=%0d,  t=%0d,  en=%b,  int=%b,   pgm_mem[%0d] =%0d, 

dcop=%0d", clk,$time,en,int,rr.pc,rr.ir,rr.dcop); 

mup_opr rr(clk,int,en); 

initial #40 $stop; 

endmodule 

Figure 8.48 A module to control basic operation of a microprocessor. 
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# clk=0,  t=0,  en=0,  int=0,   pgm_mem[0] =x, dcop=x 

# clk=1,  t=2,  en=0,  int=0,   pgm_mem[0] =x, dcop=x 

# clk=0,  t=4,  en=0,  int=0,   pgm_mem[0] =x, dcop=x 

# clk=0,  t=5,  en=1,  int=0,   pgm_mem[0] =x, dcop=x 

# clk=1,  t=6,  en=1,  int=0,   pgm_mem[0] =0, dcop=x 

# clk=0,  t=8,  en=1,  int=0,   pgm_mem[1] =0, dcop=x 

# clk=1,  t=10,  en=1,  int=0,   pgm_mem[1] =8, dcop=x 

# clk=0,  t=12,  en=1,  int=0,   pgm_mem[2] =8, dcop=247 

# clk=1,  t=14,  en=1,  int=0,   pgm_mem[2] =16, dcop=247 

# clk=0,  t=16,  en=1,  int=0,   pgm_mem[3] =16, dcop=239 

# clk=1,  t=18,  en=1,  int=0,   pgm_mem[3] =24, dcop=239 

# clk=0,  t=20,  en=1,  int=0,   pgm_mem[4] =24, dcop=231 

# clk=1,  t=22,  en=1,  int=0,   pgm_mem[4] =32, dcop=231 

# clk=0,  t=24,  en=1,  int=0,   pgm_mem[5] =32, dcop=223 

# clk=1,  t=26,  en=1,  int=0,   pgm_mem[5] =40, dcop=223 

# clk=0,  t=28,  en=1,  int=0,   pgm_mem[6] =40, dcop=215 

# clk=1,  t=30,  en=1,  int=0,   pgm_mem[6] =48, dcop=215 

# clk=0,  t=32,  en=1,  int=0,   pgm_mem[7] =48, dcop=207 

# clk=1,  t=34,  en=1,  int=0,   pgm_mem[7] =56, dcop=207 

# clk=0,  t=36,  en=1,  int=0,   pgm_mem[8] =56, dcop=199 

# clk=1,  t=38,  en=1,  int=0,   pgm_mem[8] =64, dcop=199 

# clk=1,  t=39,  en=1,  int=1,   pgm_mem[8] =64, dcop=199 

Figure 8.49 Results of simulating the test bench in Figure 8.48. 

8.9 PARALLEL BLOCKS 

All the procedural assignments within a begin–end block are executed 

sequentially.  The fork–join block is an alternate one where all the 

assignments are carried out concurrently (The nonblocking assignments too can be 

used for the purpose.).  One can use a fork-join block within a begin–end block 

or vice versa.  The examples below bring out some possible combinations and 

their subtle differences.  In each case the module and the simulation results are 

shown within the same figure. 

Example 8.21 

Figure 8.50(a) shows a module with assignments to the integer a within a begin–

end block. All the assignments are carried out sequentially.  The time values 

specified within the block are intervals for the following assignments.  Figure 

8.50(b) shows the same block of assignments within a fork–join block.  The 
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module fk_jn_a; 
integer a; 
initial 
begin 
 a=0; 
 #1 a=1; 
 #2 a=2; 
 #3 a=3; 
 #4 $stop; 
end
initial $monitor ("a=%0d, 
t=%0d",a,$time); 
endmodule 

//Simulatiom results 
# a=0, t=0 
# a=1, t=1 
# a=2, t=3 
# a=3, t=6 

module fk_jn_b; 
integer a; 
initial 
fork 
 a=0; 
 #1 a=1; 
 #2 a=2; 
 #3 a=3; 
 #4 $stop; 
join 
initial $monitor ("a=%0d, 
t=%0d",a,$time); 
endmodule 

//Simulation results 
# a=0, t=0 
# a=1, t=1 
# a=2, t=2 
# a=3, t=3 

(a)  (b) 

Figure 8.50 A simple illustrative example to bring out the difference between 

begin–end and fork-join blocks: (a) A module with a begin–end

block and the simulation results (b) A module with a fork–join block and 

the simulation results.  

assignments take effect at 0, 1, 2, and 3 time steps after entry to the block.  The 

time values specified are interpreted as being delays with respect to the time of 

entry to the loop, in contrast to the previous case where they are treated as 

successive time intervals.   The last assignment in Figure 8.50(b) is at the third 

time step; in Figure 8.50(a) it is at the sixth time step. 

Example 8.22 

Figure 8.51 shows an enhanced version of the modules in Figure 8.50.  It has a 

fork-join block within a begin–end block.  The integer a is assigned the 

value 5 at entry time to the begin–end block; it is followed by a set of 

assignments to it (within the fork–join block) all carried out concurrently.  The 

last assignment is at the 9th time step.  Execution stops at the 10th time step.  The 

begin–end and fork–join blocks in Figure 8.51 have been interchanged and 

shown in Figure 8.52.  The entry to the begin–end block is concurrent with the 

first assignment at the fifth time step.  All the assignments within the begin-end 

block are sequential.  The last of the assignments is at the 10th time step.  

Execution stops at the 15th time step. 
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module fk_jn_c; 

integer a; 

initial 

begin 

 #5 a=5; 

 fork 

  #1 a=0; 

   #2 a=1; 

   #3 a=2; 

   #4 a=3; 

   #5 $stop; 

 join 

end

initial $monitor ("a=%0d, t=%0d",a,$time); 

endmodule 

//Simulation results 

# a=x, t=0 

# a=5, t=5 

# a=0, t=6 

# a=1, t=7 

# a=2, t=8 

# a=3, t=9 

Figure 8.51 An example of a fork–join block within a begin–end block. 

module fk_jn_d; 

integer a; 

initial 

fork  

 #5 a=5; 

 begin 

  #1 a=0; 

   #2 a=1; 

   #3 a=2; 

   #4 a=3; 

   #5 $stop; 

 end 

join   

initial $monitor ("a=%0d, t=%0d",a,$time); 

endmodule 

continued
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continued

//Simulation results 

# a=x, t=0 

# a=0, t=1 

# a=1, t=3 

# a=5, t=5 

# a=2, t=6 

# a=3, t=10 

Figure 8.52 An example of a begin–end block within a fork–join block. 

8.10 Force–release CONSTRUCT 

When debugging a design with a number of instantiations, one may be stuck with 

an unexpected behavior in a localized area.  Tracing the paths of individual signals 

and debugging the design may prove to be too tedious or difficult.  In such cases 

suspect blocks may be isolated, tested, and debugged and status quo ante

established. The force–release construct is for such a localized isolation for a 

limited period.  Figure 8.53 shows the use of a force–release construct in a test 

bench.  The assignment  

force a = 1'b0;

forces the variable a to take the value 0.

force b = c&d;

forces the variable b to the value obtained by evaluating the expression c&d.

Subsequently a few assignments are made in the test bench. At a later part of the 

test bench, a and b are released that is, their original assignments are restored.  

The assignments here have specific characteristics:  

. . . 

force a = 1'b0;

force b = c&d;

assignment1;

assignment2; 

. . . 

release a;

release b;

. . . 

Figure 8.53 Use of the force–release construct in a test bench. 
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They are temporary, for a limited time and for test purposes only. 

Both nets and regs can be forced in this manner; that is, their regular values 

can be overridden. 

When a net is forced to a value, it takes the new value assigned.  On release, 

its previous assignment comes back into effect. 

When a reg is forced to a value, it takes the newly assigned value.  Even after 

the release, the newly assigned value continues to hold good until another 

procedural assignment changes its value. 

Figure 8.54 illustrates a test case for different uses of the force–release

construct.  CUT is a circuit block under test.  The design has the following 

input connections: 

Input x connected to combinational circuit g1 

Input y connected to combinational circuit g2 

Input u connected to combinational circuit g3 

Input v connected to reg1

x
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Figure 8.54 A circuit CUT under test with different possibilities of forcing test signals on it. 
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The circuit is identified to have a fault (unexpected behavior).  To debug the 

circuit, specific signals are to be forced at its inputs; after debugging the 

connections are to be restored.  The force–release construct can be used here 

effectively.  The testing and debugging activity is carried out in a test bench 

routine.  Typically, CUT may be the instantiation of a module defined elsewhere. 

Consider a hypothetical situation where x, y, u, and v are to be forced to 

specific signals for testing purposes as shown in Figure 8.54 itself. Different 

possible test situations are brought out through the figure. The relevant program 

segments in the test bench are shown in Figure 8.55; pertinent explanations follow: 

Figure 8.55(a) shows one segment of the test bench.  Until execution of the 

assignment 1 is complete, x (cut.x) is connected to the output of g1 as in the 

design description.  At this stage, x is forced to supply1 10 ns after 

assignment1.  The testing is continued with assignment2, assignment3,

etc.  Subsequently – 20 ns later – x is released, that is, its connection to the 

output of g1 is restored.  The test-bench execution continues with the next 

assignment.  x being a net, the restoration takes effect immediately after the 

release x command.  Note that the force and release are to be done through 

appropriate dereferencing.   

(a)

. . .  

assignment1; 
#10 force cut.x = supply1;

assignment2; 

 assignment3; 
#20 release cut.x;

.. . 

(b) 

. . .  

assignment4; 
#10 force cut.y = a & b; 
 assignment5; 
 assignment6; 
#20 release cut.y; 
. . .  

(c)

. . .  

assignment7; 
#10 force cut.s2 = supply0; 
 force cut.s3 = supply0; 
 assignment8; 
 assignment9; 
#20 release cut.s2; 
 release cut.s3; 
 . . .   

(d) 

. . .  

assignment10; 
#10 force cut.v = q; 
assignment11;  
assignment12; 
#20 release cut.v; 
#5 assignment13; 
cut.v = p; 
. . .   

Figure 8.55 Different segments of the test bench to force test signals at the input points of 

CUT in Figure 8.54. 
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Figure 8.55(b) shows another segment of the test bench. 10 ns after the 

execution of assignment4 in the test-bench, y (cut.y) is disconnected from 

y1, the output of g2.  It is assigned a new (temporary value) through g_t.  here 

the signals a and b are ANDed to form the input  to y. Assignment5,

assignment6, etc., are executed.  20 ns later, y is released.  Immediately, y – 

being a net – takes its normally assigned value y1 and execution of the test 

bench continues. 

In a typical simple case, g3 may be an OR gate with the continuous 

assignment  

assign u = s1 | s2 | s3;

Forcing s2 and s3 to supply0 amounts to (bypassing signals s2 and s3 and) 

connecting u directly to signal s1.  The corresponding test segment in the test 

bench is shown in Figure 8.55(c).  Ten ns after assignment7, s2 (cut.s2) and 

s3 (cut.s3) are forced to supply0. assignment8 and assignment9 are 

executed at this stage; s2 and s3 are released.  Subsequently, assignment10
is executed. 

Figure 8.55(d) shows one more segment of the test bench.  Ten time steps 

after execution of assignment10, v (cut.v) is given a new assignment (=q)

through the force construct.  Testing continues through assignment11,

assignment12 etc.  Twenty time steps later, cut.v is released.  Cut.v being a 

reg type of variable, the value assigned to it continues as q itself.  With this 

assignment being still valid, 5 time steps later, assignment 12 is executed.  

Subsequently, cut.v is assigned the value p.  The new value of cut.v = p is 

valid only for the test segment that follows assignment 12.

Observations:  

The force–release construct is similar to the assign–deassign

construct. The latter construct is for conditional assignment in a design 

description.  The force–release construct is for “short time” assignments 

in a test-bench.  Synthesis tools will not support the force–release

constructs. 

The force–release construct is equally valid for net-type variables and 

reg-type variables.  The net–type variables revert to their normal values on 

release.  With reg-type variables the value forced remains until another 

assignment to the reg.   

The variable, on which the values are forced during testing, must be properly 

dereferenced.   

In the illustration above, each variable was forced one at a time.  It was done 

only to simplify the illustration sequence and focus attention on the possible 

use of the construct.  In practice, different variables can be forced together 

before the special debug sequence.  Their release too can be together.   
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Example 8.23 

Use of the force–release pair is brought out here through a simple example. 

Figure 8.56 shows a module of an OR gate with two inputs along with a test bench 

for the same.  Simulation results are shown in Figure 8.57. Input c toggles every 3 

ns between 0 and 1; but input b is kept at 0 value throughout the test period.  

Hence in the normal course, output a will follow the input c and toggle along with 

it.  Input b is forced to 1 at 7 ns and released at 14 ns; correspondingly, the gate 

output a too goes to 1 state in the interval 7 ns to 14 ns;    these can be seen from 

the values of a, b, and c displayed in Figure 8.57 at the 1st, 8th, and 15th ns of 

simulation.  

module or_fr_rl(a,b,c); 

input b,c; output a; wire a,b,c; 

assign  a= b|c; 

initial begin  

#1 $display("display:time=%0d, b=%b, c=%b, a=%b", $time,b,c,a); 

#6 force  b=1'b1; 

#1 $display("display:time=%0d, b=%b, c=%b, a=%b", $time,b,c,a); 

#6 release b; 

#1 $display("display:time=%0d, b=%b, c=%b, a=%b", $time,b,c,a); 

end

endmodule 

module orfr_tst; 

reg b,c;wire a; 

initial begin b=1'b0; c=1'b0; #20 $stop; end 

always #3 c = ~c; 

or_fr_rl dd(a,b,c); 

endmodule 

Figure 8.56 An OR gate module and its test bench to illustrate the use of force–

release construct.. 

# display:time=1, b=0, c=0, a=0 

# display:time=8, b=1, c=0, a=1 

# display:time=15, b=0, c=0, a=0 

Figure 8.57 Waveforms of the inputs and output of the OR gate module in Figure 8.56 

during its test. 
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8.11 EVENT 

The keyword event allows an abstract event to be declared.  The event is not a 

data type with any specific values; it is not a variable (reg) or a net.  It signifies a 

change that can be used as a trigger to communicate between modules or to 

synchronize events in different modules.  Figure 8.58 shows a segment of a 

module to bring out its use.  change has been declared as an event.  In the 

course of execution of an always block, the event is triggered.  The operator 

“ ” signifies the triggering.  Subsequently, another activity can be started in the 

module by the event change.  The always@(change) block activates this.  The 

event change can be used in other modules also by proper dereferencing; with 

such usage an activity in a module can be synchronized to an event in another 

module. 

. . . 

event change;

. . . 
always

. . . 

. . . change;

. . . 

.always@change

. . .  

Figure 8.58 Use of the event construct in a module.  

The event construct is quite useful, especially in the early stages of a design.  

It can be used to establish the functionality of a design at the behavioral level; it 

allows communication amongst different instantiated modules without associated 

inputs or outputs. 

Example 8.24 

Figure 8.59 illustrates an application of an event construct for a skeletal serial 

receiver. Module rec  is the serial receiver and the module rec_tst is its test 

bench.  The test bench – rec_tst –has an 8-bit register aa into which a sequence of 

bytes (their values decided at random) is loaded.  The bytes are converted into a 

serial data stream di synchronized to the positive edge of the clock.  The test bench 

– rec_tst – instantiates the module rec  with the name rrcc, gives di and clk as 

input to  rrcc, and receives the buffer output from it.  The receiver converts the 

serial data into parallel form by loading successive bits into a register designated 

“a” at the negative edges of the clock. Once the a register is full, the “buf-ful”
event is activated. The test bench uses the event to read the buffer a and display its 

content along with that of aa.
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module rec_tst; 

reg clk,di; integer n,i; 

reg[8:1] aa;wire [8:1] a; 

always #2 clk = ~clk; 

rec rrcc(a,di,clk); 

always @(rrcc.buf_ful) $display("t=%0d, aa=%h, a=%h",$time,aa,a); 

initial  

 for (n=1;n<3000;n=n+113) begin 

    aa=n;i=0; 

    repeat(8)@(posedge clk)  

     begin 

      i=i+1; 

      di=aa[i]; 

      //$write("bb=%b",aa[i]); 

      end 

    #3 i=0;   

    end //Why '#3'? 

initial clk=1'b0; initial #400  $stop; 

endmodule 

module rec(a,ddi,clk); 

output[8:1]a; input ddi,clk;reg[8:1] a;integer j,jj; 

event buf_ful; 

always for (j=0;j<20;j=j+1)  begin 

   #0 jj=0; 

   repeat(8)@(negedge clk) begin 

      jj=jj+1; 

      a[jj]=ddi; 

      //$display("b=%b",a[jj]); 

      end 

  #0 ->buf_ful; 

   end 

endmodule 

Figure 8.59 A module to illustrate the event construct: A serial data receiver and a test 

bench for the same. 
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# t=32, aa=01, a=01 

# t=64, aa=72, a=72 

# t=96, aa=e3, a=e3 

# t=128, aa=54, a=54 

# t=160, aa=c5, a=c5 

# t=192, aa=36, a=36 

# t=224, aa=a7, a=a7 

# t=256, aa=18, a=18 

# t=288, aa=89, a=89 

# t=320, aa=fa, a=fa 

# t=352, aa=6b, a=6b 

# t=384, aa=dc, a=dc 

Figure 8.60 Simulation results of the test bench in Figure 8.59. 

8.12 EXERCISES  

Prepare design modules for the Exercises 1 to 10 below.  In each case prepare a 

suitable test bench and test the design module [Arnold, Tocci]]. 

 1. An adder to add two eight-digit numbers in BCD form. 

 2.  Add two BCD digits using a look-up table. 

 3. Multiply two BCD digits using a look-up table. 

 4. An 8-digit multiplier all the digits being in BCD form. 

 5.  A multiplier to multiply two 32-bit numbers. 

 6.  A module to convert angle in radians to one in degrees. 

 7.  A module to convert a 48-bit number into a decimal one in BCD form. 

 8.  Combine the above two: Form a module to convert an angle in radians into 

one in degrees in decimal form. 

 9.  A table to give the sines of angles.  The given angle is a four-digit decimal 

number – in degrees in the range 0 to 90 degrees.  The given table has two 

parts – a main table of four digits and a table of mean differences of one 

digit. 

 10.  The outputs of a set of shift registers are designated as q1, q2, q3, etc.  A 

selected set of these is exor’ed and the exor output fed as data input to q1.  

As the set of registers is clocked, the state vector representing the shift 

register outputs goes on changing state.  With a properly selected set as the 

input to the exor gates, one can ensure that the state vector sequences 

through all the possible states in a “pseudo-random” manner.  Thus an n 

stage shift register sequences through 2n – 1 states.   

 11.  Consider the code block in Figure 8.61(a).  Complete the module and test it 

with the inputs a and b in Figure 8.61(b).  Explain the difference in the 

waveforms of c and d.
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always @ a

begin

c=b;

assign  d=b;
end

(a)

a

b

t

(b)

Figure 8.61 The behavioral block and the input waveforms for it for Exercise 11. 

 12.  A Serial Receiver with event:  A serial data stream is coming on an input 

data line.  It is synchronized with a clock signal.  Do the following in a 

module 

Receive 8 bits and fill a byte-wide receive register. 

Set event REC. 

Use REC to transfer the received byte to the top of a FIFO. 

 13. A Serial Transmitter with event: Tr_buf is a byte-wide buffer.  Serially 

output its content on a serial line.  When Tr_buf is empty, set event TR.  On 

TR event, load Tr_buf from bottom of FIFO. 

 14.  Prepare modules to realize the priority encoder using the “if” and “for”

constructs.  Simulate and synthesize each.   

 15.  In Example 8.8 the event @(negedge clk) succeeds repeat.

Interchange the two and suitably modify the block with additional begin

and end lines.  Simulate, compare the results with those in the example, and 

explain the difference. 

 16.  Complete the “block memory output” module in Figure 8.25.  Test it with a 

suitable test bench. 

 17.  Prepare modules for the following and simulate each with a test-bench: 

Clear a block of memory. 

Input a block of bytes to a register file. 

Move a set of bytes from one to another page of memory with 

specified starting and ending addresses. 

 18.  Use the disable construct and prepare modules for AND, NAND, and 

NOR functions.  Follow the approach in Figure 8.34.  Test each with 

corresponding test benches. 
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 19.  Use the repeat construct along with the disable construct to realize an 

AND gate.  Synthesize the module and compare the synthesized circuits.   

 20.  Repeat the above Exercise with casez and if-else-if constructs. 

 21.  Repeat the above two Exercises for OR, NOR, and NAND functions. 

 22.  What is the functional difference between the two blocks in Figure 8.62? 

Illustrate through suitable test benches. 

  If the combination  

@(posedge en1) 

@(posedge en2) 

  is replaced by  

@ (posedge en1 or posedge en2) 

  how will the performance differ? Explain through test benches. 

Initial 

 begin  

 #1 a=0; 

 @(posedge en1) 

 @(posedge en2) 

 a=1; 

end

Initial begin 

 #1 a=0; 

              fork 

 @(posedge en1) 

 @)(posedge en2) 

               join 

 a=1; 

 end 

Figure 8.62 Two functional blocks to illustrate the difference between begin–end and 

fork–join pairs of constructs in Exercise 22. 

 23.  Compare the behavior of the blocks in the above Exercise with one using the 

if construct. 

 24.  A serial link has a clock rate of 1 MHz and a bit rate 1/32 times the clock 

rate.  Set up a receiver to receive 8 successive bytes of data and to load them 

into a register file.  The expected functioning of the unit is to be on the 

following lines:  

A clock to function at 1 MHz. A bit rate clock derived from the main 

clock. 

A flag En to enable serial reception. 

A serial data input stream. 

At the first positive edge of the main clock following En, 
transmission starts.
At every 4th pulse of the main clock, the input data line is to be 

sensed.  A polling of 4 consecutive data bits decides the received 

output bit value and the status of an error bit. 

Whenever the error flag goes high, the corresponding byte is made ff.   

  Set up a test bench and test the functioning of the link. 
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25.  Figure 8.63 shows a module.  Get the waveforms of a and b by simulation. 

module pulses;  

reg [8:0] I; 

reg a,b; 

initial 

while (I<100) 

begin 

 #1 a= I(0); 

 b= I(1); 

 I = I + 1; 

end

initial I=0; 

initial #100 $stop; 

endmodule 

Figure 8.63 A module to generate simple waveforms. 

 26.  Generate three waveforms with the following characteristics (see 

Figure 8.64): 

All have a time period of 21 time steps. 

All are identical. 

All have a continuous ON period of 5 ns.   

All are equally phase-shifted. 

  Generate the waveforms using case, if-else-if and for constructs. 

a

c

b

Figure 8.64 Three phase clock waveforms. 

 27.  Generate the waveforms in Figure 8.65 using the case, if, and for loops. 

Use repeat and forever constructs for cyclic repetition. 
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Figure 8.65 Different waveforms for Exercise 27. 

 28.  A module and other modules instantiated within it can have a number of 

events scheduled for execution at the same time step.  The sequence of 

execution is simulator-dependent.  If any particular statement is assigned for 

execution with a zero time delay, it is executed as the last one in the 

concerned time step. Consider Example 8.23: The event buf_ful is assigned 

a zero time delay; delete the delay, simulate the module, and explain the 

difference in results, if any.  The commented $write and $display statements 

may be activated for this. 

 29.  Again consider example 8.24:  The last statement in the block used to 

generate the serial data stream is assigned a 3 ns time delay.  Delete the 

delay, simulate the module, and explain the difference in results, if any. The 

commented $write and $display statements may be activated for this. 
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9

FUNCTIONS, TASKS, AND USER-

DEFINED PRIMITIVES 

9.1 INTRODUCTIUON 

Bigger designs are better arranged in small functional blocks; it facilitates 

debugging and any reorganization. Thus a module can have well-defined sub-

modules inside, treated as separate entities.  Functions and Tasks are such entities 

inside modules.  They play three broad roles:  

A well-defined structure with a separate identity. 

They can hide some variables. 

They can be repeatedly invoked within the module. 

User-defined primitive (UDP) provides an alternative form of a submodule; it 

can realize specific outputs.  The UDP has a specific format.  It can be defined by 

the user and used wherever necessary.  The fact that the UDP has a specific format 

allows a straightforward definition – often at the expense of flexibility. 

9.2 FUNCTION  

A function is like a subroutine or a procedure in a program.  It is defined 

separately within a module and can be called whenever necessary.  When a 

function is declared with a function name, the system allocates a register for it.  

The name of the register is that of the function; and its type (as well as size) is also 

that of the function.  When a function is called, the system executes the functional 

activity and generates the output.  Eventually the output is assigned to the register 

identified for the function.  The quantity returned by the function can be used as an 

operand in an assignment or in an expression.  The structure of a function 

definition is shown in Figure 9.1.  The significance of each of the quantities as 

well as the rules of using them is also explained in the figure.  The use of functions 

is brought out through a set of examples. 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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input declarations

local variable declarations

procedural assignment satements

endfunction

function declaration

The  function can return a real or

integer type data;it can be a vector

with a specified size.  The default

value is a binary bit.

The name assigned to the function; the

function is instantiated with this name.

All inputs to the function and their

sizes are declared here.  A function

must have at least one input

Variables local to the function are

declared.  They are not available

outside the function

Represent the function body.  It  may

be a single procedural assignment or

a col lect ion  of  them with in a

begin-end   construct

Signifies termination of a function

definition

function type_or_size function_name ;

Figure 9.1 Structure for function definition.   

Example 9.1 

The function odd-parity is defined within the module parity-check in Figure 9.2.  

It generates a parity bit.  The parity bit is 1 if the number of one-bits in the byte is 

odd.  Otherwise it is zero.  The module has an 8-bit vector input and a flag input – 

en.  It has an output chk.  Whenever the flag goes high, the function odd-parity is 

called.  It returns the parity bit value and assigns it to chk in the module. parity-
check is an example with a single-bit output-type function in it. The function has 

no local variables in it.   

module parity_chk(a,en,chk); 

input[7:0]a; 

input en; 

output chk; 

wire[7:0] a; 

reg chk; 

always @(posedge en) 

begin 

 chk=pb(a); 

 $display("t=%0d, a = %b, en = %0b, pb = %0b ",$time,a,en,chk); 

end

continued
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continued

function pb; 

input[7:0]a; 

pb=^a; 

endfunction 

endmodule 

module tst_pchk; 

reg [7:0]a; 

reg en; 

wire chk; 

integer i; 

parity_chk pchk(a,en,chk); 

initial #0 en=1'b0; 

always #2 en = ~en; 

initial 

begin 

 #1 a=8'h00; 

 for(i=0;i<8;i=i+1) 

 begin 

  #4 a=a+3'o6; 

 end 

end

initial #40 $stop; 

endmodule 

Figure 9.2 A module for parity generation through a function. 

# t=2, a = 00000000, en = 1, pb = 0  

# t=6, a = 00000110, en = 1, pb = 0  

# t=10, a = 00001100, en = 1, pb = 0  

# t=14, a = 00010010, en = 1, pb = 0  

# t=18, a = 00011000, en = 1, pb = 0  

# t=22, a = 00011110, en = 1, pb = 0  

# t=26, a = 00100100, en = 1, pb = 0  

# t=30, a = 00101010, en = 1, pb = 1  

# t=34, a = 00110000, en = 1, pb = 0  

# t=38, a = 00110000, en = 1, pb = 0 

Figure 9.3 Simulation results of the test bench in Figure 9.2. 
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Example 9.2 

Figure 9.4 shows another module for parity generation.  The module has a function 

to count the number of one-bits in the input byte. In the module the parity bit is 

decided by mod-2 division of the number returned by the function. The function 

has an integer declared and used within it.  (In contrast, in the last example the 

parity bit was generated directly within the function defined.) 

module parity(p,a,En); 

input[7:0]a; 

input En; 

output p; 

reg p; 

always @(posedge En) 

begin 

 p=n1(a)%2;  //Use n1 & generate the parity bit. 

 $display("t=%0d, a = %b, en = %b, p = %b ",$time,a,en,p); 

end

function integer n1;  //A function to count the number of 1 bits in a byte 

input[7:0]a; 

integer i; 

 for(i=0;i!=8;i=i+1) 

 begin 

  if(i==0) n1=0; 

  if(a[i]) n1=n1+1; 

 end  

endfunction 

endmodule 

Figure 9.4 A module to generate a parity bit: The parity bit is generated by counting the 

number of one-bits in a function and doing a mod-2 division. 

Example 9.3  

In the module of Figure 9.5 the number of one-bits is decided by shifting out the 

bits of the input vector and counting the ones in them.  Otherwise the module is 

similar to the one in Figure 9.4.  The module (as well as the previous ones) can be 

easily extended to generate the parity bit for wider binary streams. 
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module parity_a(p,a,En); 

input[7:0]a; 

input En; 

output p; 

reg p; 

always @(posedge En) 

begin 

 p=nn(a)%2; 

 $display("t=%0d, a = %b, En = %b, p = %b ",$time,a,En,p); 

end

function integer nn; 

input[7:0]a; 

integer i; 

begin 

 for(i=0;i!=8;i=i+1) 

 begin 

 if(i==0) nn=0; 

 if(a[i]) nn=nn+1; 

 a=a>>1; 

 end 

end

endfunction 

endmodule 

Figure 9.5 Another module to generate a parity bit similar to that in Figure 9.4.  

Example 9.4  

Figure 9.6 shows an adder module to add two 2-bit numbers.  The module has two 

functions defined in it – a half-adder and a full-adder.  Further, one can see that the 

full-adder function itself calls the half-adder function within it.  The module calls 

the full-adder function repeatedly within itself.  A test bench for the adder is also 

included in the figure.  The simulation results are shown in Figure 9.7.    

module adderfun(r,p,q,En); 

input[1:0] p,q; input En; output [2:0] r; reg[2:0]r,c; integer i; 

always@(posedge En) 

continued
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continued

begin 

 for(i=0;i<2;i=i+1) 

 begin 

  if(i==0) c[i]=1'b0; 

  {c[i+1'b1],r[i]}=fa(p[i],q[i],c[i]); 

 end 

  r[2]=c[2]; 

  $display("t=%0d, En = %b, p = %b, q = %b, r = %b ",$time  

  ,En,p,q,r); 

end

function[1:0] ha; 

input a,b; 

ha={a&b,a^b}; 

endfunction 

function [1:0]fa; 

input a,b,c; reg[1:0]a1,a2,aa2; 

begin 

 a1=ha(a,b); 

 aa2=ha(a1[0],c); 

 a2[1] =  (aa2[1]|a1[1]); 

 a2[0] = aa2[0]; 

 fa=a2; 

end

endfunction 

endmodule 

module tst_adder_fun; //testbench; 

reg [1:0] p,q; reg En; wire [2:0] r; 

adderfun aa(r,p,q,En); 

always #2 En=~En; 

initial  begin 

     En=1'b0; p=2'b01;q=2'b00; 

    #5 p=2'b10;q=2'b10; 

  #4 p=2'b10;q=2'b11; 

  #4 p=2'b11;q=2'b11; 

  #4 p=2'b01;q=2'b01; 

 end 

initial #30 $stop; 

endmodule 

Figure 9.6 A module to illustrate a function calling another one; a test bench is also 

included in the figure. 
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# t=2, En = 1, p = 01, q = 00, r = 001  

# t=6, En = 1, p = 10, q = 10, r = 100  

# t=10, En = 1, p = 10, q = 11, r = 101  

# t=14, En = 1, p = 11, q = 11, r = 110  

# t=18, En = 1, p = 01, q = 01, r = 010  

# t=22, En = 1, p = 01, q = 01, r = 010  

# t=26, En = 1, p = 01, q = 01, r = 010

Figure 9.7 Results of running the test bench in Figure 9.6. 

Example 9.5  

A module to add two 32-bit numbers is shown in Figure 9.8.  It is essentially a 

scaled-up version of the one in Figure 9.6.  The addition is initiated by the En
input going high; it is carried out in one time step.  A test bench is also included in 

the figure.  The simulation results for a specific set of input number combinations 

are shown in Figure 9.9. 

module add32(r,p,q,En); 

input[31:0] p,q; input En; output [32:0] r; reg[32:0]r,c; integer i; 

always@(posedge En) begin 

   for(i=0;i<32;i=i+1) 

   begin 

   if(i==0) c[i]=1'b0; 

   {c[i+1'b1],r[i]}=fa(p[i],q[i],c[i]); 

   end 

   r[32]=c[32]; 

   $display( "t=%0d, En = %b, p = %0h, q = %0h, r =  

   %0h ",$time, En,p,q,r); 

          end 

function[1:0] ha; 

input a,b; 

ha={a&b,a^b}; 

endfunction 

function [1:0]fa; 

input a,b,c; reg[1:0]a1,a2,aa2; 

begin 

 a1=ha(a,b); 

continued
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continued

 aa2=ha(a1[0],c); 

 a2[1] =  (aa2[1]|a1[1]); 

 a2[0] = aa2[0]; 

 fa=a2; 

end

endfunction 

endmodule 

module tst_add32; //testbench; 

reg [31:0] p,q; reg En; wire [32:0] r; 

add32 aa(r,p,q,En); 

always #2 En=~En; 

initial  begin 

  #0 En  = 1'b0; 

  #3 p    = 32'h1234;         q = 32'h4321; 

  #4 p    = 32'h12345678; q = 32'h98765432; 

  #4 p    = 32'habcdef12;  q = 32'hbbccddee; 

  #4 p    = 32'hfedcba39;  q = 32'h13579bdf; 

  #4 p    = 32'h9876abcd; q = 32'hfedc8765; 

  #4 p    = 32'hf0e0d0c0;  q = 32'h11020304; 

 end 

initial #30 $stop; 

endmodule

Figure 9.8 A scaled-up version of the 2-bit adder in Figure 9.6 to add 32-bit numbers. 

# t=2, En = 1, p = x, q = x, r = x  

# t=6, En = 1, p = 1234, q = 4321, r = 5555  

# t=10, En = 1, p = 12345678, q = 98765432, r = aaaaaaaa  

# t=14, En = 1, p = abcdef12, q = bbccddee, r = 1679acd00  

# t=18, En = 1, p = fedcba39, q = 13579bdf, r = 112345618  

# t=22, En = 1, p = 9876abcd, q = fedc8765, r = 197533332  

# t=26, En = 1, p = f0e0d0c0, q = 11020304, r = 101e2d3c4 

Figure 9.9 Results of running the test bench in Figure 9.8. 

Example 9.6  

A variant of the adder in Example 9.4 is shown in Figure 9.10: After the enable 

input en goes high, the full-adder function is called repeatedly in successive clock 

pulses and bit-wise addition is carried out.  The figure also includes a test bench.  

As can be seen from the simulation results in Figure 9.11, each addition is spread 

over two clock periods.  
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module adderfunb(clk,r,p,q,En); 
input[1:0] p,q; input En,clk; output [2:0] r; reg[2:0]r,c; integer i; 
always@(posedge En) begin 
   for(i=0;i<2;i=i+1) begin 
     @(posedge clk) 
     if(i==0) c[i]=1'b0; 
     {c[i+1'b1],r[i]}=fa(p[i],q[i],c[i]); 
      end 
   r[2]=c[2]; 
   $display(" t=%0d, clk = %b, En = %b, p = %b, q = %b, 
   r = %b ",$time,clk,En,p,q,r); 
          end 
function[1:0] ha; 
input a,b; 
ha={a&b,a^b}; 
endfunction 

function [1:0]fa; 
input a,b,c; reg[1:0]a1,a2,aa2; 
begin 
 a1=ha(a,b); 
 aa2=ha(a1[0],c); 
 a2[1] =  (aa2[1]|a1[1]); 
 a2[0]=aa2[0]; 
 fa=a2; 
end
endfunction 
endmodule 

module tst_adder_funb(); 
reg [1:0] p,q; reg En,clk; wire [2:0] r; 
adderfunb bb(clk,r,p,q,En); 
always #2 clk=~clk;  
initial  begin 
          clk=1'b0;    En=1'b0; p=2'b01; q=2'b00; 
  #1 En=1'b1; #6 En=1'b0; p=2'b01; q=2'b10; 
  #1 En=1'b1; #7 En=1'b0; p=2'b01; q=2'b01; 
  #1 En=1'b1; #7 En=1'b0; p=2'b10; q=2'b01; 
  #1 En=1'b1; #7 En=1'b0; p=2'b10; q=2'b10; 
  #1 En=1'b1; #7 En=1'b0; p=2'b10; q=2'b11; 
  #1 En=1'b1; #7 En=1'b0; p=2'b11; q=2'b11; 
  #1 En=1'b1; #7 En=1'b0; 
         end 
initial #60 $stop; 
endmodule 

Figure 9.10 A variant of the 2-bit adder in Figure 9.6; bit-wise addition is carried out in 

successive clock pulses. 
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#  t=6, clk = 1, En = 1, p = 01, q = 00, r = 001  

#  t=14, clk = 1, En = 1, p = 01, q = 10, r = 011  

#  t=22, clk = 1, En = 1, p = 01, q = 01, r = 010  

#  t=30, clk = 1, En = 1, p = 10, q = 01, r = 011  

#  t=38, clk = 1, En = 1, p = 10, q = 10, r = 100  

#  t=46, clk = 1, En = 1, p = 10, q = 11, r = 101  

#  t=54, clk = 1, En = 1, p = 11, q = 11, r = 110 

Figure 9.11 Simulation results of the test bench for the adder module in Figure 9.10. 

Example 9.7  

A module to add 32-bit numbers is shown in Figure 9.12.  It is a scaled-up version 

of that in the last example. The addition commences after the enable bit En goes 

high.  Starting with the LSB, one bit is added at every succeeding clock pulse.  

Addition is completed in 32 clock pulses. The simulation results with a set of 32-

bit numbers is shown in Figure 9.13. 

module add32_a(clk,r,p,q,En); 

input[31:0] p,q;input En,clk; output [32:0] r; reg[32:0]r,c; integer i; 

always@(posedge En)  begin 

 for(i=0;i<32;i=i+1) 

 begin 

  @(posedge clk) begin 

    if(i==0) c[i]=1'b0; 

    {c[i+1'b1],r[i]}=fa(p[i],q[i],c[i]); 

    end 

 end 

 r[32]=c[32]; 

 $display( "t=%0d,  En = %b,  p = %0h, q = %0h, r = %0h 

",$time,En,p,q,r);  end 

function[1:0] ha; 

input a,b; ha={a&b,a^b}; 

endfunction 

function [1:0]fa; 

input a,b,c; reg[1:0]a1,a2,aa2; 

begin 

 a1      =  ha(a,b); 

 aa2    =  ha(a1[0],c); 

 a2[1] =  (aa2[1]|a1[1]); 

continued
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continued

 a2[0] =  aa2[0]; 

 fa      =  a2; 

end

endfunction 

endmodule 

module tst_add32a(); 

reg [31:0] p,q; reg En,clk; wire [32:0] r; 

add32_a bb(clk,r,p,q,En); 

always #1 clk=~clk;  

initial  begin 

 clk=1'b0;En=1'b0;p=32'h1234;q=32'h4321; 

 #1  En=1'b1;#100 En=1'b0;p=32'h12345678;q=32'h98765432; 

 #1  En=1'b1;#99 En=1'b0;p=32'habcdef12;q=32'hbbccddee; 

 #1  En=1'b1;#99 En=1'b0;p=32'hfedcba39;q=32'h13579bdf; 

 #1  En=1'b1;#99 En=1'b0;p=32'h9876abcd;q=32'hfedc8765; 

 #1  En=1'b1;#99 En=1'b0;p=32'hf0e0d0c0;q=32'h11020304; 

 #1  En=1'b1;#99 En=1'b0; 

 end 

initial #900 $stop; 

endmodule 

Figure 9.12 A 32-bit adder with the addition done in successive clock pulses. 

# t=65,  En = 1,  p = 1234, q = 4321, r = 5555  

# t=165,  En = 1,  p = 12345678, q = 98765432, r = aaaaaaaa  

# t=265,  En = 1,  p = abcdef12, q = bbccddee, r = 1679acd00  

# t=365,  En = 1,  p = fedcba39, q = 13579bdf, r = 112345618  

# t=465,  En = 1,  p = 9876abcd, q = fedc8765, r = 197533332  

# t=565,  En = 1,  p = f0e0d0c0, q = 11020304, r = 101e2d3c4 

Figure 9.13 Simulation results of the test bench for the adder in Figure 9.12.  

9.2.1 Trade-off Between Hardware and Speed 

Examples 9.5 and 9.7 represent two extreme cases of a trade-off between speed 

and hardware.  Minimal hardware is used in Example 9.7 to carry out the addition, 

but the execution time is a maximum here due to the repeated and sequential use of 

the same hardware block.  In contrast, in Example 9.5 the same hardware is 

replicated to the maximum extent and the addition is carried out “at one go”, that 
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is, in minimum time.  Circuit-wise, it is a trade-off between silicon area and speed.  

One can have nibble or byte adders and do nibble-wise or byte-wise addition; these 

represent intermediate levels of trade-offs.  Algebraic or logic operations, register-

based operations, etc., are other examples calling for similar trade-off decisions.  

Buswidth, memory organization, and ALU sizing all call for such trade-off 

decisions.  In all such cases a decision may have to be based on considerations of 

speed of operation, power consumption, development time, cost, etc.   

9.2.2 Scope of Functions 

A few observations on functions and their use are in order here [IEEE]. 

A function has only input arguments. It is to have at least one input.  When a 

function with multiple input ports is called, the order of arguments in the 

calling statement should match that of the input declarations within the 

function definition. 

A function returns an output.  It has no separate output ports. 

A function can have variables declared and used within it – these are variables 

local to the function.   

A function can be defined anywhere within the module. 

Event or timing based controls are not possible within a function.  This 

restricts the function to be of a combinational logic type.   

A function can be called from within another function.  Both the functions are 

to be defined within the module. 

A function in a module can be called from another module through proper 

hierarchical referencing. 

A function can be called repeatedly within the module of definition. 

Expressions can be used as arguments while calling a function. 

Definition of a function should not be within any initial or always block.  or 

within another function.   

A function uses a register of the declared type and size to return the value of 

the output. Such a returned value can be real, integer, time, or 

realtime type.  It can also be a vector with a range.   

Every variable declared inside a function has a corresponding location inside.  

These locations are physical entities.  Each time a function is called, the same 

set of locations is reused.  This is in contrast to the instantiation of a module 

where with every instantiation, a fresh set of locations is assigned. 

9.2.3 Recursive Functions 

Consider a function to compute the sum of the squares of the first n natural 

numbers:  The sum designated as Sn can be expressed as  
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Sn = .n2 + (n - 1)2 +  + 32+ 22+12

Sn can be expressed as  

Sn = n2 + Sn-1

where Sn-1 represents the sum of the squares of the first (n – 1) natural numbers.  

Thus if Sn-1 were known, Sn can be obtained by adding n2 to it. Continuing the 

same argument one can recursively arrive at the following: 

Sn-1 = (n - 1)2 + Sn-2

Sn-2 = (n - 2)2 + Sn-3

…

…

S2 = 22 + S1

We know that 

S1 = 1. 

The actual computation is carried out in the reverse order; that is, one computes S1

directly and the subsequent sums S2, S3, etc., are computed from it recursively – 

every sum by adding an increment to the previous sum.   

A similar procedure can be adopted to compute factorials, infinite series and 

so on. Latest version of the LRM (2001) has expanded the scope of Functions to 

accommodate recursive functions.  The keyword automatic following the 

keyword function implies it to be recursive.  A recursive function can be called 

in the same manner as a nonrecursive function.  Recursive function call is 

explained here through an example. 

Example 9.8  

The module sum_sq in Figure 9.14 computes the sum of the squares the first n
natural numbers. 

function automatic integer sum_sq; 

input n; 

begin 

 if(n==1) sum_sq =1; 

 else sum_sq = sum_sq + n*n; 

end

endfunction 

Figure 9.14 A module to compute the sum of squares of the first n natural numbers. 
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The term “automatic” in the function declaration statement ensures recursive 

computation.  Thus if n is assigned the value 4, during compilation sum_sq (4) will 

be successively replaced by 

sum_sq (3) + 42,

sum_sq (4) + 32 + 42,

sum_sq (4) + 22 + 32 + 42 and finally by 

12 + 22 + 32 + 42.

9.3 TASKS 

The role of a task in a module is similar to that of a subroutine in a program.  It is 

defined within a module and can be called as many times as desired within a 

procedural block.  Its scope and role are wider than those of a function. 

9.3.1 Task Definition 

The task definition is brought out in Figure 9.15.  The first statement starts with 

the keyword task; it is followed by an identifier name and the customary 

semicolon.  The input, inout, and the output declarations follow.  Their order is 

not rigid.  The body of the task comprises of a number of behavioral level 

statements.  They may be executed in zero time or at specified time intervals or 

events.  Thus the time of exit from a task can differ from that of entry to it.     

9.3.2 Task Enabling 

A task is enabled through a statement akin to the instantiation of a gate.  It is 

enabled like a procedural assignment by specifying the task name followed by the 

list of arguments within brackets followed by the semicolon.  A typical enabling 

statement has the form 

Do_it (Expression1, Expression2, . .   ); 

where 

Do_it is the name of the task being enabled, 

Expression1 is the first argument, 

Expression2 is the second argument,  

and so on. 

The type and order of the arguments should match those of the respective 

declarations within the definition of the task.  In a general case, an argument can 

be an expression.    The following are characteristic of a task:  
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task  do_it  ;

input  . . .. ;

end

procedural

assignments

begin

Local variable

declarations

inout.. ;

output...;

endtask

Task definition starts with the keyword task

Name assigned to the task

All inputs, outputs and inout are declared here.

Variables that are local to the task are declared inside.

These variables are not available or accessible from

outside

The body (The executable portion ) of the task is in the

form of one or more procedural assignments

Signifies the end of the task

Figure 9.15 Typical structure of a task. 

A task can be activated by an event, sensitivity list, etc.

A task can have activities assigned within it which are event-controlled or 

time-controlled. 

A task can have input, output and inout; however it need not necessarily have 

any of these; it can be complete in itself. 

A task can enable other tasks and functions. 

A task can call itself.  The latest version of the LRM supports recursion.   The 

keyword automatic is added to the keyword task to make it recursive. 

All assignments to a task are passed to it by value and not through a pointer to 

the argument.   

A task in a module can be invoked from another module through a 

hierarchical reference. 

The arguments passed to a task retain their type within their environment of 

use.  Thus a wire-type argument passed to a task as input cannot have its value 

altered within the task through an assignment. 

There are no apparent restrictions on the input arguments of a task.  They can 

be nets, regs, or expressions involving them.  But any argument of inout or output
type has to be a variable or of a similar type; the restrictions are similar to those on 

the quantities on the left side of procedural assignments. The use of tasks is 

illustrated through a set of four examples here. 
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Example 9.9  

Figure 9.16 shows a module to count the total number of 1 bits in a nibble.  A task 

has been defined to do the counting; the task has vector-type input and output; it 

has an integer defined within.  The task has been invoked in the main module. A 

test-bench is also included in the figure.  The simulated results for a set of inputs 

are given in Figure 9.17. 

module oness_counter; 

reg [3:0]x;reg [2:0]y; 

always@(x)onescounter(x,y); 

task onescounter; 

input [3:0]x; output[2:0]y; integer i; 

begin 

 y=0; 

 for(i=0;i<=3;i=i+1) if (x[i])y= y+1; 

end

endtask 

initial x=3'b000; 

always #3 x=x+2'b11; 

initial $monitor(" t=%0d, y= %b, x = %b ",$time,y,x); 

initial #30 $stop; 

endmodule 

Figure 9.16 A module to count the number of 1 bits in a nibble.  

#  t=0, y= 000, x = 0000  

#  t=3, y= 010, x = 0011  

#  t=6, y= 010, x = 0110  

#  t=9, y= 010, x = 1001  

#  t=12, y= 010, x = 1100  

#  t=15, y= 100, x = 1111  

#  t=18, y= 001, x = 0010  

#  t=21, y= 010, x = 0101  

#  t=24, y= 001, x = 1000  

#  t=27, y= 011, x = 1011  

Figure 9.17 Simulated results with the test bench in Figure 9.16. 
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Example 9.10 

Figure 9.18 shows a module to divide a given clock with a given number.  The 

scaling number can be changed if necessary.  The task uses input, output and inout 

type of quantities. The waveforms of the input clock and the slower output clock 

obtained by simulating the test bench are shown in Figure 9.19.  

module clk_tst; 

reg clk,sclk;reg [3:0] n,nn; 

always #2 clk=~clk; 

task  sl_clk; 

input clk; input[3:0]nn; inout[3:0] n; 

output sclk; 

begin 

 if(n!=4'h0) begin 

    n     = n-1'b1; 

    sclk = 1'b0; 

   end 

 else begin 

   n     = nn; 

   sclk = 1'b1; 

  end 

end

endtask 

always @(negedge clk) sl_clk(clk,n,nn,sclk); 

initial  

begin 

 clk=1'b0;nn=4'h2;n=nn; #45$stop; 

end

initial $monitor($time, "n=%0d, clk=%0b, sclk=%0b",n,clk,sclk); 

endmodule 

Figure 9.18 A module to generate a slower clock from a given clock input. 

Figure 9.19 Simulation results of the module in Figure 9.18. 
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Example 9.11  

The adder in Example 9.4 has been modified and shown in Figure 9.20.  The half- 

and full-adders have been defined as tasks and invoked to carry out the vector 

addition.  The half-adder has been invoked twice within the full-adder task.  The 

test-bench and simulation results are not repeated here.  The module can be 

directly expanded to add wider numbers. 

module addertsk(r,p,q,En); 

input[1:0] p,q; input En; output [2:0] r; 

reg[2:0]r,c; integer i; 

always@(posedge En) 

 begin 

  for(i=0;i<2;i=i+1) 

  begin 

   if(i==0) c[i]=1'b0; 

   fa(p[i],q[i],c[i],{c[i+1'b1],r[i]}); 

  end 

  r[2]=c[2]; 

  $display("t=%0d, En = %b, p = %b, q = %b, r = %b ",$time  

  ,En,p,q,r); 

 end 

task ha; 

input a,b; output[1:0] hfsum; 

hfsum={a&b,a^b}; 

endtask 

task fa; 

input a,b,c; output[1:0]a2; reg[1:0]a1,aa2; 

begin 

 ha(a,b,a1); 

 ha(a1[0],c,aa2); 

 a2[1] =  (aa2[1]|a1[1]); 

 a2[0] = aa2[0]; 

end

endtask 

endmodule 

Figure 9.20 A 2-bit adder using half-adder and full-adder tasks. 
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Example 9.12 

The half-adder and full-adder tasks in Example 9.11 have been used to carry out 

addition of 2-bit numbers in the module of Figure 9.21.  The addition has been 

carried out in successive clock pulses as with Example 9.6.  The test bench and 

simulation results have been omitted.  Once again the module can be redone easily 

to add wider numbers. 

module addertskb(clk,r,p,q,En); 

input[1:0] p,q;input En,clk;output [2:0] r; 

reg[2:0]r,c;integer i; 

always@(posedge En) 

 begin 

  for(i=0;i<2;i=i+1) 

  begin 

   @(posedge clk) 

   if(i==0) c[i]=1'b0; 

   fatsk(p[i],q[i],c[i],{c[i+1'b1],r[i]}); 

  end 

  r[2]=c[2]; 

  $display(" t=%0d, clk = %b, En = %b, p = %b, q = %b, r = %b 

",$time,clk,En,p,q,r); 

 end 

task hatsk; 

input a,b;output[1:0]ha; 

ha={a&b,a^b}; 

endtask 

task fatsk; 

input a,b,c;output[1:0]a2;reg[1:0]a1,aa2; 

begin 

 hatsk(a,b,a1); 

 hatsk(a1[0],c,aa2); 

 a2[1] =  (aa2[1]|a1[1]); 

 a2[0] =  aa2[0]; 

end

endtask 

endmodule 

Figure 9.21 Another 2-bit adder using half-adder and full-adder tasks. 
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9.4 USER-DEFINED PRIMITIVES (UDP) 

The primitives available in Verilog are all of the gate or switch types.  Verilog has 

the provision for the user to define primitives – called “user defined primitive 

(UDP)” and use them.  A UDP can be defined anywhere in a source text and 

instantiated in any of the modules.  Their definition is in the form of a table in a 

specific format.  It makes the UDP types of functions simple, elegant, and 

attractive.  UDPs are basically of two types – combinational and sequential.  A 

combinational UDP is used to define a combinational scalar function and a 

sequential UDP for a sequential function. 

9.4.1 Combinational UDPs 

A combinational UDP accepts a set of scalar inputs and gives a scalar output. An 

inout declaration is not supported by a UDP.  The UDP definition is on par with 

that of a module; that is, it is defined independently like a module and can be used 

in any other module.  The definition cannot be within any other module.  

Definition of a combinational type of UDP is illustrated through an example 

in Figure 9.22; it shows a simple UDP for an AND operation. The following are 

noteworthy:  

The first statement starts with the keyword “primitive”, it is followed by the 

name assigned to the primitive and the port declarations.   

A UDP can have only one output port. It has to be the first in the port list.   

All the ports following the first are input ports and are all scalars. 

inout ports are not permitted in a UDP definition. 

Output and input are declared in the body of the UDP. 

primitive udp_and (out, in1, in2);

output out;

input in1, in2;
table

//  In1 In2 Out

0 0: 0; 

0 1: 0; 

1 0: 0; 

1 1: 1; 
endtable

endprimitive

Figure 9.22   A two-input AND gate defined as a UDP. 
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The behavior block of the primitive is given in the form of a table.  It is 

specified between keywords table and endtable.

The combinational function is defined as a set of rows ( akin to the truth 

table). 

All the input values are specified first – each in a separate field in the same 

order as they appear in the port declaration. 

A colon and then the output value follow the set of input values. The 

statement ends with a semicolon – as with every statement in Verilog. 

A comment line is inserted in the example following the “table” entry. It

facilitates understanding the tabular entries. 

All the inputs are nets – wire-type.  Hence there is no need for a separate 

type definition. 

Output can be of the net or reg type depending upon the type of primitive – 

explained later. 

The last keyword statement – “endprimitive” – signifies the end of the 

definition. 

9.4.2 More General Combinational UDPs 

The UDP for the AND gate in Figure 9.22 specifies output values only for definite 

values of the inputs but not for their x states.   A full and general definition of a 

UDP is characterized by the following additional factors:  

The output can take on only three values – 0, 1, or x.  It cannot take the value 

z.

Outputs can be defined for 0, 1, or x values of the inputs but not for the z

state.  However if an input takes the value z, it is taken as x.

All the undefined input combinations lead to x state in the output.  Hence it 

is desirable to specify outputs for all the possible input combinations. 

Figure 9.23 shows the UDP definition of an AND gate with all the input 

combinations included.  A test-bench for the UDP and the simulation results are 

shown in Figure 9.24. 

A two-input UDP has nine rows of tabular entries; their number increases 

rapidly as the number of input logic variables increases. LRM has the provision to 

make the UDP definition more compact. The symbol “?” can be used to signify all 

the possible values – that is, 0, 1, or x.  Figure 9.25 shows the elaborate AND gate 

UDP of Figure 9.23 made compact in this manner.  Wherever possible, one can 

use the symbol “b” to signify “0” or “1” values and reduce the table size further.   
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Primitive udp_and (out, in1, in2);

Output out; //UDP of an AND gate defined fully 

Input in1, in2;
Table

//  In1 In2 Out

0 0: 0; 
0 1: 0; 
1 0: 0; 
1 1: 1; 
X 0: 0; 
X 1: X; 
X X: X; 
0 X: 0; 
1 X: X; 

Endtable

Endprimitive

Figure 9.23 A more exhaustive definition of the two2-input AND gate UDP of Figure 9.21. 

module tst_udp_and(); 

reg in1,in2; wire out; 

udp_and uand(out,in1,in2); 

initial begin in1=1'b0;in2=1'b0; end 

always  begin 

 #2 in1=1'b0;in2=1'b1; 

 #2 in1=1'b1;in2=1'b0; 

 #2 in1=1'b1;in2=1'b1; 

 end 

initial $monitor($time ,"in1 = %b ,in2 = %b ,out = %b ",in1,in2,out); 

initial #18 $stop; 

endmodule 

Simulation results 

//#                    0in1 = 0 ,  in2 = 0 ,  out = 0  

//#                    2in1 = 0 ,  in2 = 1 ,  out = 0  

//#                    4in1 = 1 ,  in2 = 0 ,  out = 0  

//#                    6in1 = 1 ,  in2 = 1 ,  out = 1  

//#                    8in1 = 0 ,  in2 = 1 ,  out = 0  

//#                   10in1 = 1 , in2 = 0 ,  out = 0  

//#                   12in1 = 1 , in2 = 1 ,  out = 1  

//#                   14in1 = 0 , in2 = 1 ,  out = 0  

//#                   16in1 = 1 , in2 = 0 ,  out = 0 

Figure 9.24 A test bench for the UDP module of Figure 9.23 and the simulation results. 
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Figure 9.25 The UDP of Figure 9.22 made compact using the symbol “?”.  

9.4.3 Instantiation of an UDP 

UDPs are instantiated in the same manner as gate primitives (see the test bench in 

Figure 9.24).  It is further illustrated here through an example. 

Example 9.13 

The full adder accepts three input bits and outputs two bits – a sum bit and a carry 

bit. Figure 9.26 shows UDPs for the sum and the carry bits as well as a full adder 

module using them.  Figure 9.27 shows a test-bench for the Full Adder as well as 

the simulation results.   

primitive udpsum(sum, in1,in2,carryi); 

output sum; 

input in1, in2, carryi; 

table 

// in1 in2 carryi: sum

 0 0 0: 0; 

 1 1 0: 0; 

 0 1 1: 0; 

 1 0 1: 0; 

 1 0 0: 1; 

 0 1 0: 1; 

 0 0 1: 1; 

 1 1 1: 1; 

endtable 

endprimitive 

continued

Primitive udp_and_b (out, in1, in2);

Output out; // UDP of an AND gate defined compactly 

Input in1, in2;
Table

//  In1 In2 Out

? 0: 0; 
0 ?: 0; 
x X x 
1 1: 1; 

Endtable

Endprimitive
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continued

primitive udpcar(caro,in1,in2,cari); // This udp is  for carryout 

output caro; input in1, in2, cari; 

table 

// in1 in2 cari caro

 0 0 ? : 0 ; 

 0 ? 0 : 0 ; 

 ? 0 0 : 0 ; 

 b 1 1 : 1 ; 

 1 b 1 : 1 ; 

 1 1 b :  1 ; 

endtable 

endprimitive 

module fa (car_o, sum_o, in1, in2, car_i); 

input in1, in2, car_i; output car_o, sum_o; 

udpcar aa(car_o,in1,in2,car_i); 

udpsum bb(sum_o, in1,in2,car_i); 

endmodule 

Figure 9.26 A full adder module with the sum and carry bits generated through UDPs. 

module fa_tst; 

reg [2:0] a;wire c,s;integer i; 

fa cc(c,s,a[0],a[1],a[2]); 

initial for(i=1;i<8;i=i+1) 

begin 

  a=i; 

 #1  $display($time, "a=%b, cs=%b%b",a, c, s); 

end

initial #10 $stop; 

endmodule 

Simulation results 

#                    1a=001, cs=01 

#                    2a=010, cs=01 

#                    3a=011, cs=10 

#                    4a=100, cs=01 

#                    5a=101, cs=10 

#                    6a=110, cs=10 

#                    7a=111, cs=11 

Figure 9.27 A test bench for the full adder module of Figure 9.26 and the simulation results 

for the same. 
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Observations:  

With three inputs and three states for each input (0, 1, and x), the full table of 

definition has 27 entries.  Such definitions become cumbersome as the number 

of inputs increase to even moderate values – say 4 or 5. 

Only the entries essential to the definition of the primitive are included here.  

Others which lead to x output are left out intentionally. Thus with the carry 

primitive if any two inputs have x values, the output car_o too has x value.  

Hence such a row has not been specified.   

“?” and “b” have been used in the primitive definition to make the tables more 

compact 

9.4.4 Combinational UDP and Function  

Definition-wise, UDP and function are similar, though their formats differ (i.e., a 

UDP definition is in the form of a table while the function definition is as a 

sequence of procedural assignments).  UDPs are stand-alone-type primitives and 

can be instantiated in any module.  In contrast, a function is defined within a 

module; it cannot be accessed anywhere outside the module of definition. 

9.4.5 Sequential UDPs 

Any sequential circuit has a set of possible states.  When it is in one of the 

specified states, the next state to be taken is described as a function of the input 

logic variables and the present state [Wakerly].  A positive or a negative going 

edge or a simple change in a logic variable can trigger the transition from the 

present state of the circuit to the next state.  A sequential UDP can accommodate 

all these.  The definition still remains tabular as with the combinational UDP.  The 

next state can be specified in terms of the present state, the values of input logic 

variables and their transitions.  The definition differs from that of a combinational 

UDP in two respects:  

The output has to be defined as a reg.  If a change in any of the inputs so 

demands, the output can change.   

Values of all the input variables as well as the present state of the output can 

affect the next state of the output.  In each row the input values are entered in 

different fields in the same sequence as they are specified in the input port list.  

It is followed by a colon (:).  The value of the present state is entered in the 

next field which is again followed by a colon (:). The next state value of the 

output occupies the last field. A semicolon (;) signifies the end of a row 

definition (see the examples below).  
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As can be seen from the UDPs considered so far, its definition apparently calls 

for the use of a large number of tabular statements; it is all the more true of the 

sequential UDPs.  Some shorthand notations are possible to make the UDP table 

more compact.  All the notations that can be used are given in Table 9.1. Judicious 

selection and use of the symbols can make the tables compact. 

Two examples of sequential UDPs are considered here – one being level-

sensitive and the other edge-sensitive. 

Example 9.14 A UDP for a D Latch  

Figure 9.28 shows a UDP for a D latch (and a test bench for the same). It is an 

example of a level sensitive sequential UDP.   The tabular description for the latch 

has been made succinct with the use of symbols – and ?.  Any undefined input 

combination results in x value for the output; hence the output has not been 

separately defined for the x value of input in the table.  Repeated use of the 

symbol ? has made the UDP table compact.  The three rows of the table signify the 

following: 

1. When clk = 1, if din = 0, the next state (qn) is also at 0 whatever be the 

value of present state (qp).

2. When clk = 1, if din = 1, the next state (qn) is also at 1 whatever be the 

value of present state (qp).

3. When clk = 0, the output (next state) does not change even if din changes. 

Simulation results are shown in Figure 9.29. 

Table 9.1 Symbols for UDP tabular rows 

Symbol Significance Restrictions of use 

B or b 0 and 1 values Only in the input or current state fields 

? 0, 1 or ,x value Only in the input or current state fields 

– No change Only in the output field of sequential UDP 

(mn)
Change of value from m to 

n
Only in the input field. m & n can be 0, 1, x, b, or 

?

* Same as (??) 

r Same as (01) 

f Same as (10) 

p Rise from 0 or x to x or 1 

n Fall  from 1 or x to x or 0 

Only in the input field 
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primitive dlatch(q,din,clk); 

output q; input din,clk; reg q; 

table 

// din clk  qp qn

 0 1 :   ? : 0;  // If clk is at 1 state, the output  

 1 1 :  ? : 1;  //follows the input.  If clk is at 0  

 ?  0 : ? :  -;  // state, the output remains frozen 

endtable 

endprimitive 

module dlatch_tst; 

wire q; reg din,clk; 

dlatch ll(q,din,clk); 

initial 

begin 

 clk=1'b1;din=1'b0; 

 repeat (2)begin #4 din=1'b1; #4 din=1'b0; end 

 clk=1'b0;repeat (2)begin #4 din=1'b1; #4 din=1'b0; end 

 $stop; 

end

initial $monitor($time ,"clk = %b, din = %b, q = %b ",clk,din,q);  

endmodule 

Figure 9.28 A D-latch module described as a level-sensitive UDP and a test bench for it. 

#                     0clk = 1, din = 0, q = 0  

#                     4clk = 1, din = 1, q = 1  

#                     8clk = 1, din = 0, q = 0  

#                   12clk = 1, din = 1, q = 1  

#                   16clk = 0, din = 0, q = 0  

#                   20clk = 0, din = 1, q = 0  

#                   24clk = 0, din = 0, q = 0  

#                   28clk = 0, din = 1, q = 0 

Figure 9.29 Simulation results of running the test bench for the UDP of Figure 9.28. 
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Example 9.15 A UDP for an Edge-Triggered Flip-Flop  

Figure 9.30 shows the UDP definition of a positive edge-triggered flip-flop with a 

clear facility. In the table, (01) signifies the 0-to-1 transition edge of the clk – that 

is, its positive edge.  Other edge transitions too can be interpreted in a similar 

manner.  The simulation results are shown in Figure 9.31.  From the simulation 

results, one can see that as long as the Clear input is low, data input is latched in at 

the positive going edge of the clock.  But if the Clear input is high, its effect 

prevails and the flip-flop output remains low and does not respond to changes in 

the input data line.  

primitive dff_pos(q,din,clk,clr); 

output q; 

input din,clk,clr; 

reg q; 

//initial q = 1'b0; 

table 

// din clk  clr qp qn  Whatever be the present 

 0 (01)   0: ?:  0; // state of the output, at the 

 1 (01)  0: ?: 1; // positive edge of clk input 

 ?  (10)  0: ?:  -; // value is latched and 

 (??)   ?    0: ?:  -; // output made equal to 

 ? ? 1: ?: 0; // that if clr = 0.  IF clr=1,    

 ? ? *: ?: 0; // q .is made 0. 

endtable 

endprimitive 

module dff_pos_tst; 

wire q; 

reg din,clk,clr; 

dff_pos ll(q,din,clk,clr); 

initial 

begin 

 clr=1'b0;din=1'b0;clk=1'b0;#3din=1'b1; 

 repeat (2)begin #4 din=1'b1; #4 din=1'b0; end 

 clr=1'b1;repeat (2) begin#4 din=1'b1; #4 din=1'b0; end 

 $stop; 

end

always #2 clk=~clk; 

initial $monitor($time ,"clr=%b, clk = %b, din = %b, q = %b ",clr,clk,din,q);  

endmodule 

Figure 9.30 An UDP for an edge-triggered flip-flop with clear facility: A test bench is also 

included in the figure. 
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#                     0clr=0, clk = 0, din = 0, q = 0  

#                     2clr=0, clk = 1, din = 0, q = 0  

#                     3clr=0, clk = 1, din = 1, q = 0  

#                     4clr=0, clk = 0, din = 1, q = 0  

#                     6clr=0, clk = 1, din = 1, q = 1  

#                     8clr=0, clk = 0, din = 1, q = 1  

#                   10clr=0, clk = 1, din = 1, q = 1  

#                   11clr=0, clk = 1, din = 0, q = 1  

#                   12clr=0, clk = 0, din = 0, q = 1  

#                   14clr=0, clk = 1, din = 0, q = 0  

#                   15clr=0, clk = 1, din = 1, q = 0  

#                   16clr=0, clk = 0, din = 1, q = 0  

#                   18clr=0, clk = 1, din = 1, q = 1  

#                   19clr=1, clk = 1, din = 0, q = 0  

#                   20clr=1, clk = 0, din = 0, q = 0  

#                   22clr=1, clk = 1, din = 0, q = 0  

#                   23clr=1, clk = 1, din = 1, q = 0  

#                   24clr=1, clk = 0, din = 1, q = 0  

#                   26clr=1, clk = 1, din = 1, q = 0  

#                   27clr=1, clk = 1, din = 0, q = 0  

#                   28clr=1, clk = 0, din = 0, q = 0  

#                   30clr=1, clk = 1, din = 0, q = 0  

#                   31clr=1, clk = 1, din = 1, q = 0  

#                   32clr=1, clk = 0, din = 1, q = 0  

#                   34clr=1, clk = 1, din = 1, q = 0 

Figure 9.31 Simulation results of running the test bench for the UDP of Figure 9.30. 

There can be situations where an edge sensitive entry in a UDP table clashes with 

a level-sensitive entry.  In such situations of conflict, the level-sensitive entry 

dominates and decides the next state. The UDP in Figure 9.29 is sensitive to the 

level changes in one input (clr) and the edge in the other (clk).  One can also have 

UDPs sensitive only to the edges in the inputs. 

Observations:  

Only one edge transition can be specified in one line of the UDP definition.  

All other inputs are to be defined as state levels.   

If one edge of an input is used to specify a transition in the output, the output 

transition has to be defined for all possible edges of all the inputs. 

A sequential UDP specifies the next state in terms of the present state and 

inputs.  If necessary, one can specify an initial state and avoid ambiguity in 
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operation at start.  The initial declaration can be used here.  Such an initial 

statement has to be a single procedural assignment.  It can assign a 1(1’b1), a 

0(1’b0), or an x value to the output reg of the UDP.  

9.4.6 Sequential UDPs and Tasks 

Sequential UDPs and tasks are functionally similar.  Tasks are defined inside 

modules and used inside the module of definition.  They are not accessible to other 

modules.  In contrast, sequential UDPs are like other primitives and modules.  

They can be instantiated in any other module of a design. 

9.4.7 UDP Instantiation with Delays 

Outputs of UDPs also can take on values with time delays.  The delays can be 

specified separately for the rising and falling transitions on the output.  For 

example, an instantiation as  

udp_and_b # (1, 2) g1(out, in1, in2);

can be used to instantiate the UDF of Figure 9.25 for carry output generation.  

Here the output transition to 1 (rising edge) takes effect with a time delay of 1 ns.  

The output transition to 0 (falling edge) takes effect with a time delay of 2 ns.  If 

only one time delay were specified, the same holds good for the rising as well as 

the falling edges of the output transition.   

9.4.8 Vector-Type Instantiation of UDP 

UDP definitions are scalar in nature.  They can be used with vectors with proper 

declarations.  For example, the full-adder module fa in Figure 9.26 can be 

instantiated as an 8-bit vector to form an 8-bit adder.  The instantiation statement 

can be  

fa  [7:0] aa(co, s,  a,  b, {co[6:0],1’b0}); 

s (sum), co (carry output), a (first input), and b(second input) are all 8-bit vectors 

here.  The vector type of instantiation makes the design description compact; 

however, it may not be supported by some simulators. 

9.5 EXERCISES 

 1. Define half-adder and full-adder as tasks and prepare a 32-bit adder using 

them.  Test it through a suitable test bench. 

 2. Form a UDP for an A-O-I gate and test it through a test bench. 
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 3. Form a UDP for a 3-to-1 mux and test it through a test bench. 

 4. b0, b1, and b2 represent the three bits of a mod-8 counter.  The counter is to 

count at the positive edge of a clock input.  Form UDPs for b0, b1, and b2; 

instantiate them in a module to form a counter.  Test the counter using a test 

bench. 

 5. A 3-bit number is to advance through the following cyclic sequence: 

  0 – 3 – 5 – 4 – 1 – 0 – 3. . .  

  Form UDPs for the 3 bits; form the sequencer module by instantiating the 

UDPs. Test the module through a test bench. 

 6. Form a microcontroller core as follows: 

Have a set of 4 registers designated r1, r2, r3, and r4. 

Define a set of 6 algebraic / logic operations – Add, 1’s complement, 

NAND, EXOR, left shift, and right shift 

Have an 8-bit instruction opcode as ssddpaaa.  Here ss, dd and aaa

specify the source address, the destination address and the 3-bit code 

for the algebraic/logic opreration, respectively.  P is a single-bit 

mode selector – if p = 0, data are to be transferred from source to the 

destination; if p = 1, the algebraic/logic operation is to be done. 

Define each of the operations above as a function or as a task.   

  Realize the ALU functions as UDPs.  Realize the whole module using the 

case statement.  For example, 01111101 stands for taking data from r1 and 

r3, adding them and putting the result in r1.  Use r1 to store the result.  Have 

a separate status register with carry bit and zero bit: set them whenever 

necessary.  Write a test bench for the microcontroller, and test each of the 

instructions and instruction sequences. 

 7. Consider Figure 9.12: Shift the statement r[32] = c[32]; ahead by one line.  

Include a $display statement in both cases: Simulate the test bench.  

Explain any difference.  
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10  

SWITCH LEVEL MODELING 

10.1 INTRODUCTION 

In today’s environment the MOS transistor is the basic element around which a 

VLSI is built.  Designers familiar with logic gates and their configurations at the 

circuit level may choose to do their designs using MOS transistors.  Verilog has 

the provision to do the design description at the switch level using such MOS 

transistors, which is the theme of the present chapter.  Switch level modeling 

forms the basic level of modeling digital circuits.  The switches are available as 

primitives in Verilog; they are central to design description at this level.  Basic 

gates can be defined in terms of such switches.  By repeated and successive 

instantiation of such switches, more involved circuits can be modeled – on the 

same lines as was done with the gate level primitives in Chapters 4 and 5. 

Designers familiar with logic gates, digital functional blocks, and their 

interplay can successfully carry out a complete VLSI design without any 

involvement at the switch level. Hence the switch level design was deferred to the 

present chapter. 

10.2 BASIC TRANSISTOR SWITCHES 

Consider an NMOS transistor of the depletion type.  When used in a digital circuit, 

it can be in one of three modes:  

VG < VS where VG and VS are the gate and source voltages with respect to the 

drain: The transistor is OFF and offers very high impedance across the source 

and the drain.  It is in the z state. 

VG VS: The transistor is in the active region.  It presents a resistance between 

the source and the drain.  The value depends on the technology.  Such a 

resistive state of the transistor can be modeled in Verilog.  A transistor in this 

mode can be represented as a resistance in Verilog – as pull1 or pull0

depending on whether the drain is connected to supply1 or source is 

connected to supply0.

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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VG > VS: The transistor is fully turned on.  It presents very low resistance ( 0

) between the source and drain. 

An enhanced-mode NMOS transistor also has the above three modes of 

operation.  It is OFF when VG VS. It is moderately ON or in the active region 

when VG is slightly greater than VS, representing a resistive (pull1 or 

pull0) mode of operation.  When VG is sufficiently greater than VS, the 

transistor is in the on state representing very low ( 0 ) resistance.  Similar 

modes are possible for the PMOS transistor also.  The modes and the voltage 

levels for each are summarized in Table 10.1. 

The table is more for information and not of direct relevance to design 

description in Verilog.  Whenever a switch primitive is present in a design, 

necessary biasing will be done automatically.  The designer need not worry about 

it – at least at this stage. 

10.2.1 Basic Switch Primitives 

Different switch primitives are available in Verilog.  Consider an nmos switch.  A 

typical instantiation has the form 

nmos (out, in, control);

nmos – a keyword – represents an NMOS transistor functioning as a switch.  

The switch has three terminals (see Figure 10.1) – in, out, and control.  When the 

control input is at 1 (high) state, the switch is on.  It connects the input lead to the 

output side and offers zero impedance.  When the control input is low, the switch 

is OFF and output is left floating (z state).  If the control is in the z or the x

state, output may take corresponding values.  Table 10.2 summarizes the input / 

output combinations.  In the table the symbol “L” stands for 0 or z state.  The 

symbol H stands for the 1 or z state. 

The keyword pmos represents a PMOS transistor functioning as a switch.  

The PMOS switch has three terminals (see Figure 10.2).  A typical instantiation of 

the switch has the form 

Table 10.1 Operating voltages for different modes of operation of MOS switches 

NMOS PMOS 
Mode

Depletion Enhancement Depletion Enhancement

VD – VS for normal  operation  

(Range: 1.5V to 5V) 

Positive Positive Negative Negative 

OFF (z) state Negative  0 Positive Positive 

Resistive state 

(pull1,

pull0)

 0 Mildly 

positive
 0 Mildly 

negative

Range of 

VG – VS

for

ON state (0 ) Positive Fully positive Negative Fully negative 
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in out

control

in out

control

Figure 10.1 An NMOS switch with 

terminals. 

Figure 10.2 A PMOS switch with 

terminals. 

pmos (out, in, control);

When the control is at 1 (high) state, the switch is off.  Output is left floating.  

When control is at 0 (low) state, the switch is on, input is connected to output, and 

output is at the same state as input.  For other input values, output is at other 

values.  The output values for all possible input and control values are shown in 

Table 10.3.  The symbols L and H have the same significance as in Table 10.2. 

Observations: 

When in the on state, the switch makes its output available at the same 

strength as the input.  There is only one exception to it: When the input is of 

strength supply, the output is of strength strong.  It is true of supply1

as well as supply0.

When instantiating an nmos or a pmos switch, a name can be assigned to the 

switch.  But the name is not essential. (The same is true of the other primitives 

discussed in the following sections as well.) 

The nmos and pmos switches function as unidirectional switches. 

Table 10.2 Output values of an 

nmos switch for different 

values of signal and control 

inputs

Table 10.3 Output values of a 

pmos switch for different 

values of signal and control 

inputs

Control (input ) 

0 1 X z

0 Z 0 L L

1 Z 1 H H

X Z X X X(D
at

a)

in
p

u
t

z z z z z

Control (input ) 

0 1 X z

0 Z 0 L L

1 Z 1 H H

X Z X X X(D
at

a)

in
p

u
t

z z z z z
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10.2.2 Resistive Switches 

nmos and pmos represent switches of low impedance in the on-state.  rnmos and 

rpmos represent the resistive counterparts of these respectively.  Typical 

instantiations have the form 

rnmos (output1, input1, control1);

rpmos (output2, input2, control2);

With rnmos if the control1 input is at 1 (high) state, the switch is ON and 

functions as a definite resistance.  It connects input1 to output1 through a 

resistance.  When control1 is at the 0 (low) state, the switch is OFF and leaves 

output1 floating.  The set of output values for all combinations of input1 and 

control1 values remain identical to those of the nmos switch given in Table 10.2. 

The rpmos switch is ON when control2 is at 0 (low) state.  It inserts a 

definite resistance between the input and the output signals but retains the signal 

value.  The output values for different input values remain identical to those in 

Table 10.3 for the pmos switch. 

Observations: 

Because rpmos and rnmos are resistive switches, they reduce the signal 

strength when in the on state.  The reduced strength is mostly one level below 

the original strength.  The only exceptions are small and hi-z.  For these 

the strength and the state remain unaltered (see Table 10.4). 

The rpmos and rnmos switches function as unidirectional switches; the 

signal flow is from the input to the output side. 

Table 10.4 Output-side strength levels for different 

input-side strength values of rnmos, rpmos, and rcmos

switches 

Input strength Output strength 

Supply – drive Pull – drive 

Strong – drive Pull – drive 

Pull – drive Weak – drive 

Weak – drive Medium – capacitive 

Large –  capacitive Medium – capacitive 

Medium – capacitive Small – capacitive 

Small – capacitive Small – capacitive 

High impedance High impedance 
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10.2.3 pullup and pulldown

A MOS transistor functions as a resistive element when in the active state.  

Realization of resistance in this form takes less silicon area in the IC as compared 

to a resistance realized directly.  pullup and pulldown represent such resistive 

elements.  A typical instantiation here has the form 

pullup (x);

Here the net x is pulled up to the supply1 through a resistance.  Similarly, 

the instantiation  

pulldown(y);

pulls y down to the supply0  level through a resistance.  The pullup and 

pulldown primitives can be used as loads for switches or to connect the unused 

input ports to VCC or GND, respectively.  They can also form loads of switches in 

logic circuits.  The default strengths for pullup and pulldown are pull1 and 

pull0 respectively.  One can also specify strength values for the respective nets. 

For example, 

pullup (strong1) (x)

specifies a resistive pullup of net x to supply1.  One can also assign names to 

the pullup and pulldown primitives.  Thus 

pullup (strong1) rs(x)

represents an instantiation of pullup designated rs having strength strong1.

Difference between tri and pullup or pulldown is to be understood 

clearly. pullup is a functional element; it represents a resistive connection to 

supply1.  In contrast tri1 is a type of net; in the absence of an assignment, it 

remains connected to supply1.  A similar difference exists between pulldown

and tri0.  The example below brings out the differences. 

Example 10.1  

Figure 10.3 shows two simple circuits that are apparently identical: Figure 10.3 (a) 

has the net o1 declared as tr1 and is pulled up in case it is left open.  With the 

circuit in Figure 10.3(b), o2 is a wire type of net; it has a resistive element 

connecting it to supply1.   Figure 10.4 shows a module incorporating both the 

circuits and a test bench for them.  Note that the module instantiates the primitive 

bufif1 for the controlled buffer (discussed in Chapter 4). The test bench has 

specific assignments to the two input signals which bring out the difference in 

contention resolution.  For identical input signal values, the outputs o1 and o2 can 

differ in certain cases. 
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Figure 10.3 Two circuits to demonstrate the difference between tri1 and pullup.

At t = 0, all the inputs are at x state; o1 is also at x state: But o2=1 because of 

the pullup.   

At t = 1, all the switches are turned off; o1 and o2 are at 1 state. 

At t = 2, all the switches are on; the outputs follow the inputs and both of 

them are at 1 state. 

At t = 3, ctt1 & ctp1 are on; ctt2 & ctp2 are off; o1=a1=1 but o2=1 since its 

value is the result of contention resolution between b1 at weak0 & the 

stronger pp at pull1.

At t = 4, all switches are on; all inputs are at 0; o1=0 but o2=1 since the 

stronger pull1 prevails over the weaker 0's of b1 & b2.

module swt_aa (o1,o2, a1,a2,b1,b2,c1,c2); 

output o1,o2; input a1,a2,b1,b2,c1,c2; 

wire o2; tri1 o1; 

bufif1  ctt1(o1,a1,c1), ctt2(o1,a2,c2); 

bufif1 (weak1, weak0) ctp1(o2,b1,c1), ctp2(o2,b2,c2); 

pullup pp(o2); 

endmodule 

module swt_aa_tb; 

reg [5:0] rx; wire o1,o2, a1,a2,b1,b2,c1,c2; 

assign {a1,a2,b1,b2,c1,c2} = rx; 

swt_aa aa(o1,o2, a1,a2,b1,b2,c1,c2); 

initial begin 

continued 

c2

c1

ctt2

ctt1

Supply1

a2

a1 o1

(a)

c2

c1

ctp2

ctp1

Supply1

b2

b1 o2

(b)
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continued

 #1 rx=6'o00;  

 #1 rx=6'o77;  

 #1 rx=6'o42;  

 #1 rx=6'o03;  

 #1 $stop;  

         end 

initial $monitor("time=%0d, c1=%b, o1=%b, a1=%b, a2=%b, c2=%b, o2=%b,  

b1=%b, b2=%b",$time, c1,o1,a1,a2,c2,o2,b1,b2); 

endmodule 

#t c1 o1 a1 a2 c2 o2 b1 b2 

#0 x x x x x 1 x x 

#1 0 1 0 0 0 1 0 0 

#2 1 1 1 1 1 1 1 1 

#3 1 1 1 0 0 1 0 0 

#4 1 0 0 0 1 1 0 0 

Figure 10.4 Design module for the circuits of Figure 1.3 and its test bench. 

Example 10.2 CMOS inverter 

A CMOS inverter is formed by connecting an nmos and a pmos switch in series 

across the supply (see Figure 10.5).  The output terminals are joined together to 

form the common output.  Similarly, the input is used as the common control input 

to both the switches.  Referring to the figure, we can see the following: 

Supply0 (a)

Supply1 (b)

outin

Qn

Qp

Figure 10.5 A CMOS inverter formed by connecting an NMOS and a PMOS set of 

transistors in series across the supply. 
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When the input is low (0 V), transistor Qn is off.  But Qp is on.  supply1 is 

connected to the output.  Hence the output is high. 

When the input is high (5 V), transistor Qp is off. But Qn is on.  supply0 is 

connected to the output.  Hence the output is low. 

The inverter operation is clear from the above.  The design description for the 

corresponding CMOS inverter is shown in Figure 10.6.  The leads a and b are 

declared as nets – supply0 and supply1 respectively; i.e., they are connected 

to ground and VCC respectively.  The two instantiations together describe the 

inverter operation. 

Observations:  

Under steady-state operation of the CMOS inverter, only Qp or Qn is ON at a 

time.  Hence the inverter does not draw any quiescent current from the supply.  

Current is drawn only to charge the internal capacitor associated with the 

transistors during the transition. 

The input and output sides of the switches refer to the signal flow directions 

and not that of the current flow.  Thus for the NMOS switch under the ON 

condition, current flows from out to supply0.  But the signal from a (at 

supply0) is made available at out.

Example 10.3 CMOS NOR gate 

A CMOS nor gate with two inputs is shown in Figure 10.7.  It employs four 

transistors.

When only in1 is high, Qn1 is ON pulling out to suppy0.  Output is zero.  

Qp2 is also on.  But since in2 is low, Qp1 is off.  Hence no current can be 

drawn from supply1.
When only in2 is high, Qn2 is ON pulling out to suppy0.  Output is zero. Qp1

is also on.  But since in1 is low, Qp2 is off.  Hence no current can be drawn 

from supply1.

module inv (in, out ); 
output out;
input in;
supply0 a;
supply1 b;
nmos (out, a, in ); 
pmos (out, b, in);
endmodule

Figure 10.6 design description of a CMOS inverter formed by connecting an NMOS 

transistor and a PMOS transistor in series. 
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Supply0

Supply1

out

in1
Qn1

Qp1

in2

Qn2

Qp2

a

c

b

Figure 10.7 A 2 input CMOS NOR gate. 

When both in1 and in2 are low, Qn1 and Qn2 are OFF.  Qp1 and Qp2 are ON 

and out is connected to supply1.  But no current is drawn from the supply. 

When both in1 and in2 are high, Qn1 and Qn2 are on.  Out is grounded at c.  Since 

Qp1 and Qp2 are off, no current is drawn from supply1.  The design description for 

the NOR gate is shown in Figure 10.8.  It has four instantiations – two of pmos
and two of nmos, respectively. 

module  npnor_2(out, in1, in2 ); 
output out;
input in1, in2;
supply1 a;
supply0 c;
wire b;
pmos(b, a, in2), (out, b, in1);
nmos (out, c, in1), (out, c, in2) ; 
endmodule

Figure 10.8 design description of a CMOS NOR gate. 

Observations: 

A three-input NOR gate has three NMOS transistors in parallel on the ground 

side and three PMOS transistors in series on the VCC side.  Although the 

number of inputs can be increased in this manner, circuit operation is not 

satisfactory for more than two or three inputs [Bogart]. 

NAND gate is formed by connecting the NMOS transistors in series on the 

ground side and the PMOS transistors in parallel on the VCC side (NAND is 

the dual of NOR).   
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Because NAND and NOR are universal gates, all other logic gates can be 

realized in terms of them. 

Example 10.4 NMOS Inverter with Pull up Load 

Figure 10.9 shows an NMOS inverter.  Q1 is the NMOS transistor.  Q2 properly 

biased, forms an active resistance and is the load on Q1.  The design description for 

the inverter is shown in Figure 10.10.  When in = 0, Q1 is OFF and out is pulled up 

and is at state 1.  When in = 1, Q1 is ON and out is pulled down to 0.  A test bench 

and the results of simulating the test bench are also included in the figure. 

Observations: 

When Q1 is ON (in = 1), the gate has a standing current; contrast this with 

CMOS inverter in Example 10.2, where the quiescent current is always zero.  

The output is available as strong0.

When Q1 is OFF, the standing current is zero. But the output is available as 

pull1.  Thus there is a difference in the strengths of the two states. 

If necessary, a different strength value can be assigned to pullup.

Supply0 (a)

out

in Q1

Q2

V
CC

Figure 10.9 An NMOS inverter with an active pull up load. 



BASIC TRANSISTOR SWITCHES 315 

module NMOSinv(out,in); 

output out;input in;supply0 a; 

pullup (out); 

nmos(out,a,in); 

endmodule 

module tst_nm_in(); 

reg in;wire out; 

NMOSinv nmv(out,in); 

initial 

in =1'b1; 

always

#3 in =~in; 

initial $monitor($time , " in = %b, output = %b ",in,out); 

initial #30 $stop; 

endmodule 

Figure 10.10 Design description of an NMOS inverter gate: A test bench for the inverter 

and the simulation results are also shown in the figure. 

Example 10.5  An NMOS Three Input NOR Gate 

Figure 10.11 shows a three-input NMOS NOR gate with  Q4 – properly biased – 

forming a resistive pullup load.  Output b is high when all the inputs – in1, in2 and 

in3 are low – keeping the respective mos transistors – Q1, Q2, and Q3 – off.    If 

any one of the three inputs goes high, the corresponding NMOS transistor turns 

ON and the output b is pulled down to zero.  When output is in 1 state, it has 

strength pull1.  When in the zero state, it has strength strong0.  The design 

description for the gate is shown in Figure 10.12.  Simulation results are given in 

Figure 10.13. 
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Supply0

in1 Q1 in2 Q
2

Q4

a

b

Q3in3

V
CC

Figure 10.11 An NMOS NOR gate with active pull up. 

module nor3NMOS(in1,in2,in3,b); 

output b; 

input in1,in2,in3; 

supply0 a; wire b; 

nmos(b,a,in1),(b,a,in2),(b,a,in3); 

pullup(b); 

endmodule 

module tst_nor3NMOS(); 

reg in1,in2,in3;wire b; 

nor3NMOS nn(in1,in2,in3,b); 

initial 

begin 

in1=1'b1;in2=1'b1;in3=1'b1; 

end

always #2 in1=~in1; 

always #3 in2=~in2; 

always #5 in3=~in3; 

initial $monitor($time , "in1 = %b , in2 = %b , in3 = %b , output = %b  

",in1,in2,in3,b); 

initial #24 $stop; 

endmodule 

module  (b, in1, in2, in3 ); 

output b; 

input in1, in2, in3; 

supply0 a; 

wire b; 

nmos (b, a, in1), (b, a, in2), (b, a, in3) ; 

pullup (b ) ; 

endmodule 

Figure 10.12 Design description of an NMOS NOR gate with active pull up. 
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#                    0in1 = 1 , in2 = 1 , in3 = 1 , output = 0   

#                    2in1 = 0 , in2 = 1 , in3 = 1 , output = 0   

#                    3in1 = 0 , in2 = 0 , in3 = 1 , output = 0   

#                    4in1 = 1 , in2 = 0 , in3 = 1 , output = 0   

#                    5in1 = 1 , in2 = 0 , in3 = 0 , output = 0   

#                    6in1 = 0 , in2 = 1 , in3 = 0 , output = 0   

#                    8in1 = 1 , in2 = 1 , in3 = 0 , output = 0   

#                    9in1 = 1 , in2 = 0 , in3 = 0 , output = 0   

#                   10in1 = 0 , in2 = 0 , in3 = 1 , output = 0   

#                   12in1 = 1 , in2 = 1 , in3 = 1 , output = 0   

#                   14in1 = 0 , in2 = 1 , in3 = 1 , output = 0   

#                   15in1 = 0 , in2 = 0 , in3 = 0 , output = 1   

#                   16in1 = 1 , in2 = 0 , in3 = 0 , output = 0   

#                   18in1 = 0 , in2 = 1 , in3 = 0 , output = 0   

#                   20in1 = 1 , in2 = 1 , in3 = 1 , output = 0   

#                   21in1 = 1 , in2 = 0 , in3 = 1 , output = 0   

#                   22in1 = 0 , in2 = 0 , in3 = 1 , output = 0 

Figure 10.13 Results of running the test bench in Figure 10.12. 

Observations: 

When any of the inputs is high, the corresponding transistor is ON and the 

gate has a standing current.  The standing current is zero only when all the 

three inputs are at zero state and Q1, Q2, and Q3 are off.   The standing current 

makes the power dissipation in the device much higher than that for its CMOS 

counterpart.

Adding transistors in parallel can increase the number of inputs. 

NAND gate can be formed by connecting the NMOS transistors controlled by 

the inputs in series.  However, NOR remains the preferred universal gate 

element with NMOS logic. 

One can use a pmos-type switch at the top with a pulldown type of load to 

the ground.  It forms a PMOS inverter (see Figure 10.14).  The different logic 

gates of PMOS technology can be built with it.  Here again, due to the 

standing current, the power consumption of the device will be much higher 

than that of its CMOS counterpart.   

For any logic function the nmos or the pmos gate uses a much smaller 

number of transistors than does the CMOS gate.  Despite this CMOS logic 

family stands out due to two reasons:- 

Lowest power consumption 

Uniformity in the element patterns 
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out

in Q1

Q2

V
CC

Figure 10.14 A PMOS inverter with active pull down load. 

The advantages of CMOS technology often far outweigh the apparent 

complexity of the larger number of devices required on a per gate basis.  Hence 

CMOS has proved to be much more popular. 

10.3 CMOS SWITCH 

A CMOS switch is formed by connecting a PMOS and an NMOS switch in 

parallel – the input leads are connected together on the one side and the output 

leads are connected together on the other side.  Figure 10.15 shows the switch so 

formed.  It has two control inputs:  

 N_control turns ON the NMOS transistor and keeps it ON when it is in the 1 

state.

 P_control turns ON the PMOS transistor and keeps it ON when it is in the 0 

state.

in out

N_control

P_control

Figure 10.15 A CMOS switch formed by connecting a PMOS transistor and an NMOS 

transistor in parallel. 
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The CMOS switch is instantiated as shown below. 

cmos csw (out, in, N_control, P_control ); 

Significance of the different terms is as follows: 

cmos:The keyword for the switch instantiation

 csw: Name assigned to the switch in the instantiation  

 out: Name assigned to the output variable in the instantiation 

 in: Name assigned to the input variable in the instantiation

 N_control: Name assigned to the control variable of the  NMOS transistor in 

the instantiation 

 P_control: Name assigned to the control variable of the  PMOS transistor in 

the instantiation 

Example 10.6 CMOS Switch – 1 

Being a parallel combination of a PMOS and an NMOS switch, the CMOS switch 

can be realized by instantiating these to form a parallel switch.  Design description 

of such a switch is shown in Figure 10.16 along with a test bench.  The controls for 

the NMOS and the PMOS sides are separate in the primitive.  The (partial) 

simulation results are shown in Figure 10.17.   

module CMOSsw(out,in,n_ctr,p_ctr); 

output out; input  in,n_ctr,p_ctr; 

nmos gn(out,in,n_ctr); 

pmos gp(out,in,p_ctr); 

endmodule 

module tst_CMOSsw(); 

reg in,n_ctr,p_ctr; wire out; 

CMOSsw  cmsw(out,in,n_ctr,p_ctr); 

initial begin in=1'b0;n_ctr=1'b1;p_ctr=~n_ctr; end 

always #5 in =~in; 

always begin #3 n_ctr=~n_ctr; #0p_ctr =~n_ctr; end 

initial $monitor($time , "in = %b , n_ctr = %b , p_ctr = %b , output = %b  

",in,n_ctr,p_ctr,out); 

initial #39 $stop; 

endmodule 

Figure 10.16 Design description of a CMOS switch formed by paralleling a pair of NMOS 

and PMOS switches. 
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#                     0in = 0 , n_ctr = 1 , p_ctr = 0 , output = 0   

#                     3in = 0 , n_ctr = 0 , p_ctr = 1 , output = z   

#                     5in = 1 , n_ctr = 0 , p_ctr = 1 , output = z   

#                     6in = 1 , n_ctr = 1 , p_ctr = 0 , output = 1   

#                     9in = 1 , n_ctr = 0 , p_ctr = 1 , output = z   

#                   10in = 0 , n_ctr = 0 , p_ctr = 1 , output = z   

#                   12in = 0 , n_ctr = 1 , p_ctr = 0 , output = 0 

Figure 10.17 Partial results of simulating the test bench for the CMOS switch in  

Figure 10.16.  

Example 10.7 CMOS Switch – 2 

In normal use of a CMOS switch, the same control line drives the gates of the 

PMOS and the NMOS switches (as shown in Figure 10.18).  With this change the 

switch becomes more compact for description as well.  The module for the 

compact switch is shown in Figure 10.19; the figure also includes a test bench for 

it.  The design module uses an instantiation of the NOT gate for generating 

P_control from con – the control input. The (partial) simulation results are in  

Figure 10.20. 

in out

N_control

P_control

Figure 10.18 A CMOS switch with a single control line. 

module CMOSsw1(out,in,con); 

output out; input  in,con; wire p_ctr; 

not gn(p_ctr,con); 

cmos gc(out,in,con,p-ctr); 

endmodule 

continued 
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continued

module tst_CMOSsw1(); 

reg in,con; wire out; 

CMOSsw1  cmsw(out,in,con); 

initial begin in=1'b0;con=1'b1; end 

always #5 in =~in; 

always #3 con=~con; 

initial $monitor($time , "in = %b , con = %b ,  output = %b " ,in,con,out); 

initial #40 $stop; 

endmodule 

Figure 10.19 Design description of a CMOS switch with a single control input.  

#                     0in = 0 , con = 1 ,  output = 0 

#                     3in = 0 , con = 0 ,  output = x 

#                     5in = 1 , con = 0 ,  output = x 

#                     6in = 1 , con = 1 ,  output = 1 

#                     9in = 1 , con = 0 ,  output = x 

#                   10in = 0 , con = 0 ,  output = x 

#                   12in = 0 , con = 1 ,  output = 0 

Figure 10.20 Partial results of simulating the test bench for the CMOS switch in  

Figure 10. 19.

Example 10.8 A RAM Cell 

Figure 10.21 shows a basic ram cell with facilities for writing data, storing data, 

and reading data.  When switch sw2 is on, qb – the output of inverter g1 – forms 

the input to the inverter g2 and vice versa.  The g1-g2 combination functions as a 

latch and freezes the last state entry before sw2 turns on.  The step-by-step 

function of the cell is as follows (see the waveforms in Figure 10.22):  

When wsb (write/store) is high, switch sw1 is ON, and switch sw2 OFF.  

With sw1 on, input Din is connected to the input of gate g1 and remains so 

connected.

When wsb goes low, din is isolated, since sw1 is OFF.  But sw2 is ON and 

the data remains latched in the latch formed by g1-g2.  In other words the 

data Din is stored in the RAM cell formed by g1-g2.

When RD (Read) goes active (=1), the latched state is available as output Do.

Reading is normally done when the latch is in the stored state. 
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Figure 10.21 Basic RAM cell in block diagram form. 

The design description for the ram cell as well as a test bench for it is given in 

Figure 10.23.  It instantiates a csw module which is a basic CMOS switch with a 

single control line.  If necessary, the not gate can be separately defined as a 

CMOS gate module and instantiated.  Note that the output of gate g2 – qq- has 

been declared as a trireg type of net.  It is to ensure that the q2 output is stored 

when sw2 is OFF.  It avoids any error during transition – that is, sw2 turning off 

with a delay compared to that of sw1.  The (partial) simulation results are in 

Figure 10.24.  A full-fledged memory can be built using the ram cell.  The 

memory address decoders are to form the enable signals to the write and read 

control signals here. 

D i

n

wsb

Do

RD

qq

Figure 10.22 Waveforms of different signals in the operation of the basic RAM cell of 

Figure 10.21. 
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module ram_cell(do,din,wsb,rd); 

output do; input din,wsb,rd; wire sb; wire q,qq; tri do; 

csw sw1(q,din,wsb),sw2(q,qq,sb),sw3(do,q,rd); 

not n1(sb,wsb),n2(qb,q),n3(qq,qb); 

endmodule 

module csw(out,in,n_ctr); 

output out; input in,n_ctr; wire p_ctr; 

assign p_ctr =~n_ctr; 

cmos csw(out,in,n_ctr,p_ctr); 

endmodule 

module tst_ramcell(); 

reg din,wsb,rd; wire do; 

ram_cell mc(do,din,wsb,rd); 

initial begin din=1'b0;wsb=1'b0;rd=1'b0; end 

always #10 din =~din; 

always begin #3wsb=1'b1; #8wsb=1'b0; end 

always begin #2 rd=1'b1; #5 rd =1'b0; end 

initial $monitor ($time," rd= %b ,wsb = %b ,din = %b ,do = %b ",rd,wsb,din,do); 

initial #40 $stop; 

endmodule 

Figure 10.23 Design description of a basic RAM cell. 

#                     0 rd= 0 ,wsb = 0 ,din = 0 ,do = z  

#                     2 rd= 1 ,wsb = 0 ,din = 0 ,do = x  

#                     3 rd= 1 ,wsb = 1 ,din = 0 ,do = 0  

#                     7 rd= 0 ,wsb = 1 ,din = 0 ,do = z  

#                     9 rd= 1 ,wsb = 1 ,din = 0 ,do = 0  

#                   10 rd= 1 ,wsb = 1 ,din = 1 ,do = 1  

#                   11 rd= 1 ,wsb = 0 ,din = 1 ,do = 1  

#                   14 rd= 0 ,wsb = 1 ,din = 1 ,do = z  

#                   16 rd= 1 ,wsb = 1 ,din = 1 ,do = 1  

#                   20 rd= 1 ,wsb = 1 ,din = 0 ,do = 0  

#                   21 rd= 0 ,wsb = 1 ,din = 0 ,do = z 

Figure 10.24 Partial results of simulating the test bench for the CMOS switch in Figure 

10.23.
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Example 10.9 An Alternate RAM Cell Realization 

Figure 10.25 shows an alternate and apparently simpler version of the ram cell 

(ram_1).   The two inverters are connected permanently in a back-to-back fashion.  

Their output strength levels are pull1 and pull0. Din can be of strength 

strong.  Hence when the data write switch (sww) is turned ON, Din prevails and 

forces q to its own state.  The condition is latched and remains so after switch sww
is turned OFF.  Another data can be written again by turning ON switch sww after 

making the new data available at Din.  Data can be read out of the latch by turning 

on the switch – swr.  It has the control line RD.

The module of the ram_1 cell is shown in Figure 10.26; the figure also 

includes a test bench.  The design uses two instantiations of the not gate with 

strength pull1 and pull0. The switches sww and swr are realized through 

instantiations of the CMOS switch modules csw. (Alternately, the same can be 

defined as a function inside the ram1 module and used as such.)  Partial 

simulation results are shown in Figure 10.27.  By adding address decoding and 

clock, the cell can be used as the basis for forming a full-fledged ram.   

D i

n

WR

sww

swr

g1

g2
Do

RD

q

qb

Figure 10.25 An alternate version of the RAM cell in block diagram form. 

module ram1(do,din,wr,rd); 

output do; input din,wr,rd; wire qb,q; tri do; 

scw sww(q,din,wr),swr(do,q,rd); 

not(pull1,pull0)n1(qb,q),n2(q,q); 

endmodule 

module scw(out,in,n_ctr); 

output out; input in,n_ctr; wire p_ctr; 

assign p_ctr =~n_ctr; 

cmos sw(out,in,n_ctr,p_ctr); 

endmodule 

continued
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continued

//test-bench 

module tst_ram1(); 

reg din,wr,rd; wire do; 

ram1 mm(do,din,wr,rd); 

initial begin din=1'b0;wr=1'b0;rd=1'b0; end 

always #10 din =~din; 

always begin #3wr=1'b1;  #8wr=1'b0; end 

always  begin #2 rd=1'b1; #5 rd =1'b0; end 

initial $monitor ($time," rd= %b ,wr = %b ,din = %b ,do = %b ",rd,wr,din,do); 

initial #40 $stop; 

endmodule 

Figure 10.26 Design description of the RAM cell of Figure 10.24. 

#                     0 rd= 0 ,wr = 0 ,din = 0 ,do = z  

#                     2 rd= 1 ,wr = 0 ,din = 0 ,do = x  

#                     3 rd= 1 ,wr = 1 ,din = 0 ,do = 0  

#                     7 rd= 0 ,wr = 1 ,din = 0 ,do = z  

#                     9 rd= 1 ,wr = 1 ,din = 0 ,do = 0  

#                   10 rd= 1 ,wr = 1 ,din = 1 ,do = 1 

Figure 10.27 Partial results of simulating the test bench for the CMOS switch in Figure 

10.26.

Example 10.10 A Dynamic Shift Register  

Figure 10.28 shows three successive stages of a dynamic shift register. It is 

operated through a two-phase clock system – 1 and 2.  Each stage has a CMOS 

inverter.  Successive stages are given input through CMOS switches (sw1, sw2, 

etc.). 1 and 2 are symmetric clock waveforms in anti-phase.  Two successive 

stages together form one storage element. 

When 2 is ON AND 1 is OFF.  Din is input to stage 1 through switch swd.  

sw1 and sw3 are OFF and sw2 is ON.  State of stage 2 (attained when 1 was 

high last) is coupled as input to stage 3 through switch sw2, and stage 3 takes 

up the new state. 

In the next half cycle, 1 is ON and 2 is OFF. sw1 and sw3 are ON and sw2 

is OFF.  State of stage 1 (attained when 2 was high last) is coupled as input 

to stage 2 through switch sw1 and Do takes up the new state from stage3 

through sw3. 
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dout
din swd

V
CC

sw1 sw3sw2x1 x3x2y1 y3y2

1 12 2

Figure 10.28 The basic functional unit of a dynamic shift register. 

The data in the input line are latched and shifted right on successive clock 

cycles.  The stages together act as a shift register stage.  The design description of 

a shift-register module with a two-phase clock is shown in Figure 10.29 along with 

a test-bench for the same.  The two-phase clock and switches are defined as 

functions.  These are repeatedly called to realize the shift register.  Figure 10.30 

shows partial simulation results.   

The shift register can be modified to suit a variety of needs: 

Dynamic logic incorporating NAND / NOR gates.   

Dynamic RAM with row and column select lines and refresh functions. 

A shift register to function as a right- or a left-shift-type shift register; a 

direction select bit can be used to alter the shift direction. 

module shreg1(dout,din,phi1); 

output dout;//tested ok on 22nd Non 2001 

input din,phi1; 

wire phi2; 

trireg[3:0] x,y; 

trireg dout; 

assign phi2=~phi1;  

cmos switch0(x[0],din,phi1,phi2), switch1(x[1],y[0],phi2,phi1),        

switch2(x[2],y[1],phi1,phi2), switch3(x[3],y[2],phi2,phi1),   

switch4(dout,y[3],phi1,phi2); 

cell cc0(y[0],x[0]), cc1(y[1],x[1]), cc2(y[2],x[2]), cc3(y[3],x[3]); 

endmodule 

module cell(op,ip); 

output op; 

input ip; 

continued
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continued

supply1 pwr; 

supply0 gnd; 

nmos(op,gnd,ip); 

pmos(op,pwr,ip); 

endmodule 

module tst_shreg1; 

reg din,phi1; 

wire dout; 

shreg1 shr(dout,din,phi1); 

initial {din,phi1}=2'B00; 

always

begin 

  #1 din=1'b1;   #2 din=1'b1;   #2 din=1'b0; 

  #2 din=1'b0;   #2 din=1'b0;   #2 din=1'b1; 

  #2 din=1'b1;  

end

always # 2 phi1=~phi1; 

initial $monitor($time,"  din= %b,    dout= %b,  phi1= %b", din,dout,phi1); 

endmodule 

Figure 10.29 Design description of the dynamic shift register of Figure 10.28.  

#                     0  din= 0,    dout= x,  phi1= 0 

#                     1  din= 1,    dout= x,  phi1= 0 

#                     2  din= 1,    dout= x,  phi1= 1 

#                     4  din= 1,    dout= x,  phi1= 0 

#                     5  din= 0,    dout= x,  phi1= 0 

#                     6  din= 0,    dout= x,  phi1= 1 

#                     8  din= 0,    dout= x,  phi1= 0 

#                   10  din= 0,    dout= 1,  phi1= 1 

#                   11  din= 1,    dout= 1,  phi1= 1 

#                   12  din= 1,    dout= 1,  phi1= 0 

#                   14  din= 1,    dout= 0,  phi1= 1 

#                   16  din= 1,    dout= 0,  phi1= 0 

#                   18  din= 0,    dout= 1,  phi1= 1 

#                   20  din= 0,    dout= 1,  phi1= 0 

Figure 10.30 Partial results of running the test bench in Figure 10.29.  
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10.4 BI-DIRECTIONAL GATES 

The gates discussed so far (nmos, pmos, rnmos, rpmos, rcmos) are all 

unidirectional gates.  When turned ON, the gate establishes a connection and 

makes the signal at the input side available at the output side.  Verilog has a set of 

primitives for bi-directional switches as well.  They connect the nets on either side 

when ON and isolate them when OFF.  The signal flow can be in either direction.  

None of the continuous-type assignments at higher levels dealt with so far has a 

functionality equivalent to the bi-directional gates. There are six types of bi-

directional gates. 

10.4.1 tran and rtran

The tran gate is a bi-directional gate of two ports. When instantiated, it connects 

the two ports directly.  Thus the instantiation  

tran (s1, s2);

connects the signal lines s1 and s2.  Either line can be input, inout or 

output. rtran is the resistive counterpart of tran.   

10.4.2 tranif1 and rtranif1 

tranif1 is a bi-directional switch turned ON/OFF through a control line.  It is in 

the ON-state when the control signal is at 1 (high) state.  When the control line is 

at state 0 (low), the switch is in the OFF state.  A typical instantiation has the form 

tranif1 (s1, s2, c ); 

Here c is the control line.  If c=1, s1 and s2 are connected and signal transmission 

can be in either direction.  rtranif1 is the resistive counterpart of tranif1.  It 

is instantiated in an identical manner. 

10.4.3 tranif0 and rtranif0 

tranif0 and rtranif0 are again bi-directional switches.  The switch is OFF if 

the control line is in the 1 (high) state, and it is ON when the control line is in the 0 

(low) state.  A typical instantiation has the form 

tranif0 (s1, s2, c);

With the above instantiation, if c = 0, s1 and s2 are connected and signal 

transmission can be in either direction.  If c = 1, the switch is OFF and s1 and s2

are isolated from each other.  rtranif0 is the resistive counterpart of tranif0.
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Observations:  

Any instantiation of a bi-directional switch of the above types can be given a 

name.  But a name is not essential.  It is true of the other switches also.   

With the bi-directional switches the signal on either side can be of input,

output, or inout type.  They can be nets or appearing as ports in the 

module.  But the type declaration on the two sides has to be consistent. 

The connections to the bi-directional terminals of each of the bi-directional 

switches have to be scalars or individual bits of vectors and not vector 

themselves. 

In the above instantiation s1 can be an input port in a module.  In that case, s2
has to be a net forming an input to another instantiated module or circuit 

block.  s2 can be of output or inout type also.  But it cannot be another 

input port.   

 s1 and s2 – both cannot be output ports. 

 s1 and s2 – both can be inout ports. 

With tran, tranif1, and tranif0 bi-directional switches if the input 

signal has strength supply1 (supply0), the output side signal has strength 

strong1 (strong0).  For all other strength values of the input signal, the 

strength value of the output side signal retains the strength of the input side 

signal. 

With rtran, rtranif1 and rtranif0 switches the output side signal 

strength is less than that of the input side signal.  The strength reduction is on 

the lines shown in Table 10.4 for rnmos, rpmos, and rcmos switches. 

Features of all the bi-directional switches are shown summarized in Table 10.5. 

Example 10.11 Bus Switching 

Figure 10.31 shows the circuit of a single-data line bus with the possibility of two-

way data transfer; the module bus_tran in Figure 10.32 is the Verilog description 

of the circuit at the switch level.  c is a tran-type switch with the possibility of 

connecting a and b. ar and br are registers which can be switched ON to the lines  

br

ac

ba

swa

ar

swb

swc

bcc

Figure 10.31 A circuit to demonstrate two-way signal transfer. 
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Table 10.5 Different bi-directional switches and their features 

Type of  

Bi-directional 

switch

Typical  

instantiation  

Condition to be 

ON

Remarks

tran (a, b); Always ON (if 

instantiated) 

Acts essentially as a buffer 

2 port rtran (a, b); – do – Acts essentially as a buffer with 

reduction in the strength of the signal  

tranif1 (a,

b, c);

ON if c = 1 Acts as a buffer if ON.  Otherwise 

provides isolation 

tranif0 (a,

b, c);

ON if c = 0 – do – 

rtranif1

(a, b, c);
ON if c = 1 Acts as a buffer if ON.  Otherwise 

provides isolation; signal strength on 

the output side is lower than that on 

the input side 

3 port 

rtranif0

(a, b, c);
ON if c = 0 – do – 

module bus_tran(a,b,c); 

inout  a,b; input c; wire a,b,c; 

tranif1 gg (a,b,c); 

endmodule 

module bus_tst; 

reg ar,br,ac,bc,c;wire a,b; 

bufif1 swa(a,ar,ac), swb(b,br,bc); 

bus_tran bs(a,b,c); 

initial begin 

 $display("t\tar\tac\ta\tc\tb\tbc\tbr"); 

 #1 {ar,ac,c,bc,br}=5'b01100; repeat(3) #1 ar=~ar; 

 #1 {ar,ac,c,bc,br}=5'b00110; repeat(3) #2 br=~br;  

 #1 {ar,ac,c,bc,br}=5'b11010; repeat(3) #1 ar=~ar; 

 repeat(3) #2 br=~br;  

 #1 $stop; 

 end 

initial $monitor("%0d\t%b\t%b\t%b\t%b\t%b\t%b\t%b",$time,ar,ac,a,c,b,bc,br); 

endmodule 

Figure 10.32 Design and test modules for the circuit of Figure 10.31. 
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a and b. Two-way signal transmission is demonstrated through the test bench in 

the figure; the simulation results reproduced in Figure 10.33 bring out the  

following: 

Up to 4 ns, switch swa is ON, swb is OFF, and swc is ON.  Data in ar – ar
toggles 3 times and is available on a and b.

During 5 ns to 11 ns, switch swa is OFF, swb is ON, and swc is ON.  Data in 

br – br toggles 3 times and is available on b and a.

During 1 2ns to 21 ns, switch swc is ON, swa and swb are OFF; a follows ar
while b follows br.

#t ar ac a c b bc br 

#0 x x x x x x x 

#1 0 1 0 1 0 0 0 

#2 1 1 1 1 1 0 0 

#3 0 1 0 1 0 0 0 

#4 1 1 1 1 1 0 0 

#5 0 0 0 1 0 1 0 

#7 0 0 1 1 1 1 1 

#9 0 0 0 1 0 1 0 

#11  0  0  1  1  1  1  1 

#12  1  1  1  0  0  1  0 

#13  0  1  0  0  0  1  0 

#14  1  1  1  0  0  1  0 

#15  0   1  0  0  0  1  0 

#17  0  1  0  0  1  1  1 

#19  0  1  0  0  0  1  0 

#21  0  1  0  0  1  1  1 

Figure 10.33 Simulation results with the test bench for the circuit in Figure 10.31. 

Example 10.12 Another RAM Cell 

Figure 10.34 shows a single RAM cell.  It can be instantiated in vector form to 

form a full-fledged ram.  a_d is the decoded address line.  When active, it turns on 

the bi-directional switch g3 and establishes a two-way connection between net 

ddd and net q. g1 and g2 together form a latch in feedback fashion.  When g3 is 

OFF, the latch stores the state it was last in.  It is connected to ddd through g3 by 

activating a_d for writing and reading.  The design description for the RAM is 

shown in Figure 10.35.  The simulation results are  (partially) reproduced in Figure 

10.36.  The following are possible after such selection and connection: 
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When wr = 1, cmos gate g4 turns ON; the data at the input port di (with 

strength strong0 / strong1) are connected to q through ddd.  It forces the 

latch to its state – since q has strength pull0 / pull1 only – di prevails 

here.  This constitutes the write operation. 

When rd = 1, cmos gate g5 turns ON.  The net ddd is connected to the output 

net do.  The data stored in the latch are made available at the output port do.

This constitutes the read operation. 

wr tranif1

g3 g1 g2

do

rd

qqb

cmos

g4

cmos

g5

di

ddd

a_d

Figure 10.34 Circuit of a RAM cell,in block diagram form. 

module ram_cell1(do,di,wr,rd,a_d); 

output do; input di,wr,rd,a_d; wire ddd,q,qb,wrb,rdb; 

not(rdb,rd),(wrb,wr); 

not(pull1,pull0)(q,qb),(qb,q); 

tranif1 g3(ddd,q,a_d); 

cmos g4(ddd,di,wr,wrb),g5(do,ddd,rd,rdb); 

endmodule 

//test bench 

module tst_ramcell1(); 

reg din,wr,rd,a_d; wire do; 

ram_cell1 rmc1(do,din,wr,rd,a_d); 

initial begin a_d=1'b0;din=1'b0;wr=1'b0;rd=1'b0; end 

always #3a_d=1'b1; 

always #10 din =~din; 

always begin #3wr=1'b1; #8 wr=1'b0; end 

always begin #2 rd=1'b1; #5 rd =1'b0; end 

initial $monitor ($time," rd= %b ,wr = %b ,din = %b ,a_d = %b ,do = %b 

",rd,wr,din,a_d,do); 

initial #40 $stop; 

endmodule 

Figure 10.35 Design description of the RAM cell of Figure 10.34. 
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#                     0 rd= 0 ,wr = 0 ,din = 0 ,a_d = 0 ,do = z  

#                     2 rd= 1 ,wr = 0 ,din = 0 ,a_d = 0 ,do = z  

#                     3 rd= 1 ,wr = 1 ,din = 0 ,a_d = 1 ,do = 0  

#                     7 rd= 0 ,wr = 1 ,din = 0 ,a_d = 1 ,do = z  

#                     9 rd= 1 ,wr = 1 ,din = 0 ,a_d = 1 ,do = 0  

#                   10 rd= 1 ,wr = 1 ,din = 1 ,a_d = 1 ,do = 1  

#                   11 rd= 1 ,wr = 0 ,din = 1 ,a_d = 1 ,do = 1  

#                   14 rd= 0 ,wr = 1 ,din = 1 ,a_d = 1 ,do = z  

#                   16 rd= 1 ,wr = 1 ,din = 1 ,a_d = 1 ,do = 1  

#                   20 rd= 1 ,wr = 1 ,din = 0 ,a_d = 1 ,do = 0  

#                   21 rd= 0 ,wr = 1 ,din = 0 ,a_d = 1 ,do = z 

Figure 10.36 Partial results of simulating the test bench for the CMOS switch in Figure 

10.35.

10.5 TIME DELAYS WITH SWITCH PRIMITIVES 

Propagation delays can be specified for switch primitives on the same lines as was 

done with the gate primitives in Chapter 5.  For example, an NMOS switch 

instantiated as 

nmos g1 (out, in, ctrl );

has no delay associated with it.  The instantiation  

nmos (delay1) g2 (out, in, ctrl );

has delay1 as the delay for the output to rise, fall, and turn OFF.  The instantiation  

nmos (delay_r, delay_f) g3 (out, in, ctrl );

has delay_r as the rise-time for the output. delay_f is the fall-time for the output.  

The turn-off time is zero.  The instantiation  

nmos (delay_r, delay_f, delay_o) g4 (out, in, ctrl );

has delay_r as the rise-time for the output. delay_f is the fall-time for the output   

delay_o is the time to turn OFF when the control signal ctrl goes from 0 to 1.  

Delays can be assigned to the other uni-directional gates (rcmos, pmos, rpmos,

cmos, and rcmos) in  a similar manner.  Bi-directional switches do not delay 

transmission – their rise- and fall-times are zero.  They can have only turn-on and 

turn-off delays associated with them.  tran has no delay associated with it. 

tranif1 (delay_r, delay_f) g5 (out, in, ctrl );
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represents an instantiation of the controlled bi-directional switch.  When control 

changes from 0 to 1, the switch turns on with a delay of delay_r.  When control 

changes from 1 to 0, the switch turns off with a delay of delay_f.

transif1 (delay0) g2 (out, in, ctrl );

represents an instantiation with delay0 as the delay for the switch to turn on when 

control changes from 0 to 1, with the same delay for it to turn off when control 

changes from 1 to 0.  When a delay value is not specified in an instantiation, the 

turn-on and turn-off are considered to be ideal that is, instantaneous. Delay values 

similar to the above illustrations can be associated with rtranif1, tranif0,

and rtranif0 as well. 

10.6 INSTANTIATIONS WITH STRENGTHS AND DELAYS 

In the most general form of instantiation, strength values and delay values can be 

combined.  For example, the instantiation  

nmos (strong1, strong0) (delay_r, delay_f, delay_o ) gg (s1, s2, ctrl) ;

means the following: 

It has strength strong0 when in the low state and strength strong1when
in the high state. 

When output changes state from low to high, it has a delay time of delay_r.

When the output changes state from high to low, it has a delay time of 

delay_f. 

When output turns-off it has a turn-off delay time of delay _o.

rnmos, pmos, and rpmos switches too can be instantiated in the general form in 

the same manner.  The general instantiation for the bi-directional gates too can be 

done similarly. 

10.7 STRENGTH CONTENTION WITH TRIREG NETS 

As was explained in Chapter 5, nets declared as trireg can have capacitive 

storage.  Such storage can be assigned one of three strengths – large, medium,

or small.  Driving such a net from different sources can lead to contention; the 

relative strength levels of the sources also have a say in the signal level taken by 

the net.  The contention resolution is brought out here through an illustrative 

example.  A similar procedure of analysis can be followed in other cases as well. 
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Example 10.13 

Figure 10.37 shows a circuit where a set of switches connect nets in series to a 

signal source.  Strengths have been assigned to the nets and a test bench to bring 

out contention shown in Figure 10.38.  The thicker line representation of net a3 in 

Figure 10.37 signifies that the capacitive storage strength of net a3 is stronger than 

that of net a2.  The progress of simulation is depicted in Figure 10.39 showing the 

switch status and corresponding signal values at different times.  Simulation 

results are shown in Figure 10.40. One can see that whenever a2 and a3 are 

connected (but isolated from a1), the stronger a3 prevails. 

Observations:  

When a net is connected to a single signal source through intervening switches 

and capacitive nets, the source decides the value of the signal on the net. 

When 2 capacitive nets are connected, in case of a contention the stronger one 

prevails. 

When a signal source and a capacitive net drive another net, in case of a 

contention the signal value is dictated by the stronger of the two (see 

Table 5.5). 

Source1 a1 sw2sw1

c2c1

a3a2

Figure 10.37 A simple circuit to demonstrate contention resolution with trireg nets. 

module demo_1; 

trireg(large)a3; trireg(small)a2; wire a1; reg c1,c2,b; 

buf(strong1,strong0) source1(a1,b); 

tranif1 sw1(a2,a1,c1), sw2(a3,a2,c2); 

initial begin 

 $display("t\ta1\tc1\ta2\tc2\ta3"); 

       #0 {c1,c2,b}=3'b111; #1 {c1,c2,b}=3'b011; #1 {c1,c2,b}=3'b001; 

       #1 {c1,c2,b}=3'b000; #1 {c1,c2,b}=3'b100; #1 {c1,c2,b}=3'b000;     

       #1 {c1,c2,b}=3'b010; #1 {c1,c2,b}=3'b000; #1 {c1,c2,b}=3'b100;    

       #1  {c1,c2,b}=3'b000; #1 {c1,c2,b}=3'b010; #1 {c1,c2,b}=3'b000; 

       #1  {c1,c2,b}=3'b001; #1 {c1,c2,b}=3'b101; #1 {c1,c2,b}=3'b111; 

       #1  $stop; 

          end 

initial $monitor("%0d\t%b\t%b\t%b\t%b\t%b",$time,a1,c1,a2,c2,a3); 

endmodule 

Figure 10.38 A test bench for the circuit in Figure 10.37. 
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t = 0
1 11

t = 3
0 11

t = 4
0 10

t = 5
0 10

t = 6
0 11

t = 7
0 11

t = 8
0 10

t = 10
0 11

t = 11
0 11

t = 12
1 11

t = 13
1 11

t = 14
1 11

t = 15
0 00

t = 16
0 00

Source1 a1 sw2sw1

c2c1

a3a2

1 11
t = 2

Figure 10.39 Changes in signal values at different times in Example 10.13 as the status of 

switches changes. 
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#t a1 c1 a2 c a3 

#0 1 1 1 1 1 

#1 1 0 1 1 1 

#2 1 0 1 0 1 

#3 0 0 1 0 1 

#4 0 1 0 0 1 

#5 0 0 0 0 1 

#6 0 0 1 1 1 

#7 0 0 1 0 1 

#8 0 1 0 0 1 

#9 0 0 0 0 1 

#10  0  0  1  1  1 

#11  0  0  1  0  1 

#12  1  0  1  0  1 

#13  1  1  1  0  1 

#14  1  1  1  1  1 

Figure 10.40 Results of the simulation-run with the test bench in Figure 10.38. 

10.8 EXERCISES 

 1. Implement NAND, AND, OR GATES using MOS switches; test it with a 

suitable test-bench.  

 2.  Implement a pseudo-NMOS 4-input NOR logic gate. Write a test bench and 

test it. 

 3.  Implement a dynamic logic NAND gate for 4 inputs; the pullup is to be a 

precharge transistor, and the pulldown is to be an evaluation transistor, with 

the output being precharged in precharge phase of the clock. The output 

should be available during the evaluation phase. Write a test bench and test 

the switch level dynamic gate. 

 4.  Implement a 4-to-1 MUX using CMOS transmission gates. 

 5.  Build a dynamic 2-to-4 NOR gate based decoder and a dynamic 2-to-4 

NAND gate-based decoder using NMOS switches and PMOS switches. 

 6.  Implement a one-bit full adder using CMOS logic and test it using a test 

bench. 

 7.  Implement a 4-bit look-ahead adder using CMOS logic and test it with a test 

bench. 

 8.  Implement a 4-bit barrel shifter using NMOS switches. 
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 9.  Form an edge-triggered flip-flop; using it, form an 8-bit port as shown in 

Figure 10.40.  Form a latch and modify it to provide two flags – data input 

flag (DIF) and data output flag (DOF).  Normally, Wr and Rd are low; old 

state is retained.  If Wr goes high, Di bits are loaded into the port at the next 

clock pulse.  DIF flag is set.  DOF is at zero state.  If RD goes high, Do bits 

are loaded into the port at the next clock pulse.  DOF Flag is set.  DIF is at 

zero state.  Design the port module; test it with a test bench. 

Di
Do

RdWr

Clk

(a)

Rb
DOF

DIF

WrClk

Clk

Sb

Rd(b)

Figure 10.40 Figure for Exercise 9. 
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11  

SYSTEM TASKS, FUNCTIONS, AND 

COMPILER DIRECTIVES 

11.1 INTRODUCTION 

A number of facilities in Verilog relate to the management of simulation; starting 

and stopping of simulation, selectively monitoring the activities, testing the design 

for timing constraints, etc., are amongst them.  Although a variety of such 

constructs is available in Verilog for such activities [IEEE], we discuss the leading 

ones and illustrate their use through representative example. 

11.2 PARAMETERS 

Often designers keep debugged modules for reuse.  Such modules call for 

flexibility on two counts: 

They should be adaptable to designs conforming to different technologies.  

Timing parameters used for testing should be flexible.   

They should have a scalable feature; that is, bus width, register size, etc., 

should be flexible. 

The parameter constructs facilitate such flexibility.  Constants signifying 

timing values, ranges of variables, wires, etc., can be specified in terms of assigned 

names.  Such assigned names are called parameters.  The parameter values can be 

specified and changed to suit the design environment or test environment.  Such 

changes are effected and frozen at instantiation.  The assigned values cannot 

change during testing or synthesis.  In this respect a parameter is different from a 

net or a variable.   

Two types of parameters are of use in modules:  

Parameters related to timings, time delays, rise and fall times, etc., are 

technology-specific and used during simulation.  Parameter values can be 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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assigned or overridden with the keyword  “specparam” preceding the 

assignments.  

Parameters related to design, bus width, and register size are of a different 

category.  They are related to the size or dimension of a specific design; they 

are technology-independent.  Assignment or overriding is with assignments 

following the keyword “defparam”.

The two types of parameters are treated differently in Verilog.  The former 

type is discussed here and the latter type is discussed in Section 11.4. 

11.2.1 Timing-Related Parameters 

The constructs associated with parameters are discussed here through specific 

design or test modules. 

Example 11.1  

The half-adder module of in Figure 4.24 is reconsidered here in Figure 11.1.  Gate 

delays of the type discussed in Chapter 5 have been added to all output transitions 

of the sum bit (s) as well as the carry bit (ca).  Simulation results are partially 

reproduced in Figure 11.2.  The following observations are in order here: 

 a=0 and b=0 at start of simulation. Because of the transition times, the outputs 

remain indecisive at the x state. 

module ha_1(s,ca,a,b); 

input a,b; output s,ca; 

xor #(1,2) (s,a,b); 

and #(3,4) (ca,a,b); 

endmodule 

//test-bench 

module tstha_1(); 

reg a,b; wire s,ca; 

ha_1 hh(s,ca,a,b); 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.1 Module of a half-adder with delays assigned to the output transitions; a test 

bench is also included in the figure. 
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#                     0  a = 0 , b = 0 ,out carry = x , outsum = x   

#                     2  a = 0 , b = 0 ,out carry = x , outsum = 0   

#                     4  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                     5  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                     6  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

#                   10  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

#                   15  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

#                   17  a = 1 , b = 1 ,out carry = 0 , outsum = 0   

#                   18  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

Figure 11.2 Partial results of simulating the test bench in Figure 11.1. 

The sum bit falls down to 0 state with the specified delay of 2 ns.  The carry 

bit falls down to 0 state with its specified delay of 4 ns. 

 a=1 and b=0 at 5 ns.  The sum bit rises to the 1 state at 6 ns (with the 

specified delay of 1 ns).   

 a=0 and b=1 at 10 ns.  But the sum and carry bits remain unchanged. 

 a=b=1 at 15 ns.  The sum bit falls down to 0 state at 17 ns (with the specified 

fall delay of 2 ns).  The carry bit rises to the 1 state at 18 ns (with the specified 

rise time delay of 3 ns).   

Subsequent output transitions too can be explained in a similar manner.   

11.2.2 Parameter Declarations and Assignments 

Declaration of parameters in a design as well as assignments to them can be 

effected using the keyword “Parameter.”  A declaration has the form 

parameter alpha = a, beta = b;

where  

parameter is the keyword, 

 alpha and beta are the names assigned to two parameters and

a, b are values assigned to alpha and beta, respectively.

In general a and b can be constant expressions.  The parameter values can be 

overridden during instantiation but cannot be changed during the run-time.  If a 

parameter assignment is made through the keyword “localparam,” its value 

cannot be overridden. 
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Observations:  

As mentioned earlier, parameters are constants which can be altered 

during compilation but not during runtime. 

A Parameter can be signed or unsigned in nature; it can be an integer 

or a real number. 

Its nature – signed or not, real or integral type as well as range – can be 

specified at the time of declaration or decided by default based on 

assignment. 

 Examples 

parameter a = 3; // a is a positive integer 

parameter b = - 3; // b is a signed integer 

parameter c = 3.0, d = 3.0e2;  //c and d are unsigned real numbers. 

In all the above cases the parameter type and range are decided by 

default.  

parameter integer e = 3;  /* e is declared to be an integer type of 

 parameter and assigned the value 3. */ 

parameter real f = 3.0;  /* f is declared to be a real unsigned real 

 number  and assigned the value 3.  */ 

In the last two cases the parameter type is declared explicitly and 

remains  so. 

Whenever a parameter value is overridden during instantiation (as in 

some of the cases discussed below), type, signed/unsigned, etc., remain 

unchanged. 

Example 11.2  

The half-adder module in Figure 11.1 has been modified and shown in 

Figure 11.3.  The rise and fall times of the primitive gate instantiation are assigned 

identifier names.  Specific numeric values are assigned to them through a separate 

parameter declaration statement.  The numerical values assigned are the same as 

those assigned in Example 11.1 above.  The simulation results are identical to 

those in Figure 11.2.   

The scheme of Figure 11.3 has an apparent advantage compared to that of 

Figure 11.1.  Different rise and fall times, time delays, etc., need not be fully 

specified in the design or its test bench.  Values can be assigned separately through 

parameter declaration as done here.  Numeric values can be changed by assigning 

the required values to the parameters afresh: It avoids the unpleasant task of 

scanning the module file and changing the numerical values all through. 
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module ha_2(s,ca,a,b); 

input a,b; output s,ca; 

parameter dl1r=1,dl2f=2,dl3r=3,dl4f=4; 

xor #(dl1r,dl2f) (s,a,b); 

and #(dl3r,dl4f) (ca,a,b); 

endmodule 

//test-bench 

module tstha_2(); 

reg a,b; wire s,ca; 

ha_2 hh(s,ca,a,b); 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.3 The half-adder module of Figure 11.1 with the time delays assigned through 

parameter declarations. 

Example 11.3   

Figure 11.4 shows the half-adder module with the test bench being modified.  The 

rise and fall times are specified separately in the test bench.  They override the 

values specified in the half-adder module itself.  The time delay values are 

specified within the instantiation statement.   Four numbers are specified there; 

they override the first four parameters declared in the module instantiated and in 

the same order.  Specifically, the numbers 4, 3, 2, and 1 are assigned to the 

parameters dl1r, dl2f, dl3, and dl4f, respectively.  The simulation results are given 

in Figure 11.5. The quantities representing delayed response are shown in bold 

italics.  Thus the change in a at 5 ns causes the sum bit to get set with a delay of 

dlir (4 ns here)–that is, at 9 ns.  As pointed out earlier, the 4 ns delay value for dl1r
has been specified in the test bench at instantiation, and it overrides the value of 

1 ns assigned in the module definition.  Subsequent changes to s and c too can be 

explained in a similar manner.  The overriding illustrated here can be done 

separately for each instantiation in a module or in different modules. 
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module ha_2(s,ca,a,b); 

input a,b; output s,ca; 

parameter dl1r=1,dl2f=2,dl3r=3,dl4f=4; 

xor #(dl1r,dl2f) (s,a,b); 

and #(dl3r,dl4f) (ca,a,b); 

endmodule 

//test-bench 

module tstha_3(); 

reg a,b; wire s,ca; 

ha_2 #(4,3,2,1) hh(s,ca,a,b); 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.4 The half-adder module of Figure 11.3 with the time delay values reassigned 

from the test bench. 

#                    0  a = 0 , b = 0 ,out carry = x , outsum = x   

#                    1  a = 0 , b = 0 ,out carry = 0 , outsum = x   

#                    3  a = 0 , b = 0 ,out carry = 0 , outsum = 0

#                    5  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                    9  a = 1 , b = 0 ,out carry = 0 , outsum = 1

#                   10  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

#                   15  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

#                   17  a = 1 , b = 1 ,out carry = 1 , outsum = 1   

#                   18  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

#                   20  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

#                   21  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   25  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   29  a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.5 Results of simulating the test bench in Figure 11.4. 

Example 11.4   

Figure 11.6 shows the half adder module considered above and its test bench with 

one change in the test bench.  The module instantiation has three numbers 

representing three time delays.  They override the first three parameters (dl1r, dl2f, 

and dl3r, respectively) as declared in the instantiation.  All other parameters (only 

dl4f here) remain unchanged.  The simulation results are given in Figure 11.7. The 
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numerals pertaining to the delayed changes are shown in bold italics in the figure.  

The fall time of ca for its 0 to 1 transition (specified by dl4f) in the instantiated 

module can be seen to be unchanged at 4 ns – as is evident from the line 

representing the values of variables at 24 ns in Figure 11.7.  

module ha_2(s,ca,a,b); 

input a,b; output s,ca; 

parameter dl1r=1,dl2f=2,dl3r=3,dl4f=4; 

xor #(dl1r,dl2f) (s,a,b); 

and #(dl3r,dl4f) (ca,a,b); 

endmodule 

//test-bench 

module tstha_4(); 

reg a,b; wire s,ca; 

ha_2 #(4,3,2) hh(s,ca,a,b); 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.6 The half-adder module with only some of the time delays assigned afresh from 

the test bench.  

#                    0  a = 0 , b = 0 ,out carry = x , outsum = x   

#                    3  a = 0 , b = 0 ,out carry = x , outsum = 0

#                    4  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                    5  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                    9  a = 1 , b = 0 ,out carry = 0 , outsum = 1

#                   10  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

#                   15  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

#                   17  a = 1 , b = 1 ,out carry = 1 , outsum = 1   

#                   18  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

#                   20  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

#                   24  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   25  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   29  a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.7 Results of simulating the test bench in Figure 11.6. 
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The numbers specified in the test bench will be automatically assigned to the 

parameters in the instantiated module – in the same order as they are defined in the 

parameter statement.  With such an implicit approach one cannot do an assignment 

to a selected set of parameters.  For example, dl4f cannot be assigned a different 

value directly. 

Example 11.5 

The test bench in the module of Figure 11.4 has been modified and the modified 

module shown in Figure 11.8.  The parameters dl1r, dl2f, dl3r, and dl4f are 

assigned values through the defparam statement.  Each parameter, whose value 

has to be overridden, has to be specified hierarchically.  One can also follow the 

approach here to assign values to parameters in different instantiated modules.  

Such values can be assigned to all the desired parameters at one place in the 

manner done here through a defparam construct. Simulation results are identical 

to those of Figure 11.5.   

module ha_2(s,ca,a,b); 

input a,b; output s,ca; 

parameter dl1r=1,dl2f=2,dl3r=3,dl4f=4; 

xor #(dl1r,dl2f) (s,a,b); 

and #(dl3r,dl4f) (ca,a,b); 

endmodule 

//test-bench 

module tstha_5(); 

reg a,b; wire s,ca; 

defparam hh.dl1r=4,hh.dl2f=3,hh.dl3r=2,hh.dl4f=1; 

ha_2 hh(s,ca,a,b); 

initial begin a=0;b=0; end  

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.8 Use of defparam for assignment of values to specific parameters. 

Example 11.6   

The half-adder module of Figure 11.4 has been reproduced in Figure 11.9 with one 

change; the parameter assignments are done with constant expressions on the right 

ride.  Note that the parameters appearing in a constant expression have to be 
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defined (value assigned) prior to such use.  The expressions here are such that the 

numerical values of dl1r, dl2f, dl3r, and dl4f are the same as those in Example 

11.2.  The simulation results too are the same.  

module ha_6(s,ca,a,b); 

input a,b; output s,ca; 

parameter dl1r=1,dl2f=dl1r+1,dl3r=3,dl4f=dl2f*2; 

xor #(dl1r,dl2f) (s,a,b); 

and #(dl3r,dl4f) (ca,a,b); 

endmodule 

//test-bench 

module tstha_6(); 

reg a,b; wire s,ca; 

ha_6 hh(s,ca,a,b); 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.9 Illustration of the use of constant expressions for parameter assignments. 

11.2.3 Type Declarations for Parameters 

Examples 11.2 to 11.6 above do not have any type declaration statements for the 

parameters dl1r, dl2f, dl3r, and dl4f.  However, integer value assignments are 

made to each of them; implicitly they are taken as integers by the simulator.  But 

in general one can use constant expressions on the right-hand side of the 

assignments. With the module of Figure 11.9, consider the parameter assignment 

statement  

parameter dl1r =1, dl2f =dl1r + 1,  dl3r =3 , dl4f = dl2f*2; 

As mentioned earlier, all four parameters are automatically taken as integers by the 

simulator.  If the above statement is modified as  

parameter dl1r =1, dl2f =dl1r + 1.0,  dl3r =3 , dl4f = dl2f*2; 

the parameter types will be radically different. dl1r and dl3r will be treated as 

integers but dl2f and hence dl4f will be treated as real.  However, the numerical 

values assigned will remain unaltered and hence the simulation results too will be 

the same. 
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11.3 PATH DELAYS 

The time delays discussed so far (from Chapter 5 onwards) are all delays 

associated with individual operations or activities in a module.  They refer to basic 

circuit elements in a design – at the microlevel itself.  These are called “distributed 

delays” in LRM.  Verilog has the provision to specify and check delays associated 

with total paths – from any input to any output of a module.  Such paths and delays 

are at the chip or system level.  They are referred to as “module path delays.”  

Constructs available make room for specifying their paths and assigning delay 

values to them – separately or together. 

11.3.1 Specify Blocks 

Module paths are specified and values assigned to their delays through specify

blocks.  They are used to specify rise time, fall time, path delays pulse widths, and 

the like.  A “specify” block can have the form shown in Figure 11.10.  

specify

specparam rise_time = 5, fall_time = 6; 

 (a =>b) = (rise_time, fall_time); 
 (c => d) = (6, 7); 
endspecify

Figure 11.10 Structure of a specparam block 

The block starts with the keyword “specify” and ends with the keyword 

“endspecify”.  Specify blocks can appear anywhere within a module.  The 

block can have two types of statements:  

One type starts with the keyword specparam and assigns numerical values 

to timing parameters declared elsewhere.  The specparam statements can 

appear within a module or within a specify block. (In earlier versions of the 

LRM its presence was restricted to the specify blocks.)  The right sides of the 

assignments can be constants or constant expressions involving such 

parameters already assigned.   

The second type specifies paths and assigns values to time delays to them.  

Details of different possibilities for such paths are discussed later.    

A specify block can have only the above types of assignments.  Circuit 

function assignments, assignments to module parameters, etc., are not permitted 

within it.   



PATH DELAYS 349 

11.3.2 Module Paths 

Module paths can be specified in different ways inside a specify block.  The 

simplest has the form 

A*>B

Here “A” is the source and “B” the destination.  The source can be an input or an 

inout port.  The destination can be output or an inout port.  The symbol 

combination “*>” specifies the path from the source to the destination.  It 

encompasses all the possible paths from A to B.  If A and B are scalars, it signifies 

a single path.   

If A is a vector and B is a scalar, it signifies all the paths from every bit of A
to the scalar B.  Thus if A is a 4-bit-wide vector, 4 paths are specified. 

If A is a scalar and B is a vector, it signifies all the paths from A to every bit 

of the vector B.  Thus if B is an 8-bit vector, it signifies all 8 possible paths.   

If both A and B are vectors, it signifies all the possible paths from every bit of 

the vector A to every bit of the vector B; thus if A is a 4-bit vector and B is an 

8-bit vector, it signifies 4 × 8 = 32 possible paths; a total of 32 delay values 

(all being equal to each other) are implied here. 

Figure 11.11(a) illustrates a case of all possible paths from a 2-bit vector A to 

another 2-bit vector B; the specification implies 4 paths.  A statement of the type 

C => D

signifies only all the parallel paths.  Here C and D have to be vectors of the same 

size.  The path specified signifies transmission from every bit of vector C to the 

corresponding bit of vector D.  In this sense the path description is more restrictive 

than that of A*>B above.  Figure 11.11(b) illustrates a case of all possible parallel 

paths from a 2-bit vector C to another 2-bit vector D; the specification implies a 

total of 2 paths only. 
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D[1]B[1]

B[0]
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A[0]

p
2

p
1

p
4
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p
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p
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(b)(a) A *> B C => D

Figure 11.11 Illustration of the difference between the operators *> and =>. 
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Example 11.7 

The module in Figure 11.12 specifies path delays from the input pins a and b to 

the output pins s and ca.  The delay values are assigned within a specify block.  

The assignment  

(a,b *> s) =1; 

implies that  

The propagation delay from input a to output s is 1 ns and 

The propagation delay from input b to the output s is also 1 ns. 

Further the delay value is 1 ns for the change in the state of s from 0 to 1 as 

well as from 1 to 0.   

Similarly the statement  

(a,b *> ca) = 2; 

implies that the delay from a to ca as well as that from b to ca is 2 ns; further, it 

holds for any transition in ca.  The simulation results are reproduced in Figure 

11.13.  The values specific to the delayed changes are shown in bold italics.  The 

module ha_7(s,ca,a,b); 

input a,b; output s,ca; 

specify

 (a,b*>s)=1; 

 (a,b*>ca)=2; 

endspecify

xor  (s,a,b); 

and  (ca,a,b); 

endmodule 

//test-bench 

module tstha_7(); 

reg a,b; wire s,ca; 

ha_7 hh(s,ca,a,b); 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.12 A module to demonstrate use of path delay assignments. 
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#                    0  a = 0 , b = 0 ,out carry = x , outsum = x   

#                    1  a = 0 , b = 0 ,out carry = x , outsum = 0

#                    2  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                    5  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                    6  a = 1 , b = 0 ,out carry = 0 , outsum = 1

#                   10  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

#                   15  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

#                   16  a = 1 , b = 1 ,out carry = 0 , outsum = 0   

#                   17  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

#                   20  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

#                   22  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   25  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   26  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

Figure 11.13 Simulation results of the test bench in Figure 11.12. 

results can be seen to be consistent with the delay specifications.  If the 

propagation delay values are the same in all the cases, the same could have been 

specified as 

specify

 (a, b *> s, ca) = 1; 
endspecify

Example 11.8  

The module of Figure 11.12 has been slightly modified and reproduced in Figure 

11.14.  The delay values are specified as parameters and the parameters assigned 

values through respective specparam statements.  Further, the specparam

statement  

specparam dl2 = dl1 +1; 

uses a constant expression involving previously specified parameter values on the 

right side. 

The delay paths and the values assigned to them are identical to those in 

Example 11.7 above.  The simulation results too are identical to those in Figure 

11.13. 
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module ha_8(s,ca,a,b); 

input a,b; output s,ca; 

specify

 specparam dl1=1; 

 specparam dl2=dl1+1; 

 (a,b*>s)=dl1; 

 (a,b*>ca)=dl2; 

endspecify

xor  (s,a,b); 

and  (ca,a,b); 

endmodule 

//test-bench 

module tstha_8(); 

reg a,b; wire s,ca; 

ha_8 hh(s,ca,a,b); 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.14 Illustration of specparam with path delays. 

Example 11.9 

In the half-adder module of Figure 11.15 the rise and fall times at the output have 

been specified separately; effectively the specifications are the same as those for 

Example 11.1; but here they are at the chip level in contrast to those in Example 

11.1, where they are at the gate level.  The simulation results are shown in Figure 

11.16; the values that pertain to the delayed response are shown in bold italics in 

the figure. 

module ha_9(s,ca,a,b); 

input a,b; output s,ca; 

specify

 (a,b*>s) = (1,2); 

 (a,b*>ca) = (3,4); 

endspecify

xor  (s,a,b); 

and  (ca,a,b); 

endmodule 

continued 
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continued

//test-bench 

module tstha_9(); 

reg a,b; wire s,ca; 

ha_9 hh(s,ca,a,b); 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial #30 $stop; 

endmodule 

Figure 11.15 Use of specify block to specify out rise and fall times separately for pin-to-pin 

delays. 

#                    0  a = 0 , b = 0 ,out carry = x , outsum = x   

#                    2  a = 0 , b = 0 ,out carry = x , outsum = 0

#                    4  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                    5  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                    6  a = 1 , b = 0 ,out carry = 0 , outsum = 1

#                   10  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

#                   15  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

#                   17  a = 1 , b = 1 ,out carry = 0 , outsum = 0   

#                   18  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

#                   20  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

#                   24  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   25  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   26  a = 1 , b = 0 ,out carry = 0 , outsum = 1

Figure 11.16 Simulation results of the test bench in Figure 11.15. 

Example 11.10 

Figure 11.17 shows the module of Figure 6.20 modified with an additional group 

delay specification.  The block 

specify

 (a => d) = 1; 
endspecify
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module alu_1 (d, co, a, b, f,cci); 

output [3:0] d; output co; wire[3:0]d; input cci; input [3 : 0 ] a, b; 

input [1 : 0] f; //F IS A 2 BIT FUNCTION SELECT INPUT 

specify

 (a=>d)=1; 

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)? 

      {1'bz,a^b}:{1'bz,~a})); 

endmodule 

//test-bench 

module tst_alu1(); 

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co; 

alu_1 aa(d,co,a,b,f,cci); 

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end  

always  begin 

  #2 cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #2 cci =1'b1;f=2'b00;a=4'h8;b=4'hf; 

  #2  cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #2 cci =1'b0;f=2'b01;a=4'h3;b=4'h7; 

  #2 cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #2 cci =1'b1;f=2'b10;a=4'h3;b=4'h3; 

  #2 cci =1'b1;f=2'b11;a=4'hf;b=4'hc;  

 end 

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci 

,a,b,f,d,co); 

endmodule 

Figure 11.17 Illustration of the use of group delay with an ALU module. 

#  0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= 0  

# 1 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

#  2 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

# 3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0  

#  4 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 1  

# 5 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1  

#  6 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 0  

# 7 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0  

#  8 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1101 ,co= 1  

# 9 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1  

Figure 11.18 Partial simulation results of the test bench in Figure 11.17. 
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signifies a group delay.  It implies that any change in any bit of vector a
propagates to the corresponding bit of vector d with a delay of 1 ns.  The delay is 

the same for rise or fall in the bits of vector d.  Partial results of simulation are 

shown in Figure 11.18. The values related to the delayed response are shown in 

bold italics in the figure.  The following points are noteworthy here:  

No propagation delay has been specified for the changes in the input vector b
or input ci affecting the outputs d or co.  Hence all such transitions are 

instantaneous. 

The propagation delay from a to d has been described as a parallel path delay.  

Thus any change in a bit of vector a propagates to the corresponding bit of 

vector d with a delay of 1 ns; but the propagation to the other bits of d is 

without any delay.  Thus the delays associated with the carry bit are zero: 

those with the sum bits are 1 ns each.  Addition operation has been specified 

up to 6 ns in the test bench (since f = 0 up to 6 ns).  At time 4 ns the input 

values are 

a=1000 

b=1111 and  

ci = 1 

The corresponding output values are  

d = 1000 and 

co =1. 

One can see that co attains the final value without any time delay; but every 

bit of d attains the final value with a delay of 1 ns.  The delays considered 

here are hypothetical and hence need neither be realistic nor consistent with 

practical circuits. 

Example 11.11 

The module of Figure 11.17 has been modified and shown in Figure 11.19.  

Propagation delays have been specified for the changes in the input vector a as 

well as the vector b affecting the output vector d.  All delays affect in a parallel 

manner.  Thus a change in a[2] will transmit to d[2] with a 1 ns delay.  But if it 

affects d[3], the same propagates at the same time step (instantaneously);  

changes in b vector too affects d in a similar manner.  Partial results of  

simulation are reproduced in Figure 11.20; the values that relate to the delayed 

changes are shown in italics; they can be seen to conform to the parallel delay 

specifications.   
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module alu_2 (d, co, a, b, f, cci); 

output [3:0] d; output co; wire[3:0]d; input cci; input [3 : 0 ] a, b; 

input [1 : 0] f;  

specify

 (a,b=>d)=1; 

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)? 

      {1'bz, a^b}:{1'bz,~a})); 

endmodule 

//test-bench 

module tst_alu2(); 

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co; 

alu_2 aa(d,co,a,b,f,cci); 

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end 

always  begin  

  #2  cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #2 cci =1'b1;f=2'b00;a=4'h8;b=4'hf; 

  #2  cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #2 cci =1'b0;f=2'b01;a=4'h3;b=4'h7; 

  #2  cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #2 cci =1'b1;f=2'b10;a=4'h3;b=4'h3; 

  #2  cci =1'b1;f=2'b11;a=4'hf;b=4'hc; 

 end 

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci 

,a,b,f,d,co); 

endmodule 

Figure 11.19 Illustration of assignment of multiple group delays through a specify block. 

#                    0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= 0  

#                    1 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

#                    2 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

#                    3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0  

#                    4 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 1  

#                    5 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1  

#                    6 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1000 ,co= 0  

#                    7 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0  

#                    8 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =0001 ,co= 1  

#                    9 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1  

Figure 11.20 Simulation results with the test bench in Figure 11.19. 
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Example 11.12 

The module in Figure 11.19 has been modified as shown in Figure 11.21.  The 

statement (within the specify block) 

(a , b => d) =(1 , 2); 

implies that 

All parallel transmission from the input pins of a and b vectors have 

propagation delays. 

The propagation delay for the rise of d is 1 ns while that for the fall of d is 

2 ns. 

Propagation to the noncorresponding bits of output vector d is effected 

without any delay.   

Figure 11.22 shows the partial simulation results.  The values in bold italics in 

the figure relate to the delayed changes. 

module alu_3 (d, co, a, b, f,cci); 

output [3:0] d; output co; wire[3:0]d; input cci; 

input [3 : 0 ] a, b; input [1 : 0] f;//F IS A 2 BIT FUNCTION SELECT INPUT 

specify

 (a,b=>d)=(1,2); 

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)? 

      {1'bz,a^b}:{1'bz,~a})); 

endmodule 

//test-bench 

module tst_alu3(); 

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co; 

alu_3 aa(d,co,a,b,f,cci); 

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end 

always begin 

  #3  cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #3 cci =1'b1;f=2'b00;a=4'h8;b=4'hf; 

  #3  cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #3 cci =1'b0;f=2'b01;a=4'h3;b=4'h7; 

  #3  cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #3 cci =1'b1;f=2'b10;a=4'h3;b=4'h3; 

  #3  cci =1'b1;f=2'b11;a=4'hf;b=4'hc; 

 end 

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci 

,a,b,f,d,co); 

endmodule 

Figure 11.21 Module to illustrate assignment of different group delays for rise and fall 

times using a specify block. 
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#                    0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= 0  

#                    2 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

#                    3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

#                    4 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0  

#                    6 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 1  

#                    7 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1001 ,co= 1  

#                    8 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1  

#                    9 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1000 ,co= 0  

#                   10 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 0  

#                   11 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0  

#                   12 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =0001 ,co= 1  

#                   13 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1101 ,co= 1  

#                   14 cci = 0 , a= 0011 ,b = 0111 ,f = 01 ,d =1100 ,co= 1  

Figure 11.22 Results of simulating the test bench in Figure 11.21. 

Example 11.13 

The module of Figure 11.23 has a set of two propagation delay specifications in 

the specify block – the first one specifies a parallel group delay from the input 

vectors to the output vector as in the previous example.  The second 

(a , b , cci *> co) = 1; 

implies that any transmission in any of the pins of ports a or b or the pin cci
propagates to co with a delay of 1 ns.  It is the same for rise as well as fall in the 

status of the output pin.  Figure 11.24 shows part of the simulation results; the 

values in italics pertain to the delayed response. 

module alu_4 (d, co, a, b, f,cci); 

output [3:0] d; output co; wire[3:0]d; input cci; input [3 : 0 ] a, b; 

input [1 : 0] f; //F  

specify

 (a,b=>d)=(1,2); 

 (a,b,cci*>co)=1; 

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)? 

      {1'bz,a^b}:{1'bz,~a})); 

endmodule 

continued 
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continued

//test-bench 

module tst_alu4(); 

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co; 

alu_4 aa(d,co,a,b,f,cci); 

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end 

always  begin 

  #3  cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #3 cci =1'b1;f=2'b00;a=4'h8;b=4'hf; 

  #3  cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #3 cci =1'b0;f=2'b01;a=4'h3;b=4'h7; 

  #3  cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #3 cci =1'b1;f=2'b10;a=4'h3;b=4'h3; 

  #3  cci =1'b1;f=2'b11;a=4'hf;b=4'hc; 

 end 

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci 

,a,b,f,d,co); 

endmodule 

Figure 11.23 A module to illustrate combining of assignments of individual and group 

delays of the pin-to-pin type.  

#                    0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= x  

#                    1 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= 0

#                    2 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

#                    3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

#                    4 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0  

#                    6 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 0  

#                    7 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1001 ,co= 1

#                    8 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1  

#                    9 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1000 ,co= 1  

#                   10 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 0

#                   11 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0  

Figure 11.24 Results of simulating the test bench in Figure 11.23. 

11.3.3 Conditional Pin-to-Pin Delays 

The pin to pin path of a signal may change depending on the value of another 

signal; in turn the number of circuit elements in the alternate path may differ.  

Conditional selection and assignment of path delays facilitates simulation in such 

cases.
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Example 11.14 

The specify block in the module of Figure 11.25 is  

specify

if(f==2'b00)(a=>d)=1; 
 if(f >2'b00)(a=>d)=2; 
        (b,cci*>co)=1; 
endspecify

It has three propagation statements.  The statement  

b ,cci *> c0 =1; 

is similar to the corresponding one in the previous example.  It implies that all 

transitions to co – if due to changes in any pin of ports a and b or the pin cci – 

take place with a delay of 1 ns.  But the propagation delays associated with 

changes in the output port d are dependent on the defined functions.  For the case  

module alu_5 (d, co, a, b, f,cci); 

output [3:0] d; output co; wire[3:0]d; input cci; input [3 : 0 ] a, b;  

input [1 : 0] f;  

specify

 if(f==2'b00)(a=>d)=1; 

 if(f >2'b00)(a=>d)=2; 

        (b,cci*>co)=1; 

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)? 

      {1'bz,a^b}:{1'bz,~a})); 

//test-bench 

module tst_alu5(); 

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co; 

alu_5 aa(d,co,a,b,f,cci); 

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end 

always  begin  

  #3  cci =1'b0;f=2'b00;a=4'h1;b=4'h0; #3 cci =1'b1;f=2'b00;a=4'h8;b=4'hf; 

  #3  cci =1'b1;f=2'b01;a=4'h2;b=4'h1; #3 cci =1'b0;f=2'b01;a=4'h3;b=4'h7; 

  #3  cci =1'b1;f=2'b01;a=4'h3;b=4'h3; #3 cci =1'b1;f=2'b10;a=4'h3;b=4'h3; 

  #3  cci =1'b1;f=2'b11;a=4'hf;b=4'hc;  

  end 

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci 

,a,b,f,d,co); 

endmodule 

Figure 11.25 Illustration of conditional assignments for delay values through a specify

block.
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#                  0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =xxxx ,co= x  

#                  1 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0

#                  3 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  

#                  4 cci = 0 , a= 0001 ,b = 0000 ,f = 00 ,d =0001 ,co= 0  

#                  6 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =0001 ,co= 0  

#                  7 cci = 1 , a= 1000 ,b = 1111 ,f = 00 ,d =1000 ,co= 1

#                  9 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 1  

#                10 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =1001 ,co= 0

#                11 cci = 1 , a= 0010 ,b = 0001 ,f = 01 ,d =0001 ,co= 0  

Figure 11.26 Results of simulating the test bench in Figure 11.25. 

of addition (f=2’00) the propagation delay is 1 ns.  For all other types of functions 

it is 2 ns.  Similar conditional propagation delays can be defined separately for 

each of the functions of the ALU.    Figure 11.26 shows the simulation results 

partially; the values pertaining to the delayed response are in bold italics in the 

figure. 

Observations: 

A simple condition was used in Example 11.14 to illustrate conditional assignment 

to delay values. In a general case a conditional expression can be more involved 

with different logical operations performed in tandem, with the following 

restrictions:

The expression can involve any logical reduction operation. 

All bit-wise logical operations can be used. 

If a conditional expression evaluates to multiple bits, the least significant bit 

decides the delay. 

Example 11.15 

The half-adder of Figure 11.3 has been slightly modified and is shown in Figure 

11.27. The propagation delays for rise and fall are kept the same here for 

simplicity.  However, the test bench has two instantiations of the module.  The 

propagation delays are assigned one set of values for the instantiation h1 and 

another for the instantiation h2.  The alternate assignments are made through a 

defparam statement.  The access to the parameters is by suitably specifying the 

hierarchy.  Note that if the parameters had been specified through a specify block, 

and specparam assignment, such an alteration at the time of instantiation, is not 

feasible.  The simulation results are reproduced partially in Figure 11.28; the 

figures in bold italics relate to the delayed changes. 
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module ha_a(s,ca,a,b); 

input a,b; output s,ca; parameter dl1r=1,dl3r=3; 

xor #(dl1r) (s,a,b); 

and #(dl3r) (ca,a,b); 

endmodule 

//test-bench 

module tstha_a(); 

reg a,b; wire s,ca; 

ha_a h1(s1,ca1,a,b); 

ha_a h2(s2,ca2,a,b); 

defparam 

 h1.dl1r=2, 

 h1.dl3r=1, 

 h2.dl1r=2, 

 h2.dl3r=2; 

initial begin a=0;b=0; end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,ca1 = %b , s1 = %b,ca2 = %b , s2 = 

%b  " ,a,b,ca1,s1,ca2,s2); 

initial #30 $stop; 

endmodule 

Figure 11.27 Illustration of Multiple instantiations with assignment of different time delays. 

#                  0  a = 0 , b = 0 ,ca1 = x , s1 = x,ca2 = x , s2 = x   

#                  1  a = 0 , b = 0 ,ca1 = 0 , s1 = x,ca2 = x , s2 = x   

#                  2  a = 0 , b = 0 ,ca1 = 0 , s1 = 0,ca2 = 0 , s2 = 0

#                  5  a = 1 , b = 0 ,ca1 = 0 , s1 = 0,ca2 = 0 , s2 = 0   

#                  7  a = 1 , b = 0 ,ca1 = 0 , s1 = 1,ca2 = 0 , s2 = 1

#                10  a = 0 , b = 1 ,ca1 = 0 , s1 = 1,ca2 = 0 , s2 = 1   

#                15  a = 1 , b = 1 ,ca1 = 0 , s1 = 1,ca2 = 0 , s2 = 1   

#                16  a = 1 , b = 1 ,ca1 = 1 , s1 = 1,ca2 = 0 , s2 = 1   

#                17  a = 1 , b = 1 ,ca1 = 1 , s1 = 0,ca2 = 1 , s2 = 0

Figure 11.28 Results of simulating the test bench in Figure 11.27. 

Example 11.16  

The half-adder module of Figure 11.15 is modified and shown in Figure 11.29.  

The specify block has the rise- and fall-time values at output specified.  The 

“minimum, typical, maximum” format has been used here for the time delay 
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values specified.  The test bench uses typical delay values (2 ns and 4 ns for s and 

3 ns and 7 ns for ca, respectively) by default.  The simulation results are shown in 

Figure 11.30: The values representing delayed response are in bold italics. Testing 

with minimum or maximum delay values can be carried out in the normal manner.   

module ha_c(s,ca,a,b); 

input a,b; output s,ca; 

specify

 (a,b*>s)=(1:2:3, 2:4:6); 

 (a,b*>ca)=(1:3:5, 5:7:9); 

endspecify

xor  (s,a,b); 

and  (ca,a,b); 

endmodule 

//test-bench 

module tstha_c(); 

reg a,b; wire s,ca; 

ha_c hh(s,ca,a,b); 

initial begin a=0;b=0;  #100 $stop; end 

always begin #15 a=1;b=0; #15 a=0;b=1; #15 a=1;b=1; #15 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

endmodule 

Figure 11.29 Illustration of specifying minimum, typical, and maximum values for path 

delays in a specify block. 

#                    0  a = 0 , b = 0 ,out carry = x , outsum = x   

#                    4  a = 0 , b = 0 ,out carry = x , outsum = 0

#                    7  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   15  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   17  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

#                   30  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

#                   45  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

#                   48  a = 1 , b = 1 ,out carry = 1 , outsum = 1   

#                   49  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

#                   60  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

#                   67  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   75  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   77  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

#                   90  a = 0 , b = 1 ,out carry = 0 , outsum = 1 

Figure 11.30 Results of simulating the test bench in Figure 11.29. 
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11.3.4 Edge-Sensitive Paths 

Behavior level modules can have signal paths activated following an edge in a 

different signal.  Verilog has the provision to specify such delays during 

simulation.  They can be specified in a variety of ways.  The path may get 

activated following a positive edge or a negative edge in a signal.  The path delay 

may be specified for rise or fall in the output or for positive or negative polarity 

transitions separately.  The delay assignment can be made conditional on an 

expression; such a path specification is an “edge sensitive state dependent path”. 

Example 11.17 

The D flip-flop module of Figure 7.27 has been modified and is shown in Figure 

11.31.  The specify block specifies the delay from di to do following a negative 

edge of clock.  The simulation results are partially reproduced in Figure 11.32; the 

flip-flop is to latch the input data di at the negative-going edges of the clock – that 

is, at the 6th  ns, 12th ns, etc. The latching is delayed by 1 ns as demanded by the 

specified delay and takes effect at the 7th ns, 13th ns, etc.   

module dff_p(do,di,clk); 

output do; input di,clk; 

specify

 (negedge clk *>(do:di)) =1; 

endspecify

reg do; 

initial do=1'b0; 

always@(negedge clk) do=di; 

endmodule 

//test-bench 

module tst_dff_pbeh(); 

reg di,clk; wire do; 

dff_p d1(do,di,clk); 

initial begin clk=0;di=1'b0; #35 $stop; end 

always #3clk=~clk; 

always #5 di=~di; 

initial $monitor($time,"clk=%b,di=%b,do=%b",clk,di,do); 

endmodule 

Figure 11.31 A module to illustrate edge-sensitive path delay and its test bench. 
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#                     0clk=0,di=0,do=x 

#                     1clk=0,di=0,do=0 

#                     3clk=1,di=0,do=0 

#                     5clk=1,di=1,do=0 

#                     6clk=0,di=1,do=0 

#                     7clk=0,di=1,do=1 

#                     9clk=1,di=1,do=1 

#                   10clk=1,di=0,do=1 

#                   12clk=0,di=0,do=1 

#                   13clk=0,di=0,do=0 

Figure 11.32 Partial results of simulating the test bench in Figure 11.31. 

Example 11.18 

The module in Figure 11.33 is a slightly modified version of that in Figure 8.20.

The specify block specifies the input to output delay following a positive edge of 

clock; further it is effective only when clr and pr are inactive. The path specified 

here is an “edge-sensitive state-dependent path”. Partial simulation results are in 

Figure 11.34. 

module dff_aa(q,qb,di,clk,clr,pr);  

output q,qb; input di,clk,clr,pr; 

reg q; 

assign qb=~q; 

specify

 if(!clr && !pr) (posedge clk *> (q:di))=1; 

endspecify

always@(posedge clk) 

 begin if(clr)q = 1'b0; else if(pr) q = 1'b1; else  q=di;  end 

endmodule 

//test-bench 

module dff_aa_tst(); 

reg di,clk,clr,pr; wire q,qb; 

dff_aa dd(q,qb,di,clk,clr,pr); 

initial begin clr=1'b1;pr=1'b0;clk=1'b0;di=1'b0;  #100 $stop; 

end

always #3 clk=~clk; 

always  begin  

 # 4  di =~di; # 3  di =~di; # 3  di =~di; # 6  di =~di; 

continued 
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continued

 # 6  di =~di; # 3  di =~di; # 2  di =~di; 

 end 

initial begin #5  pr=1'b1; #5  pr=1'b0; #35 pr=1'b1; #25 pr=1'b1; end 

initial #25 clr=1'b0; 

initial  $monitor(   $time  ,  "clk  = %b , clr =  %b  , pr  =   %b  ,  di  =  %b  ,  q  =  

%b ", clk,clr,pr,di,q); 

endmodule 

Figure 11.33 A module to illustrate delay assignment for an edge-sensitive state-dependent 

path.

t clk clr pr di q 

0 0 1 0 0 x 

3 1 1 0 0 0 

4 1 1 0 1 0 

5 1 1 1 1 0 

6 0 1 1 1 0 

7 0 1 1 0 0 

9 1 1 1 0 0 

10 1 1 0 1 0 

12 0 1 0 1 0 

15 1 1 0 1 0 

16 1 1 0 0 0 

18 0 1 0 0 0 

21 1 1 0 0 0 

22 1 1 0 1 0 

24 0 1 0 1 0 

t clk clr pr di q 

25 0 0 0 0 0 

27 1 0 0 1 0 

28 1 0 0 1 1 

30 0 0 0 1 1 

31 0 0 0 0 1 

33 1 0 0 0 1 

34 1 0 0 1 0 

36 0 0 0 1 0 

37 0 0 0 0 0 

39 1 0 0 0 0 

42 0 0 0 0 0 

43 0 0 0 1 0 

45 1 0 1 1 1 

48 0 0 1 1 1 

Figure 11.34 Partial results of simulating the test bench in Figure 11.33.  

Observations:  

Until the 25th nanosecond, the clr input is active and the flip-flop remains 

reset.  The pr signal is high from the 5th to the 10th ns; but since the clr has 

priority, the flip-flop remains reset.  The delay specified is not relevant. 

After the 45th ns, pr is active and the flip-flop remains set.  Clk and di are not 

relevant. 

Only in the 25th to the 45th ns interval the flip-flop responds to di at the 

positive-going edge of the clock; it happens at the 28th and 34rd ns. 

Specifically, 27th ns and 33rd ns represent positive going edges of the clock. 

Changes in di preceding them get reflected as changes in do with a delay of 1 

ns–that is, at  28th ns and 34rd ns, respectively.  
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11.3.5 Pulse Filtering and its Control 

All transitions on an input pin with less than a specified module path delay are 

termed “pulses.”  Normally, when a module path delay is specified, all pulses are 

ignored; that is, the simulator does not take cognizance of such narrow transitions.  

However, response to such narrow pulses can be specified through specparam

in a specify block.  A statement 

specparam PATHPULSE$ (x , y) = (a, b);

implies the following concerning the module pulse path from x to y:

Ignore all pulses of width less than a ns. a is referred to as the “rejection 

limit” for the pulse path.   

Take cognizance of all the pulses wider than b ns.  Note that the specification 

has relevance only if the delay value for the pulse path (specified in the 

specify block) is larger than b.

For all pulses of width value between a and b, the output is in error and in x

state.

The PATHPULSE$ specification is governed by the following:  

It has to appear within a specify block as a specparam assignment as shown 

above.

It specifies the limits for the path pulse-error limit as well as reject limit for 

the specified path. 

A statement as  

specparam PATHPULSE$ = (a, b);

implies that a and b are the error and reject limits for the pulse widths for all 

the paths specified within the specify block; the simulator checks for the pulse 

width and if it is between a and b values, the output goes to x state. 

A set of statements  

Specparam PATHPULSE$ (x, y) = (a, b);

Specparam PATHPULSE$           = (c, d); 

implies that for the path from x to y a and b are the error and reject limits, 

respectively;  further, for all other pulse paths within the specify block, the 

limits for error and rejection are c and d, respectively. If only one limit is 

specified as

Specparam PATHPULSE$  =a;

a is taken as the error limit as well as reject limit for the concerned paths. 
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Example 11.19  

The module in Figure 11.35 is the half-adder module of earlier examples.  A pin-

to-pin delay of 4 ns is specified from a and b inputs to the sum bit s and the carry 

bit ca. Further a PATHPULSE limit of 3 ns is specified; hence any pulse of width 

less than 3 ns will be ignored by the simulator.  Simulation results are shown in  

Figure 11.36.  The following may be noted in this connection:  

During the interval of 8 ns – 10 ns the input a is at zero.  It represents a pulse 

input.  It is ignored and the sum bit does not revert to zero during the 

corresponding delayed interval of 12 ns – 14 ns.  Similar response is repeated 

for the change in a to zero during the interval 28 ns – 30 ns.   

During the interval 14 ns – 15 ns, input b goes high.  The same pulse, being 

narrower than the specified limit of 3 ns, is ignored.  Neither the sum bit s nor 

the carry bit ca is affected. 

At 34 ns, b goes to 1 and remains so up to 37 ns; it is treated as a pulse and 

ignored by the simulator.   

module ha_pt(s,ca,a,b); 

input a,b; output s,ca; 

specify

 (a,b*>s,ca) =4; 

 specparam pathpulse$ = 3; 

endspecify

xor  (s,a,b); 

and  (ca,a,b); 

endmodule 

//test-bench 

module tstha_pt(); 

reg a,b; wire s,ca; 

ha_pt hh(s,ca,a,b); 

initial begin a=0;b=0; #50 $stop;end 

initial begin #4 a=1;b=0; #4 a=0;b=0; #2 a=1;b=0; #4 a=1;b=1; #1 a=1;b=0;           

      #4 a=1;b=1; #4 a=1;b=0; #1 a=1;b=0; #4 a=0;b=0; #2 a=1;b=0; 

      #4 a=1;b=1; #3 a=1;b=0; #4 a=1;b=1; #4 a=1;b=0; #1 a=1;b=0; 

          end 

initial  $monitor($realtime , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

endmodule 

Figure 11.35 A module to illustrate the use of the PATHPULSE limit. 
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# 0  a = 0 , b = 0 ,out carry = x , outsum = x   

# 4  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

# 8  a = 0 , b = 0 ,out carry = 0 , outsum = 1   

# 10  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 14  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 15  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 19  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 23  a = 1 , b = 0 ,out carry = 1 , outsum = 0   

# 27  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 28  a = 0 , b = 0 ,out carry = 0 , outsum = 1   

# 30  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 34  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 37  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 41  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 45  a = 1 , b = 0 ,out carry = 1 , outsum = 0   

# 49  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

Figure 11.36 Results of simulating the test bench in Figure 11.35. 

Example 11.20  

The module in Figure 11.37 is a slightly modified version of that in Figure 11.35.  

Here 2 ns is specified as the error limit and 3 ns as the rejection limit for all 

module path pulses.  The test bench remains unchanged.  The following can be 

observed with the simulation results shown in Figure 11.38:  

In the interval 8ns – 10ns as well as the interval 28 ns –30 ns the input a goes 

down and remains at the 0 state.  These represent pulse widths less than the 

reject limit but more than the error limit.  Hence an error is indicated and the 

output goes to x state in the corresponding intervals 12 ns – 14 ns and 32 ns – 

34 ns, respectively.  Ca remains unaltered as expected. 

In the interval 14 ns –15 ns, b is at the 1 state.  Because the  pulse width is less 

than the error limit, the pulse is ignored.  Neither s nor ca responds to it. 

module ha_ptt(s,ca,a,b); 

input a,b; output s,ca; 

specify

 (a,b*>s,ca) =4; 

 specparam PATHPULSE$ = (2,3); 

endspecify

xor  (s,a,b); 

and  (ca,a,b); 

continued 
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continued

endmodule 

//test-bench 

module tstha_ptt(); 

reg a,b; wire s,ca; 

ha_ptt hh(s,ca,a,b); 

initial begin a=0;b=0; #50 $stop;end 

initial  begin   

 #4 a=1;b=0; #4 a=0;b=0; #2 a=1;b=0; #4 a=1;b=1; #1 a=1;b=0; 

 #4 a=1;b=1; #4 a=1;b=0; #1 a=1;b=0; #4 a=0;b=0; #2 a=1;b=0; 

 #4 a=1;b=1; #3 a=1;b=0; #4 a=1;b=1; #4 a=1;b=0; #1 a=1;b=0; 

 end 

initial  $monitor($realtime , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

endmodule 

Figure 11.37 Module to illustrate error limit and rejection limit with PATHPULSE. 

# 0  a = 0 , b = 0 ,out carry = x , outsum = x   

# 4  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

# 8  a = 0 , b = 0 ,out carry = 0 , outsum = 1   

# ** Warning: D:/chap11/chap_11/ha_ptt.v.txt(5): path pulse error on net 

tstha_ptt.s 

#    Time: 10 ns  Iteration: 1  Instance: /tstha_ptt/hh 

# 10  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 12  a = 1 , b = 0 ,out carry = 0 , outsum = x   

# 14  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 15  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 19  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 23  a = 1 , b = 0 ,out carry = 1 , outsum = 0   

# 27  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 28  a = 0 , b = 0 ,out carry = 0 , outsum = 1   

# ** Warning: D:/chap11/chap_11/ha_ptt.v.txt(5): path pulse error on net 

tstha_ptt.s 

#    Time: 30 ns  Iteration: 1  Instance: /tstha_ptt/hh 

# 30  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 32  a = 1 , b = 0 ,out carry = 0 , outsum = x   

# 34  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 37  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 38  a = 1 , b = 0 ,out carry = 1 , outsum = 0   

# 41  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 45  a = 1 , b = 0 ,out carry = 1 , outsum = 0   

# 49  a = 1 , b = 0 ,out carry = 0 , outsum = 1 

Figure 11.38 Results of simulating the test bench in Figure 11.37. 
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The module in Figure 11.37 was modified and the PULSEPATH$ assignment 

is removed.  The default value of 4 ns is the reject as well as the error limit here. 

Simulation results obtained with the modified module are shown in Figure 11.39.  

One can see that all pulses of width less than 4 ns (in the intervals 8 ns – 10 ns and 

28 ns – 30 ns for a; 14 ns – 15 ns and 34 ns – 37 ns for b) are ignored by the 

design module. 

# 0  a = 0 , b = 0 ,out carry = x , outsum = x   

# 4  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

# 8  a = 0 , b = 0 ,out carry = 0 , outsum = 1   

# 10  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 14  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 15  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 19  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 23  a = 1 , b = 0 ,out carry = 1 , outsum = 0   

# 27  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 28  a = 0 , b = 0 ,out carry = 0 , outsum = 1   

# 30  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 34  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 37  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

# 41  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

# 45  a = 1 , b = 0 ,out carry = 1 , outsum = 0   

# 49  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

Figure 11.39 Results of simulating the test bench in Figure 11.37 with the PATHPULSE 

specification in the module ha_ptt deleted. 

11.4 MODULE PARAMETERS 

Module parameters are associated with size of bus, register, memory, ALU, and so 

on.  They can be specified within the concerned module but their value can be 

altered during instantiation.  The alterations can be brought about through 

assignments made with defparam.  Such defparam assignments can appear 

anywhere in a module.  

The rules of assigning values for the module parameters, deciding their size, 

type, etc., are all similar to those of specify parameters discussed in Section 

11.2.

Example 11.21  

The module of Figure 11.23 has been modified and shown in Figure 11.40.  The 

parameter msb specifies the ALU size –– consistently in the input and the output 
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vectors of the ALU.  The size assignment has been made separately through the 

assignment statement  

parameter msb = 3; 

With the test bench in Figure 11.23 the simulation results are identical to those of 

Figure 11.24.  The ALU size can be scaled up to any value by reassigning a value 

to msb during instantiation.   

module alu_6 (d, co, a, b, f,cci); 

parameter msb=3; 

output [msb:0] d; output co; wire[msb:0]d; 

input cci; input [msb : 0 ] a, b; nput [1 : 0] f;  

specify

 (a,b=>d)=(1,2); 

 (a,b,cci*>co)=1; 

endspecify

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)? 

      {1'bz,a^b}:{1'bz,~a})); 

endmodule 

Figure 11.40 The ALU module in Figure 11.23 with its size declared as a parameter. 

Example 11.22  

Figure 11.41 shows a design where the ALU module of Figure 11.40 has been 

retained and the test bench of Figure 11.23 included; the test bench has been 

altered whenever the parameter msb is assigned a different value (=7) which 

overrides the assignment in the instantiation.  The simulation results are shown in 

Figure 11.42 from the 15th ns.  

module alu_6 (d, co, a, b, f,cci); 

parameter msb=3; 

output [msb:0] d; output co; wire[msb:0]d; input cci; 

input [msb : 0 ] a, b; input [1 : 0] f;  

specify  (a,b=>d)=(1,2);  (a,b,cci*>co)=1; endspecify 

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)? 

      {1'bz,a^b}:{1'bz,~a})); 

endmodule 

//test-bench 

module tst_alu7(); 

defparam aa.msb=7; parameter nl=7; 

reg [nl:0]a,b; reg[1:0] f; reg cci; wire[nl:0]d; wire co; 

continued 
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continued

alu_6 aa(d,co,a,b,f,cci); 

initial begin cci=1'b0; f=2'b00;a=8'h00;b=8'h00; #30 $stop;end 

always  begin 

#3 cci =1'b0;f=2'b00;a=8'h01;b=8'h00; #3 cci =1'b1;f=2'b00;a=8'h08;b=8'h0f; 

#3 cci =1'b1;f=2'b01;a=8'h02;b=8'h01; #3 cci =1'b0;f=2'b01;a=8'h23;b=8'h27; 

#3 cci =1'b1;f=2'b01;a=8'h23;b=8'h23; #3 cci =1'b1;f=2'b10;a=8'h23;b=4'h23; 

#3 cci =1'b1;f=2'b11;a=8'h2f;b=8'h2c; 

 end 

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci 

,a,b,f,d,co); 

endmodule 

Figure 11.41 An ALU module with its size being redefined during instantiation 

# 15 cci = 1 , a= 00100011 ,b = 00100011 ,f = 01 ,d =11111100 ,co= 1  

# 16 cci = 1 , a= 00100011 ,b = 00100011 ,f = 01 ,d =11111100 ,co= 0  

# 17 cci = 1 , a= 00100011 ,b = 00100011 ,f = 01 ,d =00000000 ,co= 0  

# 18 cci = 1 , a= 00100011 ,b = 00000011 ,f = 10 ,d =00000000 ,co= 0  

# 19 cci = 1 , a= 00100011 ,b = 00000011 ,f = 10 ,d =00100000 ,co= z  

# 21 cci = 1 , a= 00101111 ,b = 00101100 ,f = 11 ,d =00100000 ,co= z  

# 22 cci = 1 , a= 00101111 ,b = 00101100 ,f = 11 ,d =11110000 ,co= z  

# 23 cci = 1 , a= 00101111 ,b = 00101100 ,f = 11 ,d =11010000 ,co= z  

# 24 cci = 0 , a= 00000001 ,b = 00000000 ,f = 00 ,d =11010000 ,co= z  

# 25 cci = 0 , a= 00000001 ,b = 00000000 ,f = 00 ,d =11010001 ,co= 0  

# 26 cci = 0 , a= 00000001 ,b = 00000000 ,f = 00 ,d =00000001 ,co= 0  

# 27 cci = 1 , a= 00001000 ,b = 00001111 ,f = 00 ,d =00000001 ,co= 0  

# 28 cci = 1 , a= 00001000 ,b = 00001111 ,f = 00 ,d =00011001 ,co= 0  

# 29 cci = 1 , a= 00001000 ,b = 00001111 ,f = 00 ,d =00011000 ,co= 0 

Figure 11.42 Results of simulating the test bench in Figure 11.41. 

11.5 SYSTEM TASKS AND FUNCTIONS 

Verilog has a number of System Tasks and Functions defined in the LRM.  They 

are for taking output from simulation, control simulation, debugging design 

modules, testing modules for specifications, etc.  A “$” sign preceding a word or a 

word group signifies a system task or a system function.  Some of the system tasks 

and functions have been extensively used in the earlier chapters.  Some others with 

the potential for common use are described and illustrated here.  The complete list 

is available in the LRM. 
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11.5.1 Output Tasks 

A number of system tasks are available to output values of variables and selected 

messages, etc., on the monitor.  Out of these $monitor and $display tasks 

have been extensively used in the preceding chapters.  These and related tasks are 

discussed below.   

11.5.2 Display Tasks 

The $display task, whenever encountered, displays the arguments in the desired 

format; and the display advances to a new line.  $write task carries out the 

desired display but does not advance to the new line.  For both the format is 

identical to that of scanf and printf in C language [Gottfried].  The features are 

briefly outlined here: 

The arguments are displayed in the same order as they appear in the display 

statement.   

The arguments can be variables, an expression involving variables, or quoted 

strings.   

The strings are output as such except the escape sequences.  An escape 

sequence starts with the character \ or the character %.   

“\” signifies one of a set of special characters in Table 11.1. 

“%m” signifies that the hierarchical name of the particular argument is to be 

displayed (see Example 11.23). 

“%” followed by a character – as given in Table 11.2 – specifies the format 

for display of the following argument or an aspect of the following argument.   

If the format for the display of an argument is not specified, a default format is 

assumed.  It is binary for $displayb and $writeb, octal for $displayo

and $writeo, decimal for $displayd and $writed, hex for 

$displayh and $writeh.

If any argument is in the form of an expression, it is evaluated and the result 

displayed or written; it is sized automatically.  With decimal numbers the 

leading zeros are suppressed.  Insertion of a “0” character (zero digit) between 

the “%” symbol and the radix overrides the automatic sizing. 

Table 11.1 Escape sequences 

Sequence Implication

\n Display to advance to a new line. 

\t Insert a tab in the display. 

\\ Insert a ‘\’ character in the display. 

\” Insert the double quote character ‘”’ in the display. 

\aaa Insert an ASCII character specified by the octal number “aaa”, in the display. 

%% Inset the character ‘%’ in the string displayed 
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Table 11.2 Format for display of arguments 

Character 

combination 
Implication

%h or %H Display in hex format 

%d or %D Display in decimal format 

%o or %O Display in octal format 

%b or %B Display in binary format 

%c or %C Display in  ASCII character format 

%l or %L Display library binding information 

%v or %V Display net signal strength 

%s or %S Display as a string 

%t or %T Display in current time format 

%u or %U Unformatted 2-value data 

%z or %Z Unformatted 4-value data 

%f or %F Display real in decimal format 

%g or %G Display real in exponential or decimal format, whichever is shorter 

Example 11.23  

The module in Figure 11.31 has been modified and shown in Figure 11.43. A 

$display (“%m”) has been added to the test bench as well as to the design 

module itself.  Partial simulation results are also included in the figure.  The task 

displays the hierarchical name of the module it is in.  Thus when encountered in 

the test-bench, the hierarchical name of the test bench – namely 

“tst_dff_p_b.d1”– is displayed.   

The task is useful to identify the “parentage” of the module when a design has 

a number of instantiations and values are not clearly traceable to sources.  Note 

that the task does not require an argument to be tagged to it.   

module dff_p(do,di,clk); 

output do; input di,clk; 

specify

 (negedge clk *>(do:di)) =1; 

endspecify

reg do; 

initial do=1'b0; 

always@(negedge clk) do=di; 

initial $display ("%m"); 

endmodule 

continued 
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continued

//test-bench 

module tst_dff_p_b(); 

reg di,clk; wire do; 

dff_p d1(do,di,clk); 

initial begin clk=0;di=1'b0; #35 $stop;end 

always #3clk=~clk; 

always #5 di=~di; 

initial $display ("%m"); 

initial $monitor($time,"clk=%b,di=%b,do=%b",clk,di,do); 

endmodule 

Simulation results (shown partially)

# tst_dff_p_b.d1 

# tst_dff_p_b 

#                    0clk=0,di=0,do=x 

#                    1clk=0,di=0,do=0 

#                    3clk=1,di=0,do=0 

#                    5clk=1,di=1,do=0 

Figure 11.43 A module and its test bench to illustrate the use of “%m” in the display task: 

The simulation results are also shown partially. 

Example 11.24  

The 4-to-16 decoder considered in Chapter 4 has repeated nested instantiations.  

The module listing is reproduced in Figure 11.44.  The test bench is omitted; a 

“$display (“%m”)” statement is included in the 2-to-4 decoder module (dec2_4a_).  

Whenever it is instantiated, its hierarchical name is displayed.  The simulation 

results are reproduced in Figure 11.45.  The 3-to-8 decoder module is instantiated 

twice (as g3 and g4) in the 4-to-16 decoder module.  In turn, these (g3 and g4) 

instantiate the 2-to-4 decoders twice (as g1 and g2).  The hierarchical names are 

displayed in the simulation run as can be seen from Figure 11.45. 

module dec3_8a(pp,q,enn); 

output[7:0]pp; input[2:0]q; input enn; wire qq; wire[7:0]p; 

not(qq,q[2]); 

dec2_4a g1(.a(p[3:0]),.b(q[1:0]),.en(qq)); 

dec2_4a g2(.a(p[7:4]),.b(q[1:0]),.en(q[2])); 

and g3_8_7(pp[7],p[7],enn), g3_8_6(pp[6],p[6],enn),             

g3_8_5(pp[5],p[5],enn), g3_8_4(pp[4],p[4],enn), g3_8_3(pp[3],p[3],enn), 

g3_8_2(pp[2],p[2],enn), g3_8_1(pp[1],p[1],enn), g3_8_0(pp[0],p[0],enn); 

endmodule 

continued 
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continued

module dec2_4a (a,b,en); 

output [3:0] a; input [1:0]b; input en; wire [1:0]bb; 

not(bb[1],b[1]),(bb[0],b[0]); 

and(a[0],en,bb[1],bb[0]),(a[1],en,bb[1],b[0]), 

(a[2],en,b[1],bb[0]),(a[3],en,b[1],b[0]); 

initial $display ("%m"); 

endmodule 

test-bench 

module dec4_16_tba; 

wire[15:0]m; 

wire l,m,n; 

reg[3:0]n; 

dec4_16a gg(m,n); 

endmodule 

Figure 11.44 A 4-to-16 decoder module with a “$display ("%m");” statement 

inserted to display hierarchy. 

//# dec4_16_tba.gg.g3.g1 

//# dec4_16_tba.gg.g3.g2 

//# dec4_16_tba.gg.g4.g1 

//# dec4_16_tba.gg.g4.g2 

Figure 11.45 Results of simulating the module in Figure 11.44. 

Example 11.25 Display of Strength 

Figure 11.46 shows the module of Figure 5.33 along with its test bench.  Through 

the $monitor task the strength of the output variable o is displayed.  Simulation 

results are shown in Figure 11.47.  The strength of o is consistent with the signal 

status in each case:  

Whenever i1 = i2 = 0, o =0 and has a strength of pull0 (represented as 

pu0).

Whenever i1 = 0 and i2 = 1, o = x and has a strength of pullx (represented 

as pux).

Whenever i1 = 1 and i2 = 0, strong1 dominates over pull0; output is at 1 

state and of strength strong1 (represented as st1).

Whenever i1 = 1 and i2 = 1, o = 1; strong1 dominates and decides the 

strength (represented as st1). 
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module strng_1(o,i1,i2); 

input i1,i2; output o; //wire o 

buf(strong1 ,pull0)g1(o,i1);  

buf(pull1,pull0)g2(o,i2); 

endmodule 

//TEST BENCH 

module tst_strng_1; 

reg i1,i2; 

strng_1 cc(o,i1,i2); 

initial begin i1 =0;i2 =0; #40 $stop; end     

always begin #4 i1 = 0;i2 = 1; #4 i1 =1; i2 =0;  #4 i1 =1 ;i2 = 1; end 

initial $monitor($time   ," i1 = %b  ,i2 = %b ,o = %b(strength of o = %v) " 

,i1,i2,o,o);

endmodule 

Figure 11.46 A module set to illustrate display of strength levels. 

#                    0 i1 = 0  ,i2 = 0 ,o = 0(strength of o = Pu0)  

#                    4 i1 = 0  ,i2 = 1 ,o = x(strength of o = PuX)  

#                    8 i1 = 1  ,i2 = 0 ,o = 1(strength of o = St1)  

#                   12 i1 = 1  ,i2 = 1 ,o = 1(strength of o = St1)  

#                   16 i1 = 0  ,i2 = 1 ,o = x(strength of o = PuX)  

#                   20 i1 = 1  ,i2 = 0 ,o = 1(strength of o = St1)  

#                   24 i1 = 1  ,i2 = 1 ,o = 1(strength of o = St1)  

#                   28 i1 = 0  ,i2 = 1 ,o = x(strength of o = PuX)  

#                   32 i1 = 1  ,i2 = 0 ,o = 1(strength of o = St1)  

#                   36 i1 = 1  ,i2 = 1 ,o = 1(strength of o = St1) 

Figure 11.47 Results of simulating the test bench in Figure 11.46. 

11.5.3 $strobe Task 

When a variable or a set of variables is sampled and its value displayed, the 

$strobe task can be used; it senses the value of the specified variables and 

displays them.  The form of specifying arguments is identical to that of the 

$display task.  The $strobe task is executed as the last activity in the 

concerned time step.  It is useful to check for specific activities and debug 

modules. 
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Example 11.26  

The module of Figure 7.27 is reproduced in Figure 11.48 with the addition of a 

$strobe command.  Simulation results are shown (partially) in Figure 11.49.  

The $monitor task ensures that all specified items are displayed when any of 

them changes.  The $strobe task is activated at the specified time of 9 ns and 

the values of concerned arguments are displayed.   

module dff_c(do,di,clk); 

output do; input di,clk; 

specify

 (negedge clk *>(do:di)) =1; 

endspecify

reg do; 

initial do=1'b0; 

always@(negedge clk) do=di; 

endmodule 

//test-bench 

module tst_dff_cbeh(); 

reg di,clk; wire do; 

dff_c d1(do,di,clk); 

initial  begin clk=0;di=1'b0; #35 $stop; end 

always

#3clk=~clk; 

always #5 di=~di; 

initial  $monitor($time,"clk=%b,di=%b,do=%b",clk,di,do); 

initial #9 $strobe ("at time %t, di=%b, do=%b",$time, di, do); 

endmodule 

Figure 11.48 A module set to illustrate the use of $strobe task. 

#                    0clk=0,di=0,do=x 
#                    1clk=0,di=0,do=0 
#                    3clk=1,di=0,do=0 
#                    5clk=1,di=1,do=0 
#                    6clk=0,di=1,do=0 
#                    7clk=0,di=1,do=1 
# at time                    9, di=1, do=1 
#                    9clk=1,di=1,do=1 
#                   10clk=1,di=0,do=1 
#                   12clk=0,di=0,do=1 

Figure 11.49 Partial results of simulating the test bench in Figure 11.48. 
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11.5.4 $monitor Task 

The $monitor task has been used extensively in the examples so far.  The form 

of specifying arguments is identical to that of the $display task.   

Observations:  

Only one $monitor task can be active at any time.   

$monitor task is activated and displays the arguments specified whenever 

any of the arguments changes.  This excludes $time, $stime, and 

$realtime tasks. 

$monitoroff and $monitoron are two additional tasks allied to the 

$monitor task; they are useful to enable and disable the monitoring activity.  

$monitoroff turns off the monitoring at the specified time, while 

$monitoron turns it on at the specified time.   

Example 11.27  

Figure 11.50 shows the half-adder module considered earlier; $monitoroff and 

$monitoron tasks have been included in the test bench. Monitoring is turned off 

at 30 ns, turned on at 60 ns and again turned off at 90 ns.  The simulation results 

are shown in Figure 11.51.  Monitoring activity can be seen to continue up to the 

26th ns. At the next time step of any change in the module variables– that is, at the 

30th ns–it stops; it resumes at 60 ns and continues up to 86 ns. 

module ha_1(s,ca,a,b); 

input a,b; output s,ca; 

xor #(1,2) (s,a,b); 

and #(3,4) (ca,a,b); 

endmodule 

//test-bench 

module tstha_e(); 

reg a,b; wire s,ca; 

ha_1 hh(s,ca,a,b); 

initial begin a=0;b=0; #100 $stop; end 

always  begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $monitor($time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial begin  #30 $monitoroff; #30 $monitoron; #30 $monitoroff; end 

endmodule 

Figure 11.50 A module set to illustrate the use of $monitoroff and $monitoron

tasks. 
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#                    0  a = 0 , b = 0 ,out carry = x , outsum = x   

#                    2  a = 0 , b = 0 ,out carry = x , outsum = 0   

#                    4  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                    5  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                    6  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

#                   10  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

#                   15  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

#                   17  a = 1 , b = 1 ,out carry = 0 , outsum = 0   

#                   18  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

#                   20  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

#                   24  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   25  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   26  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

#                   60  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

#                   64  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   65  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   66  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

#                   70  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

#                   75  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

#                   77  a = 1 , b = 1 ,out carry = 0 , outsum = 0   

#                   78  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

#                   80  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

#                   84  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

#                   85  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

#                   86  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

Figure 11.51 Results of simulating the test bench in Figure 11.50. 

11.5.5 $stop and $finish Tasks 

The $stop task suspends simulation.  The compiled design remains active; 

simulation can be resumed through commands available in the simulator.  In 
contrast $finish stops simulation, closes the simulation environment, and 

reverts to the operating system.   

11.5.6 $random Function

A set of random number generator functions are available as system functions. 
One can start with a seed number (optional) and generate a random number 
repeatedly.  Such random number sequences can be fruitfully used for testing. 
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Example 11.28   

The module of Figure 11.17 is reproduced in Figure 11.52 – with a modification in 

the test bench.  The values assigned to the input vectors a and b are decided by the 

successive output values of the $random function.  The first of the lot is decided 

by the seed number (4 here). The simulation results are reproduced in Figure 11.53. 

module alu_8 (d, co, a, b, f,cci); 

output [3:0] d; output co; wire[3:0]d; input cci; 

input [3 : 0 ] a, b; input [1 : 0] f;  

assign {co,d}=(f==2'b00)?(a+b+cci):((f==2'b01)?(a-b):((f==2'b10)? 

      {1'bz,a^b}:{1'bz,~a})); 

endmodule 

//test-bench 

module tst_alu8(); 

reg [3:0]a,b; reg[1:0] f; reg cci; wire[3:0]d; wire co; 

alu_8 aa(d,co,a,b,f,cci); 

initial begin cci=1'b0; f=2'b00;a=4'b0;b=4'h0; #30 $stop; end 

always begin 

#2 cci =1'b0;f=2'b00;{a,b}=$random(4);  

#2 cci =1'b1;f=2'b00;{a,b}=$random; #2 cci =1'b1;f=2'b01;{a,b}=$random; 

#2 cci =1'b0;f=2'b01;{a,b}=$random; #2 cci =1'b1;f=2'b01;{a,b}=$random; 

#2 cci =1'b1;f=2'b10;{a,b}=$random; #2 cci =1'b1;f=2'b11;{a,b}=$random; 

 end 

initial $monitor($time, " cci = %b , a= %b ,b = %b ,f = %b ,d =%b ,co= %b ",cci 

,a,b,f,d,co); 

endmodule 

Figure 11.52 A module to illustrate the use of the system function $random.

#                    0 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  
#                    4 cci = 1 , a= 0010 ,b = 0100 ,f = 00 ,d =0111 ,co= 0  
#                    6 cci = 1 , a= 1000 ,b = 0001 ,f = 01 ,d =0111 ,co= 0  
#                    8 cci = 0 , a= 0000 ,b = 1001 ,f = 01 ,d =0111 ,co= 1  
#                   10 cci = 1 , a= 0110 ,b = 0011 ,f = 01 ,d =0011 ,co= 0  
#                   12 cci = 1 , a= 0000 ,b = 1101 ,f = 10 ,d =1101 ,co= z  
#                   14 cci = 1 , a= 1000 ,b = 1101 ,f = 11 ,d =0111 ,co= z  
#                   16 cci = 0 , a= 0000 ,b = 0000 ,f = 00 ,d =0000 ,co= 0  
#                   18 cci = 1 , a= 0110 ,b = 0101 ,f = 00 ,d =1100 ,co= 0  
#                   20 cci = 1 , a= 0001 ,b = 0010 ,f = 01 ,d =1111 ,co= 1  
#                   22 cci = 0 , a= 0000 ,b = 0001 ,f = 01 ,d =1111 ,co= 1  
#                   24 cci = 1 , a= 0000 ,b = 1101 ,f = 01 ,d =0011 ,co= 1  
#                   26 cci = 1 , a= 0111 ,b = 0110 ,f = 10 ,d =0001 ,co= z  
#                   28 cci = 1 , a= 0011 ,b = 1101 ,f = 11 ,d =1100 ,co= z 

Figure 11.53 Results of simulating the test bench in Figure 11.52. 
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Observations:  

If the seed is not changed with every simulation, the same sequence of random 

numbers is generated. 

If the seed is changed, the values in the random number sequence too change. 

If the seed is not specified, the $random function uses a default seed and 

generates the random number. 

Only the lowest 8 bits of the random number generated are used to assign 

values to a and b here. 

11.6 FILE-BASED TASKS AND FUNCTIONS 

LRM has the provision to accommodate and integrate design and test modules 

kept in different files.  It makes room for structuring the design in an elegant 

manner and developing it with a “cross-functional” approach. Different facilities 

are specified in the LRM. That to output results to a file is discussed here as a 

specific case.   

To carry out any file-based task, the file has to be opened, reading, writing, 

etc., completed and the file closed.  The keywords for all file-based tasks start with 

the letter f to distinguish them from the other tasks.  A typical sequence of 

activities to write to a file can be as shown in Table 11.3. 

Observations: 

The listing lines used need not be contiguous but have to be in the same 

sequence.   

All the system tasks to output information can be used to output to a file.  

$display, $strobe, $monitor, etc., are of this category.  The  

Table 11.3 A typical (partial) sequence of a file-based operation 

Line in module listing Significance 

Integer fileno; fileno is declared as an integer

…..

fileno = $fopen(“info.txt”); A file with a name ‘info.txt’ is opened. The 

value of fileno signifies the same 

…..

$fdisplay(fileno, “string”, arguments); The arguments are displayed as specified 

….  

$fclose(fileno); The file is closed 

…..
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respective keywords to output to the file are $fdisplay, $fstrobe,

$fmonitor, respectively.   

The first field of the task statement is an argument – the file descriptor.  The 

subsequent fields are identical to the corresponding nonfile tasks.   

The specified file will be opened and sustained in the directory of the 

executable file of the simulator. 

Example 11.29 

The half-adder module is reproduced in Figure 11.54 along with an associated test 

bench.  The test bench uses a file “ha_f_rslt.txt.”  The file is opened and assigned 

the name “info.”  Later the $fmonitor task writes values of specified variables 

into the opened file.  On completion of simulation, the file is closed automatically.  

One could also have closed the file beforehand through the “$close(info)” task. 

The contents of file ha_f_rslt.txt are reproduced in Figure 11.55. 

module ha_1(s,ca,a,b); 

input a,b; output s,ca; 

xor #(1,2) (s,a,b); 

and #(3,4) (ca,a,b); 

endmodule 

//test-bench 

module tstha_f(); 

integer info; reg a,b; wire s,ca; 

ha_1 hh(s,ca,a,b); 

initial  begin 

 a=0;b=0; 

 info=$fopen("ha_f_rslt.txt"); 

 end 

always begin #5 a=1;b=0; #5 a=0;b=1; #5 a=1;b=1; #5 a=0;b=0; end 

initial  $fmonitor(info,$time , "  a = %b , b = %b ,out carry = %b , outsum = %b  " 

,a,b,ca,s); 

initial  begin  #30 $display(info);  #0 $stop; end 

endmodule 

Figure 11.54 A module set to illustrate writing into a file. 
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//                   0  a = 0 , b = 0 ,out carry = x , outsum = x   

//                   2  a = 0 , b = 0 ,out carry = x , outsum = 0   

//                   4  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

//                   5  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

//                   6  a = 1 , b = 0 ,out carry = 0 , outsum = 1   

//                  10  a = 0 , b = 1 ,out carry = 0 , outsum = 1   

//                  15  a = 1 , b = 1 ,out carry = 0 , outsum = 1   

//                  17  a = 1 , b = 1 ,out carry = 0 , outsum = 0   

//                  18  a = 1 , b = 1 ,out carry = 1 , outsum = 0   

//                  20  a = 0 , b = 0 ,out carry = 1 , outsum = 0   

//                  24  a = 0 , b = 0 ,out carry = 0 , outsum = 0   

//                  25  a = 1 , b = 0 ,out carry = 0 , outsum = 0   

//                  26  a = 1 , b = 0 ,out carry = 0 , outsum = 1 

Figure 11.55 Contents of the file ‘ha_f_rslt.txt’ after the test bench in Figure 11.54 is 

simulated. 

11.7 COMPILER DIRECTIVES 

A number of compiler directives are available in Verilog.  They allow for macros, 

inclusion of files, and timescale-related parameters for simulation.  All compiler 

directives are preceded by the ‘`’ (accent grave) character.  Representative 

compiler directives are discussed here with illustrations. 

11.7.1 `define Directive 

The `define directive is for macro substitution.  It substitutes the macro by a 

defined text.   Hence a macro name can be used in place of such a group of 

characters in the listing wherever the group is to appear.  Subsequently, the macro 

name can be substituted during compilation by the actual text.  The `define

directive is used to define and associate the desired text with the macro name.   

The `define compiler directive can also be used to substitute a number by a 

macro name.  It allows for deciding bus-width, specific delay values, etc., at 

compilation time.  

Example 11.30  

The ALU module in Figure 11.56 is a modified version of that considered earlier.  

Three macro-names – namely add, subtract, and exor – are used in the module 

listing.  The `define directives assign values to them.  Note that despite the 

replacement the compiled file will remain unaltered.  



386 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module alu_a (d, co, a, b, f,cci); 

`define  add 2'b00  

`define subtract 2'b01 

`define exor 2'b10 

output [3:0] d; utput co; wire[3:0]d;  

input cci; input [3 : 0 ] a, b; input [1 : 0] f;  

assign {co,d}=(f==`add)?(a+b+cci):((f==`subtract)?(a-b):((f==`exor)? 

{1'bz,a^b}:{1'bz,~a})); 

endmodule 

Figure 11.56 A module to illustrate the use of the `define directive. 

11.7.2 Time-Related Tasks 

A set of compiler directives and system tasks relate to the running time of 

simulation as well as the delays in the concerned modules.  A wide range of 

timescales as well as precision levels are available for selection during simulation.   

`timescale

The `timescale compiler directive allows the time scale to be specified for the 

design.  When a `timescale directive is encountered in a file, the same is valid 

for all subsequent modules within the file.  The `timescale directive has two 

components: Figure 11.57 shows its form.  A few examples are given below: 

`timescale 1 ms/100 µs   

implies that in the following design all the time values specified are in ms and 

they have a precision of 100 µs.  Thus  

3, 3.0, 3.022 are all interpreted as 3 ms; 

3.1, 3.12,3.199 are all interpreted as 3.1 ms; and  

0.1, 0.12 are interpreted as 100 µs.

`timescale  10 ms/100 µs 

implies that in the following design all the timescales are specified as 

multiples of 10 ms with a precision of 100 µs. Thus

3 and 3.0 are interpreted as 30 ms; 

3.022 is interpreted as 30.2 ms; 

3.1 is interpreted as 31 ms; 

3.12 is interpreted as 31.2 ms; 

3.199 is interpreted as 31.9 ms; 

0.1 is  interpreted as 1 ms and 

0.12 is interpreted as 1.2 ms.
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`timescale  a us / b ns

Specifies the unit of precision: it

can be s, ms, us, ns, ps, or fs

Specifies the unit of time scale: it

can be s, ms, us, ns, ps, or fs

Specifies the order of magnitude of

precision: it can be 1, 10, or 100

Specifies the order of magnitude of

time scale: it can be 1, 10, or 100

Figure 11.57 Form of specifying timescale: s, ms, us, ns, ps, and fs stand for seconds, 

milliseconds, microseconds, picoseconds and femtoseconds, respectively. 

`timescale 1  ms/1 ms  

implies that in the following design all the time values specified are in ms and 

they have a precision of 1 ms.  Thus  

3, 3.0, 3.022, 3.1, 3.12, 3.199 are all interpreted as 3 ms and 

0.1, 0.12 are interpreted as 0 ms.

$timeformat

The timescale and the format for display can be changed during simulation with 

the help of $timeformat task.   The syntax for the task is explained in Figure 

11.58.  Whenever “µs” (microsecond) is to be specified for defining or changing 

time scale, it is specified as “us.”  Conventions for all other timescale values  

(s, ms, ns, ps, and fs) remain unaltered. 

$timeformat ( -aa,  bb,  "cc",  dd );

A negative number in the 0 to -15 range

signifying time unit: 0 stands for s, -1 for

0.1 s and so on;  -15 implies femtosecond.

An integer specifying precision: it represents the

number of digits to the right of the decimal point

any convenient

s t r i n g  t o  b e

displayed as such

An integer specifying the

field width for the display

Figure 11.58 Syntax for $timeformat.
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Simulation Time 

Simulation time value can be obtained, displayed or used in specific expressions; a 

limited amount of flexibility is available here: – 

$time returns the value of simulation time as an integer. 

$realtime returns the value of simulation time as a real number. 

Default Timescale 

If the time scale values are not specified in the source file, simulation is carried out 

with the default values specified in the tool used for simulation.  The default value 

of time unit is taken as nanosecond in this book. 

Example 11.31  

Figure 11.59 shows two illustrative modules and a test bench instantiating both of 

them.  For all the modules the time unit is set at 1 µs and precision at 100 ns. The 

simulation results are in Figure 11.60.   

`timescale 1us /100ns 
module show_1; 
reg  ai, bi; wire ao, bo; 
show_2 aa(ao, ai); 
show_3 bb(bo, bi); 
initial $timeformat(-3, 5, "ms", 12); 
initial $monitor("%m has  ai=%b,ao=%b,bi=%b,bo=%b, at time 
%t",ai,ao,bi,bo,$realtime);  
always   begin  
  #3{ai,bi} =2'b00; #3{ai,bi} =2'b01; 
  #3{ai,bi} =2'b10; #3{ai,bi} =2'b11; 
   end 
initial #12 $stop; 
endmodule 

`timescale 1us / 100ns 
module show_3(bo,bi); 
output bo; input bi; wire bo, bi; 
not #1.2 (bo,bi); 
endmodule 

`timescale 1us / 100ns 
module show_2(ao,ai); 
output ao; input ai; wire ao, ai; 
not #2 (ao,ai); 
endmodule 

Figure 11.59 A simple set of modules to illustrate the functioning of `timescale 

compiler directive. 
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# show_1 has  ai=x,ao=x,bi=x,bo=x, at time    0.00000ms 

# show_1 has  ai=0,ao=x,bi=0,bo=x, at time    0.00300ms 

# show_1 has  ai=0,ao=x,bi=0,bo=1, at time    0.00420ms 

# show_1 has  ai=0,ao=1,bi=0,bo=1, at time    0.00500ms 

# show_1 has  ai=0,ao=1,bi=1,bo=1, at time    0.00600ms 

# show_1 has  ai=0,ao=1,bi=1,bo=0, at time    0.00720ms 

# show_1 has  ai=1,ao=1,bi=0,bo=0, at time    0.00900ms 

Figure 11.60 Results of simulating the module set in Figure 11.59. 

Observations: 

All propagation to bo from bi take place with a delay of 1.2 µs as specified. 

All propagation to ao from ai take place with a delay of 2 µs as specified.   

The display format specifies time to be displayed in milliseconds with a 

precision of 5 decimal places (second field of argument 5).  Further, “ms” is to 

be displayed after the time display to signify that the time is displayed in 

milliseconds  

Example 11.32  

The module in Figure 11.59 has been modified and shown in Figure 11.61.  “-3” in 

the first field of time format has been changed to “-4.”  It implies that the time 

displayed is in 100 µs units.  Simulation results are shown in Figure 11.62.  A 

number 0.042 there signifies 0.042 ×10-4 = 4.2 µs, since the time unit is specified 

as -4 in the $timeformat task.  

`timescale 1us /100ns 

module show_a; 

reg  ai, bi; wire ao, bo; 

show_b aa(ao, ai); 

show_c bb(bo, bi); 

initial $timeformat(-4, 5, "  ", 12); 

initial $monitor("%m has  ai=%b,ao=%b,bi=%b,bo=%b, at time 

%t",ai,ao,bi,bo,$realtime);  

always begin  

 #3 {ai,bi} =2'b00; #3 {ai,bi} =2'b01; 

 #3 {ai,bi} =2'b10; #3 {ai,bi} =2'b11; 

 end 

continued 
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continued

initial #12 $stop; 

endmodule 

`timescale 1us / 100ns 

module show_b(ao,ai); 

output ao; input ai; wire ao, ai; 

not #2 (ao,ai); 

endmodule 

`timescale 1us / 100ns 

module show_c(bo,bi); 

output bo; 

input bi; 

wire bo, bi; 

not #1.2 (bo,bi); 

endmodule 

Figure 11.61 A modified version of the set of modules in Figure 11.59. 

# show_a has  ai=x,ao=x,bi=x,bo=x, at time    0.00000 

# show_a has  ai=0,ao=x,bi=0,bo=x, at time    0.03000 

# show_a has  ai=0,ao=x,bi=0,bo=1, at time    0.04200 

# show_a has  ai=0,ao=1,bi=0,bo=1, at time    0.05000 

# show_a has  ai=0,ao=1,bi=1,bo=1, at time    0.06000 

# show_a has  ai=0,ao=1,bi=1,bo=0, at time    0.07200 

# show_a has  ai=1,ao=1,bi=0,bo=0, at time    0.09000 

Figure 11.62 Results of simulating the set of modules in Figure 11.61. 

Example 11.33 

The module in Figure 11.59 is repeated in Figure 11.63: $realtime is replaced by 

$time. Simulation results are in Figure 11.64.   Time units displayed here are in 

integers in contrast to those in Figure 11.61 where they are real numbers.  Further, 

the integers displayed are in “ms” (the “-3” field signifies this), shown with 5-digit 

precision.  Thus the delay of 1.2 µs for the transition in bo appears as only a 1 µs

delay (The lines ending with 0.00400 ms, 0.00700, ms etc., signify this.)  
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`timescale 1us /100ns 

module show_aatb; 

reg  ai, bi; wire ao, bo; 

show_aa aa1(ao, ai); 

show_bb bb1(bo, bi); 

initial $timeformat(-3, 5, "ms", 12); 

initial $monitor("%m has  ai=%b,ao=%b,bi=%b,bo=%b, at time 

%t",ai,ao,bi,bo,$time);  

always  begin  

 #3 {ai,bi} =2'b00; #3 {ai,bi} =2'b01; 

 #3 {ai,bi} =2'b10; #3 {ai,bi} =2'b11; 

 end 

initial #12 $stop; 

endmodule 

`timescale 1us / 100ns 

module show_bb(bo,bi); 

output bo; input bi; wire bo, bi; 

not #1.2 (bo,bi); 

endmodule 

`timescale 1us / 100ns 

module show_aa(ao,ai); 

output ao; input ai; wire ao, ai; 

not #2 (ao,ai); 

endmodule 

Figure 11.63 A modified version of the set of modules in Figure 11.59. 

# show_aatb has  ai=x,ao=x,bi=x,bo=x, at time    0.00000ms 

# show_aatb has  ai=0,ao=x,bi=0,bo=x, at time    0.00300ms 

# show_aatb has  ai=0,ao=x,bi=0,bo=1, at time    0.00400ms 

# show_aatb has  ai=0,ao=1,bi=0,bo=1, at time    0.00500ms 

# show_aatb has  ai=0,ao=1,bi=1,bo=1, at time    0.00600ms 

# show_aatb has  ai=0,ao=1,bi=1,bo=0, at time    0.00700ms 

# show_aatb has  ai=1,ao=1,bi=0,bo=0, at time    0.00900ms 

# show_aatb has  ai=1,ao=1,bi=0,bo=1, at time    0.01000ms 

# show_aatb has  ai=1,ao=0,bi=0,bo=1, at time    0.01100ms 

Figure 11.64 Results of simulating the set of modules in Figure 11.63. 
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Example 11.34  

Figure 11.65 shows another modification of Figure 11.59; the compiler directive  

`timescale 1 us / 100 ns 

preceding the module “show_3” has been replaced by the directive 

`timescale 1 us / 1 us 

here.  The two designs are identical in all other respects.  Here the time step is in 

µs with a precision of 1 µs itself.  A delay specified as 1.2 µs is taken as 1 µs by 

the simulator.  The simulation results in Figure 11.66 confirm this. 

`timescale 1us /100ns 

module show_bbb; 

reg  ai, bi; wire ao, bo; 

show_2 aa(ao, ai); 

show_3 bb(bo, bi); 

initial $timeformat(-3, 5, "ms", 12); 

initial $monitor("%m has  ai=%b,ao=%b,bi=%b,bo=%b, at time 

%t",ai,ao,bi,bo,$realtime);  

always  begin  

 #3 {ai,bi} =2'b00; #3{ai,bi} =2'b01; 

 #3 {ai,bi} =2'b10; #3{ai,bi} =2'b11; 

  end 

initial #12 $stop; 

endmodule 

`timescale 1us / 1us 

module show_3(bo,bi); 

output bo; input bi; wire bo, bi;  

not #1.2 (bo,bi); 

endmodule 

`timescale 1us / 100ns 

module show_2(ao,ai); 

output ao; 

input ai; 

wire ao, ai; 

not #2 (ao,ai); 

endmodule 

Figure 11.65 Another modified version of Figure 11.59. 
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# show_bbb has  ai=x,ao=x,bi=x,bo=x, at time    0.00000ms 

# show_bbb has  ai=0,ao=x,bi=0,bo=x, at time    0.00300ms 

# show_bbb has  ai=0,ao=x,bi=0,bo=1, at time    0.00400ms 

# show_bbb has  ai=0,ao=1,bi=0,bo=1, at time    0.00500ms 

# show_bbb has  ai=0,ao=1,bi=1,bo=1, at time    0.00600ms 

# show_bbb has  ai=0,ao=1,bi=1,bo=0, at time    0.00700ms 

# show_bbb has  ai=1,ao=1,bi=0,bo=0, at time    0.00900ms 

# show_bbb has  ai=1,ao=1,bi=0,bo=1, at time    0.01000ms 

# show_bbb has  ai=1,ao=0,bi=0,bo=1, at time    0.01100ms 

Figure 11.66 Results of simulating the set of modules in Figure 11.65. 

11.8 HIERARCHICAL ACCESS 

A Verilog design will normally have a module or two at the apex level.  A number 

of modules and UDPs will be instantiated within it.  They can have other 

instantiations within them.  They can also have functions and tasks defined in them 

and invoked repeatedly.  In addition, begin–end and fork–join blocks too 

may be present.  All these represent identified functional blocks in a design.  

Despite the variety here, one should have access to every variable, net as well as 

named identity in a design.  The access can be to sample and display the values, to 

change specific parameters or disable selected blocks.  Verilog has the provision to 

access each such item in a unique and hierarchical manner.  Due to its importance, 

one has to understand the mode of deciding the hierarchical name and accessing 

each item (Such accessing has been dealt with in passing in Sections 4.5.1 and 

11.5.2.)  We discuss it in more detail here through illustrative examples. 

Example 11.35  

Figure 11.67 shows a module and its simulation results.  The function fad in the 

module adds two integers a and b and returns the sum. The function has been 

called twice – once within the block alpha and the second time within the block 

beta.  Each time the two numbers as well as the sum are displayed.  Figure 11.68 

shows the hierarchy of the blocks and the lineage for the variables concerned.  The 

function fad has been called within the block alpha.  The variables within alpha
are accessed there as “fad.a,” “fad.b,” and “fad.fad,” and their values are 

displayed.  Similarly, they are called within block beta and displayed in the same 

manner.   
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module hier_a; 

integer aa, bb, cc, pp, qq, rr; 

initial 

begin: alpha 

 aa = 2; bb = 3;  

 cc = fad(aa,bb); 

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad); 

end

initial 

begin: beta 

 pp = 4;qq =6; 

 rr = fad(pp,qq); 

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad); 

end

function integer fad; 

input [7:0] a, b; 

fad = a + b; 

endfunction  

endmodule 

# fad.a = 2, fad.b = 3, fad.fad = 5 

# fad.a = 4, fad.b = 6, fad.fad = 10 

Figure 11.67 A simple module to illustrate hierarchy and its simulation results. 

fad.a, fad.b, fad.fad

hier_a

fad alpha beta

fad.a, fad.b, fad.fad

fad fad

Figure 11.68 Hierarchy of the blocks and module instantiation in Example 11.35. 



HIERARCHICAL ACCESS 395 

Example 11.36 

Figure 11.69 shows the module of Example 11.35 with a $display statement 

added within the function definition itself.  Simulation results are also included in 

the figure.  The function fad has been called twice; both the times the values of the 

variables a, b, and fad are accessed and displayed.  Further, each time the same 

quantities have been accessed using hierarchical names and displayed again. 

module hier_b; 

integer aa, bb, cc, pp, qq, rr; 

initial 

begin 

 aa = 2; bb = 3;  

 cc = fad(aa,bb); 

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad); 

end

initial 

begin 

 pp = 4;qq =6; 

 rr = fad(pp,qq); 

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad); 

end

function integer fad; 

input [7:0] a, b; 

begin 

 fad = a + b; 

 $display("a = %0d, b = %0d, fad = %0d", a,b,fad); 

end

endfunction  

endmodule 

# a = 2, b = 3, fad = 5 

# fad.a = 2, fad.b = 3, fad.fad = 5 

# a = 4, b = 6, fad = 10 

# fad.a = 4, fad.b = 6, fad.fad = 10 

Figure 11.69 A modified version of the module in Figure 11.67 and the simulation results. 

Example 11.37 

An additional display statement has been added to the module in Example 11.36 

and shown in Figure 11.70.  The variables aa and bb in the module have been 

accessed from within the function fad.  Such “parallel” accessing from one block 

to another at the same level of hierarchy (see Figure 11.71) is possible in Verilog. 
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module hier_c; 

integer aa, bb, cc, pp, qq, rr; 

initial 

begin 

 aa = 2; bb = 3;  

 cc = fad(aa,bb); 

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad); 

end

initial 

begin 

 pp = 4;qq =6; 

 rr = fad(pp,qq); 

 $display("fad.a = %0d, fad.b = %0d, fad.fad = %0d", fad.a,fad.b,fad.fad); 

end

function integer fad; 

input [7:0] a, b; 

begin 

 fad = a + b; 

 $display("hier_c.aa = %0d, hier_c.bb = %0d", hier_c.aa,hier_c.bb); 

 $display("a = %0d, b = %0d, fad = %0d", a,b,fad); 

end

endfunction  

endmodule 

# hier_c.aa = 2, hier_c.bb = 3 

# a = 2, b = 3, fad = 5 

# fad.a = 2, fad.b = 3, fad.fad = 5 

# hier_c.aa = 2, hier_c.bb = 3 

# a = 4, b = 6, fad = 10 

# fad.a = 4, fad.b = 6, fad.fad = 10 

Figure 11.70 The module in Figure 11.69 modified to illustrate “parallel” accessing. 

hier_c

body of module

hier_c

hier_c.aa, hier_c.bb

fad

Figure 11.71 Parallel hierarchical accessing. 
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Example 11.38  

The module in Figure 11.72 is similar to that in Example 11.36.  A task – tad – 

defines the addition operation.  It has been invoked to carry out the addition 

operation.  Variables for display have been specified hierarchically.  Simulation 

results are appended to the module in the figure.   

module hier_d; 

integer aa, bb, cc, pp, qq, rr; 

initial 

begin 

 aa = 2; bb = 3;  

 tad(aa,bb,cc); 

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c); 

end

initial 

begin 

 pp = 4;qq =6; 

 tad(pp,qq,rr); 

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c); 

end

task tad; 

input a, b; 

output c; 

integer a,b,c; 

c = a + b; 

endtask  

endmodule 

# tad.a = 2, tad.b = 3, tad.c = 5 

# tad.a = 4, tad.b = 6, tad.c = 10 

Figure 11.72 The module for Example 11.38 along its simulation results. 

Example 11.39 

The module in Figure 11.73 is a modified version of that in Figure 11.72.  It is 

similar to the module in Figure 11.69; tasks have been defined and used here 

instead of functions.   
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module hier_e; 

integer aa, bb, cc, pp, qq, rr; 

initial 

begin 

 aa = 2; bb = 3;  

 tad(aa,bb,cc); 

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c); 

end

initial 

begin 

 pp = 4;qq =6; 

 tad(pp,qq,rr); 

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c); 

end

task tad; 

input a, b; 

output c; 

integer a,b,c; 

begin 

 c = a + b; 

 $display("a = %0d, b = %0d, c = %0d",a,b,c); 

end

endtask  

endmodule 

# a = 2, b = 3, c = 5 

# tad.a = 2, tad.b = 3, tad.c = 5 

# a = 4, b = 6, c = 10 

# tad.a = 4, tad.b = 6, tad.c = 10 

Figure 11.73 The module for Example 11.39 along with simulation results. 

Example 11.40 

The module in Figure 11.73 has been modified and shown in Figure 11.74.  The 

variables in the “parallel” module hier_f have been accessed from within the task 

“tad,” hierarchically specifying the lineage.  The accessing is similar to that in 

Figure 11.71 carried out in a parallel manner.   
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module hier_f; 

integer aa, bb, cc, pp, qq, rr; 

initial 

begin 

 aa = 2; bb = 3;  

 tad(aa,bb,cc); 

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c); 

end

initial 

begin 

 pp = 4;qq =6; 

 tad(pp,qq,rr); 

 $display("tad.a = %0d, tad.b = %0d, tad.c = %0d", tad.a,tad.b,tad.c); 

end

task tad; 

input a, b; 

output c; 

integer a,b,c; 

begin 

 c = a + b; 

 $display("a = %0d, b = %0d, c = %0d",a,b,c); 

 $display("hier_f.aa = %0d, hier_f.bb = %0d",hier_f.aa, hier_f.bb); 

end

endtask  

endmodule 

# a = 2, b = 3, c = 5 

# hier_f.aa = 2, hier_f.bb = 3 

# tad.a = 2, tad.b = 3, tad.c = 5 

# a = 4, b = 6, c = 10 

# hier_f.aa = 2, hier_f.bb = 3 

# tad.a = 4, tad.b = 6, tad.c = 10 

Figure 11.74 The module for Example 11.40 along with simulation results. 

Example 11.41  

Figure 11.75 shows a module to add two octal numbers.  It is done to further 

illustrate the features of hierarchy.  ha is a half-adder module in the figure.  It has 

been instantiated twice within the full-adder module fa.  These two modules have 

been instantiated in the main module hier_l to carry out the addition of the octal 

numbers.  hier_l has been instantiated in hier_ltst – the test bench for it.  The 



400 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

module hier_l(cc2,s2,s1,s0,a2,a1,a0,b2,b1,b0); 

input a2,a1,a0,b2,b1,b0; 

output cc2,s2,s1,s0; 

wire cc1,cc0; 

ha aaa(s0,cc0,a0,b0); 

fa faa1(s1,cc1,a1,b1,cc0); 

fa faa2(s2,cc2,a2,b2,cc1); 

//location 3 

endmodule 

module ha(s,c,a,b); 

input a,b; 

output s,c; 

assign {c,s}={a&b,a^b}; 

//location 5 

endmodule 

module fa(sf,cf,af,bf,ci); 

input af,bf,ci; 

output sf,cf; 

wire sf1,cc1,cc2; 

ha fha1(sf1,cc1,af,bf); 

ha fha2(sf,cc2,sf1,ci); 

//location 4 

or rr(cf,cc1,cc2); 

endmodule 

module hier_ltst; 

reg a2,a1,a0,b2,b1,b0; 

wire cc2,s2,s1,s0; 

hier_l ddd(cc2,s2,s1,s0,a2,a1,a0,b2,b1,b0); 

initial 

begin 

 #0 {a2,a1,a0,b2,b1,b0}=6'o34; 

 $monitor("na = %0o, nb = %0o, ns = 

%0o",{a2,a1,a0},{b2,b1,b0},{cc2,s2,s1,s0}); 

 #2 $stop; 

end

//location 1 

initial #1 $display("sum = %b%b",ddd.faa2.fha2.c,ddd.faa2.fha2.s); 

endmodule 

#na = 3, nb = 4, ns = 7 

#sum = 01 

Figure 11.75 A module to illustrate hierarchy and its simulation results. 
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simulation results are also appended to the figure.  Figure 11.76 shows the scheme 

of instantiations of the modules.    The hierarchy of instantiated modules is shown 

in Figure 11.77.  By way of illustration, the Sum and Carry bits of the half-adder 

instantiation fha2 within the full-adder instantiation faa2 have been selected.  The 

module at the top is the test-bench hier_ltst.  The hierarchical addresses of these 

two bits, as “looked” from the module hier_ltst, are 

ddd.faa2.fha2.c

and

ddd.faa2.fha2.s.

They have been accessed and their values displayed at the end in the figure as 

sum = 01. 

The same variables can be accessed at “location3” and displayed.  The hierarchical 

addresses to be used are 

faa2.fha2.c

and

faa2.fha2.s.

“location4” is in the full-adder module fa.  If accessed from there, the hierarchical 

names to be used are 

fha2.c and 

fha2.s.

ha (sum bit)
a
b

s

c (carry bit)
af
bf

ci

cf

sf
fa

ha
a0

s0

fa

fa s2

s1

a2

a1
b1

b2

b0

cc2

cc1

cc0

faa2

faa1

aaa

(a) (b)

(d) (c)

bf
af

fha1

haha

fha2

cc1 cc2

rr
cf

sfsf1

ci

Figure 11.76 Scheme of instantiations of modules for Example 11.41.  (a) Half-adder.  

(b) Full-adder.  (c) Full-adder.  (d) Octal adder. 



402 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES

hier_htst

aaa (ha)

(ddd) hier_h

fha1(ha)

faa2 (fa)faa1 (fa)

fha2(ha) rr (or)

fha1(ha) fha2(ha) rr (or)

alpha

Figure 11.77 Hierarchy of instantiated modules in Example 11.41: The dashed lines pertain 

to Example 11.42. 

If the display statement is inserted at “location4,” the values of c and s will be 

displayed wherever fa is instantiated.  Referring to Figure 11.75, fa is instantiated 

twice – first as faa1 and second as faa2.  Hence these values will be displayed 

twice.

Consider “location5” in the figure within the Half-adder module.  The 

variables can be accessed here directly with the names assigned to them – as “c”

and “s.”  Their values will be displayed whenever the module is instantiated. 

Example 11.42 

The module hier_l has been altered slightly and shown in Figure 11.78.  The 

display statement has been inserted within a “begin–end” block called “alpha.”

As a block it is parallel to the instantiation ddd; the variables accessed for display 

have been fully specified here as  

hier_ntst.ddd. faa2.fha2.c and 

hier_ntst.ddd.faa2.fha2.s.

The access path has been indicated separately in Figure 11.77.  However, it 

suffices to specify the variables as  

ddd. faa2.fha2.c and 

ddd.faa2.fha2.s.
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module hier_n(cc2,s2,s1,s0,a2,a1,a0,b2,b1,b0); 

input a2,a1,a0,b2,b1,b0; 

output cc2,s2,s1,s0; 

wire cc1,cc0; 

ha aaa(s0,cc0,a0,b0); 

fa faa1(s1,cc1,a1,b1,cc0); 

fa faa2(s2,cc2,a2,b2,cc1); 

endmodule 

module ha(s,c,a,b); 

input a,b; 

output s,c; 

assign {c,s}={a&b,a^b}; 

endmodule 

module fa(sf,cf,af,bf,ci); 

input af,bf,ci; 

output sf,cf; 

wire sf1,cc1,cc2; 

ha fha1(sf1,cc1,af,bf); 

ha fha2(sf,cc2,sf1,ci); 

or rr(cf,cc1,cc2); 

endmodule 

module hier_ntst; 

reg a2,a1,a0,b2,b1,b0; 

wire cc2,s2,s1,s0; 

hier_n ddd(cc2,s2,s1,s0,a2,a1,a0,b2,b1,b0); 

initial 

begin 

 #0 {a2,a1,a0,b2,b1,b0}=6'o34; 

 $monitor("na = %0o, nb = %0o, ns = 

%0o",{a2,a1,a0},{b2,b1,b0},{cc2,s2,s1,s0}); 

 #2 $stop; 

end

initial 

begin: alpha 

//location1

 #1  $display("sum = %b%b",hier_ntst.ddd.faa2.fha2.c,ddd.faa2.fha2.s); 

end

endmodule 

Figure 11.78 A modified version of the module in Figure 11.75. 
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Observations: 

Every entity in a design has a unique hierarchical name.  Any entity can 

be accessed from a location in a module, if the location is in the 

hierarchical path. 

An entity can be accessed from above or below in the hierarchy, if it can 

be fully specified from the accessed location.  As an example, consider 

the module designated “a” in Figure 11.79.  It has two blocks b and c
within it.  Block d is within block b and block e is within block c.  We 

can see the following from the figure: 

Module a can access quantities in any of the other instantiated 

modules or blocks down the hierarchy. 

Instantiated module b can access quantities within block d or module 

a.

Block d can access quantities in b or a.

Quantities in parallel blocks can be accessed.  For example, block b       

can access those in block c as well as those in block e.

Access upwards beyond the parallel level is not possible.  Thus an 

item within the block c or e cannot be accessed from the block d.

Functions can be called hierarchically.  Tasks too can be invoked 

hierarchically. 

Automatic tasks or functions cannot be accessed hierarchically. 

a

ed

cb

Figure 11.79 A hierarchical scheme of instantiations and blocks. 

11.9 GENERAL OBSERVATIONS 

Facilities of the type discussed in this chapter enhance the flexibility of one’s 

approach to simulation.  With their mastery, simulation and presentation of results 

can be made elegant.  A great deal of useful information can be generated and used 

as input to refine design. 
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11.10 EXERCISES 

 1.  Consider the module “demux” of Example 8.1.   

 a. Define a parameter del in the module and assign a value of 0.5 ns to it. 

Obtain simulation results. 

 b. Reassign the value to del as 0.8 from the test bench.  Obtain simulation 

results. 

 c. If a signal line is selected, the delay is to be 0.5 ns.  If not it is to be 1 ns.  

Do the conditional assignments in the module.  Obtain simulation results. 

 d. Specify pin-to-pin delay from b to a of 1.2 ns.  Let er and rf be the error 

and rejection limits.  Vary them in steps of 0.2 ns from 0.8 to 2.2 ns.  

Obtain simulation results and comment on the same. 

 2. Modify the OR gate realization of Example 8.14 to realize an AND gate.  

Have a module parameter to decide the number of inputs and assign a value 

of 4 to it.  Change the value from the test bench to 8.  Obtain simulation 

results. 

 3. Redo Example 8.15 by defining the input and output sizes to be module 

parameters.  How are the two sizes related?  

 a. Assign a value of 12 to the input parameter from the test bench and obtain 

simulation results.  Repeat the same with a value of 16. 

 b. Assign input values using $random system function repeatedly with 

input size of 16 bits.  Run the simulation for 20 successive values of the 

$random function output.   

 4. Modify the mod-n counter of Example 8.2 with n declared as a module 

parameter.  Assign different values to n from the test-bench.  Obtain 

simulation results. 

 5. Consider Example 8.10 for memory loading; obtain a sequence of 8-bit 

random numbers and load them into the memory.  Change the for loop in 

the module suitably. 

 6. Consider the different examples in Chapters 4, 5, 6, and 7 where time delays 

are present.  Alter them by defining specify parameter and redo the 

simulation. 

 7. Consider the different examples in the Chapters 4, 5, 6, and 7 where register 

sizes, input sizes, output sizes, or bus sizes are present.  Alter them by 

defining module parameters and redo the simulation. 

 8. Complete Example 11.41 with proper insertions at the specified locations. 
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12  

QUEUES, PLAS, AND FSMS 

12.1 INTRODUCTION 

Queues of the FIFO and the LIFO types form key blocks of many designs.  They 

are used in many applications as buffers and for storage [Heuring & Jordan].  

Verilog has a set of system tasks to set up and use FIFO and LIFO types of 

queues; adding to the queue and removing items from the queue are accomplished 

through others.  The tasks are discussed here and illustrated through examples.   

Synthesized circuits of the illustrative examples in the book are all realized 

with FPGAs.  PLAs form a limited and more compact family.  They are in wide 

use at least by a segment of designers.  The constructs in Verilog to model them 

are explained through illustrative examples.   

The long enduring importance of Finite State Machines (FSMs) is inherent 

due to their basic nature. Verilog constructs are used to model and simulate FSMs. 

12.2 QUEUES 

Queues can be modeled and their status checked with the help of a few tasks 

dedicated for the purpose; writing into a queue and reading from it are 

accomplished through others.  The statements to invoke the related tasks and the 

arguments in each case are shown in Figure 12.1.  Explanation of each task 

follows. 

12.2.1 $q_initialize

The $q_initialize task is to initialize a new queue.  All four arguments in the 

task invoking statement are variables of the integer type.  The first is the identifier; 

it has the role of a queue address.  The second specifies the type of queue – a FIFO 

or a LIFO.  Only two types are possible.  The third argument specifies the 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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$q_initialize(aaa, bbb,ccc,ddd)
4th argument: an output integer
signifying the queue status

3rd argument: an input integer
specifying the maximum queue length

2nd argument: an input integer
specifying the queue type: 1 - FIFO &  2
 LIFO

1st argument: an input integer
representing the address of the queue

keyword of the system task to create a
new  aqueue

(a)

$q_add(aaa, eee, fff, ddd)

4th argument: an
output integer
signifying the queue
status

3rd argument: the integer
output from the queue

2nd argument: an input
integer  specifying the
serial number of the job

1st argument: an input
integer  representing the

address of the queue

keyword of the system task to
add an integer to the queue

$q_remove(aaa, eee, ggg, ddd)

keyword of the system task to
remove an integer from the queue

3rd argument: the integer
input to the queue

(b)

$q_exam(aaa, hhh,jjj,ddd)

4th argument: an output integer
signifying the queue status

3rd argument: an output integer  representing the
information sought  (Column 2 in Table 12.2)

2nd argument: an input integer  signifying the type
of information sought  (Column 1  Table 12.2)

1st argument: the input integer
representing the address of the queue

keyword of the system task to output
performance data

(c)

Figure 12.1 Verilog system tasks for queue operations: (a) Task for queue initialization.  

(b) Tasks for adding and removing from the queue. (c) Task to get queue statistics.  



QUEUES 409 

$q_full(aaa, kkk)

2nd argument: output:

1 if queue is full; else 0

1st argument: an input integer

representing the address of the queue

keyword of the system

task to check status queue(d)

Figure 12.1 Verilog system tasks for queue operations (continued): (d) Task to check 

whether the queue is full or not. 

allocated length of the queue.  The fourth argument returns the status for all other 

operations.  Any queue is to be initialized before carrying out an activity with it. 

12.2.2 $q_add

$q_add is the system task to add a new entry to a queue.  The first argument 

specifies the queue to which the entry is to be made.  The second is the job serial 

number.  The third is to be entered into the queue as an integer.  The fourth returns 

a value signifying the q status.  The value and the associated status it represents are 

given in the Table 12.1. 

12.2.3 $q_remove

The task is to remove an entry from the queue (signifying servicing of the queue).  

The first argument signifies the queue to be accessed.  The second is the serial 

number of the job.  The third returns the value of the variable read from the queue.  

The fourth is an integer representing the queue status – as given in Table 12.1. 

12.2.4 $q_exam

The task is to elicit updated statistical information about the queue operation.    

The first argument is the queue ID and the second is the code for requested 

information.  The information sought is returned as the third argument.  The fourth 

is the status of the queue.  Respective codes are as in Table.12.1.  Table 12.2 lists 

the types of information that can be obtained from the specified queue.  The first 

column gives the code for the requested information and the second description of 

the quantity returned.  
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Table 12.1 Status of queue Table 12.2 Information from the queue 

Code value  

returned

Meaning Code

value

Item returned  

0 OK 1 Current queue length 

1 Queue is full 2 Mean inter arrival time 

2 Queue address not specified 3 Maximum queue length 

3 Queue is empty 4 Lowest wait time 

4 Queue type not available 5 Highest wait time 

5 Length specified is negative 6 Average wait time 

6 Queue address already exists 

7 Inadequate memory 

12.2.5 $q_full

The task checks the specified queue for possible available space for entry.  The 

first argument is the queue identification number; the second argument – returned 

from the queue – signifies its status: It is 1 if the queue is full and 0 otherwise. 

Queue-related activities are illustrated through a set of examples. 

Example 12.1 

A FIFO type of queue is set up with a length of 10 locations.  The module is 

shown in Figure 12.2, and the simulation results in Figure 12.3.  A random number 

in the range 0 to 100 is generated and successive ones added to the queue.  After 

the 10th entry status 1 is returned signifying “buffer full.” 

module mulqua(); 

reg clk; 

integer in, out, tim,iden,typ,len,status,jid ;  

initial begin 

 iden=8;  typ=1;  len =10;  jid=1;  clk=1'b0; 

 $display ("time\t\tiden\ttyp\tlen\ttim\tstatus\tjid"); 

 $q_initialize(iden,typ,len,status); 

 end 

always #3 clk=~clk; 

always@(posedge clk)  begin 

tim={$random}%100; 

$q_add(iden,jid,tim,status); 

continued 
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continued

$display("%0d\t\t%0d\t%0d\t%0d\t%0d\t%0d\t%0d",$time,iden,typ,len,tim,status,

jid); 

jid=jid+1; 

   end 

initial #70 $stop; 

endmodule 

Figure 12.2 A module to illustrate queue generation: A test bench is also included in the 

figure.

# time  iden typ len tim status jid 

# 3  8 1 10 48 0 1 

# 9  8 1 10 97 0 2 

# 15  8 1 10 57 0 3 

# 21  8 1 10 87 0 4 

# 27  8 1 10 57 0 5 

# 33  8 1 10 57 0 6 

# 39  8 1 10 25 0 7 

# 45  8 1 10 82 0 8 

# 51  8 1 10 61 0 9 

# 57  8 1 10 29 0 10 

# 63  8 1 10 18 1 11 

# 69  8 1 10 97 1 12 

Figure 12.3 Results of simulating the module set in Figure 12.2. 

Example 12.2  

Figure 12.4 shows a module for sequential entry into a queue followed by removal 

of the entries.  A random number generates positive numbers in the range 0 to 100; 

7 of them are entered into the queue.  Subsequently, they are flushed out.  The 

simulation results are reproduced in Table 12.3.  

Table 12.3 Simulation results of the module set in Figure 12.4

# 1   a   98   2   a   1   3   a   11   4   a   41   5   a   57   6   a   57   7   a   29 

# 1   r   98   2   r   1   3   r   11   4   r   41   5   r   57   6   r   57   7   r   29    
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module dem_qb;  

integer alpha, beta ,gama,i,n; 

initial begin 

 $q_initialize (1,1,10,alpha); //start a fifo queue no:1 

 n=$random(22); 

 for(i=1;i<8;i=i+1) begin 

  beta=50 + $random%50; 

  $q_add (1,i,beta,alpha); 

  $write ("%0d   a   %0d   ",i,beta); 

    end 

 $display; 

 for(i=1;i<8;i=i+1) begin 

  $q_remove (1,i,gama,alpha);  

  $write ("%0d   r   %0d   ",i,gama); 

    end 

  $display; 

 end 

endmodule 

Figure 12.4 A module to illustrate the formation of a typical queue. 

Example 12.3 

The module in Figure 12.5 is a modified version of that in Figure 12.4.  The queue 

length has been set to 20.  Twenty successive entries are made into the queue; 

subsequently all are flushed out sequentially.  The time interval of arrival of 

successive entrants to the queue is a random number – in the range 0 to 7.  

Simulation results are in Table 12.4.  The queue service details are also displayed.  

It includes the mean interval time of arrivals of entrants to the queue. 

module dem_qg;  

integer alpha, beta ,gama,i,j,n,qlen,mnit,xql; reg[2:0] aa[22:1]; reg[2:0] b; 

initial begin 

 $display ("addition\ni\tbeta\tb"); 

 $q_initialize (1,1,20,alpha); //start a fifo queue no:1 

 n=$random(22); 

 for(j=1;j<21;j=j+1) aa[j]=3+($random%4); 

 for(i=1;i<21;i=i+1) begin 

  beta=50 + $random%50; 

  b=aa[i]; 

continued
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continued

 #b $q_add (1,i,beta,alpha); 

  $display ("%0d\t%0d\t%d",i,beta,b); 

    end 

 $display; 

 $q_exam(1,1,qlen,alpha);$q_exam(1,2,mnit,alpha); 

 $q_exam(1,3,xql,alpha); 

 $display ("current queue length = %0d,  mean interval time = 

%d",qlen,mnit); 

 $display ("maximum queue length = %0d", xql); 

 $display("removal"); 

 $display ("i\tgama"); 

 for(i=1;i<21;i=i+1) begin 

  $q_remove (1,i,gama,alpha);  

  $display ("%0d\t%0d ",i,gama); 

    end 

  #500 $stop; 

 end 

endmodule 

Figure 12.5 The module of Figure 12.4 modified to show queue statistics. 

Table 12.4 Results of simulating the module pair in Figure 12.5 

#addition # removal 

i beta b i beta b i gama i gama

# 1 48 3 # 11 27 5 # 1 48  # 11 27 

# 2 89 0 # 12 90 4 # 2 89  # 12 90 

# 3 86 0 # 13 32 4 # 3 86  # 13 32 

# 4 4 2 # 14 86 3 # 4 4  # 14 86 

# 5 22 4 # 15 64 4 # 5 22  # 15 64 

# 6 7 4 # 16 25 1 # 6 7  # 16 25 

# 7 84 0 # 17 26 0 # 7 84  # 17 26 

# 8 47 1 # 18 35 1 # 8 47  # 18 35 

# 9 33 4 # 19 15 4 # 9 33  # 19 15 

# 10 43 4 # 20 37 2 # 10 43  # 20 37 

# current queue length = 20,  mean interval time = 2 

# maximum queue length = 20
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12.3 PROGRAMMABLE LOGIC DEVICES (PLDs) 

All logic functions can be realized in the sum of products or the product of sums 

form.  The practice is to express it in terms of minterms or maxterms and express 

the function in terms of prime implicants [Micheli].  If its size is small, the 

function can be realized in terms of a few SSIs or MSIs.  But if the number of ICs 

required increases beyond a limit, economic alternatives are provided by PLDs. 

PLDs have circuit structures to realize combinational circuits; they also have 

flip-flops and allow realization of sequential circuits.  Often sequential circuits or 

finite state machines with tens of states can be realized with them. 

The term PLD refers to families of devices which can be programmed to carry out 

different functions. Figure 12.6 shows the circuit arrangement of such a device in 

simplified form.  

The device accepts three logic inputs – x, y, and z – and through buffers makes 

them as well as their complements available on six signal lines inside.  These form 

the inputs to a set of three AND gates – a1, a2, and a3 – with outputs p1, p2, and 

p3.  Borrowing a term from combinational circuits, p1, p2 and p3 are called the 

“Product Terms.”  The signal lines p1, p2, and p3 form possible inputs to the 

following set of OR gates – r1, r2, and r3.  s1, s2, and s3 are the OR gate outputs.  

These can be made available as possible outputs of the device – designated g1, g2,

and g3.  The device acts purely as a general-purpose combinatorial circuit with 

programming facility.  Alternately, s1, s2, and s3 can be the inputs to the flip-flops 

– ff1, ff2, and ff3.  The flip-flop outputs can be the chip outputs.  The product term 

p1 can be formed by selectively connecting inputs to the AND gate a1.  The dots at 

the crossings signify such a connection.  With the dots shown, we get 

p1 = x y’ z’ 

and

p2 = z’ 

where x’, y’, and z’ signify the complements of x, y, and z, respectively.  

Selectively establishing the connections to p1, p2, and p3 forms the first level of 

programming of the PLD.   

The inputs to the OR gates r1, r2, and r3 can be selected from amongst p1, p2,

and p3.  The dots at the crossings signify such connections.  With the dots shown 

for r3, we get 

s3 = x y’ z’ + z. 

Deciding the inputs to the OR gates constitutes the second level of 

programming of the PLD.   

The OR gate outputs can be made available directly at the output side as q1, 

q2, and q3 respectively.  Alternately, they can be loaded into the respective flip-

flops at the clock edges.  The selection between these alternatives constitutes the 

third level of programming of the PLD.  In short, a combinational or a sequential 

circuit is realized using a PLD, through three levels of programming.  
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Figure 12.6 A diagram illustrating the structure of a PLA. 

What is described here constitutes the general structure of a PLD.  Details of 

individual devices and device families differ from manufacturer to manufacturer. 

Observations: 

In mask programmable PLDs programming is done at the mask level at 

the manufacturing stage itself.   

In erasable PLDs (EPLDs), programming is done electrically at the 

customer’s site.  It is carried out with a particular sequence of electrical 

voltage pulses applied to selected pins of the device.  The program can be 

erased by subjecting the device to UV rays for a specified period (~20 

minutes) and the device can be reprogrammed. 
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An electrically erasable PLD (E2PL) is programmed like an EPLD by 

applying a specific electrical voltage sequence to it.  The erasure is also 

carried out electrically by applying another set of electrical voltage 

pulses.  The electrically erased device can be programmed again.   

EPLDs and E2PLDs are also known as field programmable devices. 

Programmable array logic (PAL) is a class of PLD.  The OR gates are 

fixed here and not programmable.  Only the AND gates can be 

programmed.   

A programmable logic array (PLA) is another class of PLD.  The inputs 

to their OR gates are also programmable; this is in addition to the 

programming facility at the AND gate level. 

Normally, the size of a PLD is referred to as a × b × c, where a, b, and c

are the number of input lines, the number of product terms, and the 

number of output lines respectively.   

Manufacturers offer different families of PLDs; normally, a family has 

the size fixed with the number of its inputs and outputs changing.  

Depending on the application, a family and a device in the family can be 

selected.

The flip-flop outputs are normally available as additional input lines to 

the product terms of the device.  One can use them judiciously and realize 

sequential circuits and different finite state machines. 

12.3.1 Programming of PLD in VERILOG 

Verilog provides a family of system tasks to simulate different types of PLDs.  

Figure 12.7 shows the structure of the tasks.  The keyword for the task is in three 

parts; the alternatives for each are shown in the figure.  Possible combinations of 

the alternatives lead to a total of 16 such tasks.  Their use is illustrated here 

through an example. 

$ $$

sync

async

and

nand

or

nor

array

plane

(aa, bb, cc)

m vectors n bits each

Input vector of n binary elements

Output vector of m binary elements

Figure 12.7 Format of the tasks to model PLAs. 
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Example 12.4 A 2 × 2 Multiplier 

Figure 12.8 shows a module to realize a 2 × 2 multiplier as a PLA.  A test bench 

for the multiplier is also included in the figure.  Multipliers of much larger sizes 

can be described and realized; the one considered here is purely illustrative in 

nature.   

a and b form the two 2-bit inputs to the multiplier and c is its 4-bit output.  

The multiplier has been realized in a sum-of-products form.  The input 

combinations, the outputs, and the relevant product terms are shown in Table 12.5. 

module mltp_a(a1,a0,b1,b0,c1,c2,c3,c4);//PLA based 2-bit multiplier 

input a1,a0,b1,b0; output c1,c2,c3,c4; 

reg[1:4] mand[1:9]; reg[1:9] mor[1:4]; reg p1,p2,p3,p4,p5,p6,p7,p8,p9,c1,c2,c3,c4;  

initial begin 

 mand[1]=4'b1010; mand[2]=4'b0110; mand[3]=4'b1110; 

mand[4]=4'b1001; 

 mand[5]=4'b0101; mand[6]=4'b1101; mand[7]=4'b1011; 

mand[8]=4'b0111; 

 mand[9]=4'b1111; mor[1]=9'b1_0100_0101; mor[2]=9'b0_1110_1110;  

 mor[3]=9'b0_0001_1010; mor[4]=9'b0_0000_0001; 

 $async$and$array(mand,{a0,a1,b0,b1},{p1,p2,p3,p4,p5,p6,p7,p8,p9}); 

 $async$or$array(mor,{p1,p2,p3,p4,p5,p6,p7,p8,p9},{c1,c2,c3,c4}); 

 end 

endmodule 

module mltp_a_tst; 

reg a1,a0,b1,b0; reg[1:4] n; integer i;wire c4,c3,c2,c1; 

mltp_a mm(a1,a0,b1,b0,c1,c2,c3,c4); 

always begin 

  n=4'b0000; 

 for(i=0;i<17;i=i+1) begin 

  {a1,a0,b1,b0}=n; 

  #1 n=n+1'b1;  

       end 

  end 

initial $monitor("%b\t%b\t%b",{a1,a0},{b1,b0},{c4,c3,c2,c1}); 

initial begin 

 $display("a \tb\t  a*b"); 

 #15  $stop;  

 end 

endmodule 

Figure 12.8 A 2 × 2 multiplier module and its test bench. 
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Table 12.5 Details of the multiplier module in Figure 12.8

Bits of input a Bits of input b Product Bits of output c 

a1 a0 b1 b0 p c3 c2 c1 c0

0 0 0 0 – 0 0 0 0 

0 0 0 1 – 0 0 0 0 

0 0 1 0 – 0 0 0 0 

0 0 1 1 – 0 0 0 0 

0 1 0 0 – 0 0 0 0 

0 1 0 1 p1 0 0 0 1

0 1 1 0 p2 0 0 1 0

0 1 1 1 p3 0 0 1 1

1 0 0 0 – 0 0 0 0 

1 0 0 1 p4 0 0 1 0

1 0 1 0 p5 1 0 0 0 

1 0 1 1 p6 1 1 0 0 

1 1 0 0 – 0 0 0 0 

1 1 0 1 p7 0 0 1 1

1 1 1 0 p8 1 1 0 0 

1 1 1 1 p9 1 0 0 1

The output bits affected by the product terms are shown in bold italics in the 

table.  The two PLA task statements in Figure 12.8 together realize the multiplier 

in asynchronous form.  Simulation results are reproduced in Table 12.6. 

12.4 DESIGN OF FINITE STATE MACHINES 

A finite state machine (FSM) is the most basic form of describing a digital system.  

Properly carried out, it forms the optimal and compact representation.  Knowledge 

of design of FSMs will remain a basic one; hence its importance [Comer, Devadas 

et al.]  An FSM is characterized by the following:  

A set of finite states 

A set of logic inputs 

Table 12.6 Simulation results of the module set in Figure 12.8 

a b a*b a b a*b

# 00 

# 00 

# 00 

# 00 

# 01 

# 01 

# 01 

00

01

10

11

00

01

10

0000 

0000 

0000 

0000 

0000 

0001 

0010 

# 01 

# 10 

# 10 

# 10 

# 10 

# 11 

# 11 

11

00

01

10

11

00

01

0011 

0000 

0010 

0100 

0110 

0000 

0011 
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A set of logic outputs 

A set of logic equations connecting the next state to the present state and 

present input vectors 

A set of logic equations connecting the next output state to the present-state 

input values 

In general, a state description of a state machine consists of descriptions of the 

state transitions, the output functions, and the next-state register functions. 

Because the next-state functions call for memory or register based operations, an 

always block is an appropriate way to describe it in Verilog. If-else-if or Case 

statements, the 3-operand operator, or proper usage of combinational and 

sequential UDPs perform the state transition and output function descriptions. In 

case all the possible states are not defined and the Case statement is used to realize 

the FSM, it should always have a default statement to ensure that the state machine 

does not go into an undefined state. In case the If-else-if construct is used, at the 

beginning of the always block an asynchronous reset or clear can be used to bring 

the machine to a known initialized state. 

The instant of transition from the present to the next can be completely 

controlled by a clock; additionally, changes in the inputs may also dictate such 

transitions.  FSMs can be broadly classified into two categories – Moore machines 

and Mealy machines.  Design of both types is discussed and illustrated in the 

sequel.

12.4.1 Moore Machine 

The Moore model of the FSM is shown in Figure 12.9 in block diagram form.  The 

input vector A and the present state vector Sp together form the input to a 

Output

Memory

Next state

combinational

logic

Output

combinational

logic

Clock

Input
A

S
n

S
n S

o

S
p

Figure 12.9 Moore machine in block diagram form. 
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combinational circuit block.  Its output vector So forms the address input to the 

memory block.  At the active clock edge the memory location is accessed and the 

next state vector output from it.  At any moment a second combinational logic 

block defines the output in terms of the present state vector.  Two aspects 

characterize a Moore machine:  

Next state of the output is decided fully by the present state. 

All changes in the output are brought about only at the active edge of the 

clock.  Hence the Moore machine is inherently synchronous. 

Edge-triggered flip-flops, synchronous counters, etc., are typical examples of 

Moore machines.  Design of Moore machines can be described in various ways.  

Since the active edge of the clock is pivotal to its operation, the circuit design 

block can be directly activated at the active edge of the clock.  Figure 12.10 shows 

two approaches to the Moore machine design.  Other combinations of procedural 

and continuous assignments to So and Sp are also possible.  All the approaches are 

characterized by the following:  

Assignments to Sn are procedural and at the active edge of the clock.   

Assignments within the procedural block are of the nonblocking type, since 

the updating of values depends on the previous state. 

The step-by-step procedure for the design of a synchronous (Moore) machine is as 

follows:  

Generate a state diagram from the problem statement. 

Minimize the number of states. 

Select a binary encoding for the states. 

Generate an encoded state table. 

Select the memory device –T flip-flop or D flip-flop. 

Generate a next-state K map for each memory device. 

Generate a K map for each output. 

Implement memory and combinational logic using PLAs or other devices.   

always@(posedge clk) 

begin 

Sn <=  F1(Sp); 

Sp <= F2(Sn, A); 

So <= F3(Sn); 

End

Assign Sp = F2(Sn, A); 

always@(posedge clk) 

begin 

Sn <=  F1(Sp); 

So <= F3(Sn); 

End

Figure 12.10 Two of the possible approaches to a Moore machine description. 
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Example 12.5  

A sequence generator is to sequence through eight distinct states.  The states are 

represented by a set of four binary variables – W, X, Y, and Z.  The states and the 

sequence are as follows (the 4 bits represent values of W, X, Y, and Z,

respectively): 

1000 1100 0100  0110  0010 0011 0001 1001 1000 . . .. 

Each transition is to take place at the positive edge of the clock.  Since the 

scheme has no external primary input to affect the output, it is realized as a Moore 

machine.  A 3-bit state machine suffices to generate the eight independent states 

specified. The step-by-step implementation of the FSM is on the following lines:  

The binary encoding and the corresponding state assignment are shown in 

Table 12.7 with the 3 bits being designated as Qa, Qb, and Qc; the states are 

designated as S0, S1, S2, S3, S4, S5, S6, and S7, respectively.  The binary 

sequence of the FSM, the next state, and the set of outputs for each of the 

states are given in the table.   

The outputs W, X, Y, and Z are expressed as functions of Qa, Qb, and Qc in the 

Sum of Products form and the respective Karnaugh maps are given in Table 

12.8 to Table 12.11.   

The outputs W, X, Y, and Z are given in minimized form as Equations (12.1), 

(12.2), (12.3) and (12.4).  

The next state variables Qa, Qb, and Qc are implemented using T-flip-flops 

designated  Ta, Tb and  Tc respectively. 

The inputs to the flip-flops Qa, Qb, and Qc are designated as Ta, Tb, and Tc;

Karnaugh maps for the respective functions are in Tables 12.12, 12.13 and 

12.14.   

Equations (12.5), (12.6) and (12.7) represent the minimized functional form of 

Ta, Tb, and Tc.

Table 12.7 State assignments and transitions 

Present state Next state 

State designation QaQbQc QaQbQc Outputs WXYZ

S0 000 001 1000 

S1 001 010 1100 

S2 010 011 0100 

S3 011 100 0110 

S4 100 101 0010 

S5 101 110 0011 

S6 110 111 0001 

S7 111 000 1001 
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Table 12.8 Karnaugh map for 

FSM output W (Example 12.5) 

Table 12.9 Karnaugh map for  

FSM output X (Example 12.5)

QaQb QaQb

00 00 00 00 00 01 11 10

0 1 1 0 0 0 0 1 1 1 
Qc

1 0 0 1 0 
Qc

1 0 0 0 0 

             

Table 12.10 Karnaugh map for 

FSM output Y (Example 12.5)

Table 12.11 Karnaugh map for  

FSM output Z (Example 12.5) 

QaQb QaQb

00 01 11 10 00 01 11 10

0 0 0 1 0 0 0 0 0 0 
Qc

1 1 1 0 0 
Qc

1 0 1 1 1 

             

Table 12.12 Karnaugh map 

for Ta  (Example 12.5) 

Table 12.13 Karnaugh map  

for Tb  (Example 12.5) 

QaQb QaQb

00 01 11 10 00 01 11 10

0 0 0 1 0 0 0 1 1 0 
Qc

1 0 0 1 0 
Qc

1 0 1 1 0 

             

Table 12.14 Karnaugh map 

for Tc (Example 12.5)

QaQb

00 01 11 10

0 1 1 1 1       
Qc

1 1 1 1 1      

zQ
y

Q
x

Q
y

Q
x

QW  (12.1) 

yxzx QQQQX  (12.2) 

zQ
y

Q
x

Q
y

Q
x

QY  (12.3) 

yxzx QQQQZ  (12.4) 

cba QQT  (12.5) 

cb QT  (12.6) 

1cT  (12.7) 
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The above can be realized directly in a programmable logic device; but with the 

increase in the number of states, the state machine becomes too big to be manually 

designed.  In such cases the design description can be done in Verilog. 

12.4.1.1 Design Realization: Version 1 

Figure 12.11 shows a module to realize the machine under discussion; a test bench 

is also shown in the figure.  There are two always block in the state machine 

description.  The outputs change as per the description of the first always blocks. 

The change in the state occurs at the clock transitions as described in the second 

always block. Thus the outputs are steered through whenever a state transition 

occurs.  Simulation results are shown in Figure 12.12 as waveforms of the signals.  

The synthesized circuit is shown in Figure 12.13.  

//sequence generator 
//moore machine_a 

`define s0 3'b000//wxyz=1000 
`define s1 3'b001//wxyz=1100 
`define s2 3'b010//0100 
`define s3 3'b011//0110 
`define s4 3'b100//0010 
`define s5 3'b101//0011 
`define s6 3'b110//0001 
`define s7 3'b111//1001 
module a_seqmoorev(clr,clk,w,x,y,z); 
input clr,clk; 
output w,x,y,z; 
reg w,x,y,z; 
reg [2:0]present_state; 

always@(present_state) 
begin 
case(present_state) 
  `s0: {w,x,y,z}=4'b1000;  
  `s1: {w,x,y,z}=4'b1100; 
  `s2: {w,x,y,z}=4'b0100; 
  `s3: {w,x,y,z}=4'b0110; 
  `s4: {w,x,y,z}=4'b0010; 
  `s5: {w,x,y,z}=4'b0011; 
  `s6: {w,x,y,z}=4'b0001; 
  `s7: {w,x,y,z}=4'b1001;  
endcase 
end

continued 
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continued

always@(posedge clk) 
begin 
if (clr) present_state =`s0; 
 else begin 
   case(present_state) 
   `s0: present_state=`s1; 
   `s1: present_state=`s2; 
   `s2: present_state=`s3; 
   `s3: present_state=`s4; 
   `s4: present_state=`s5; 
   `s5: present_state=`s6; 
   `s6: present_state=`s7; 
   `s7: present_state=`s0; 
   default: present_state=`s0; 
   endcase 
  end 
end
endmodule 

//test-bench
//In a moore machine the next_state logic is independent of primary inputs and 
hence
module test_a_seqmoorev(); 
reg clr,clk; 
wire w,x,y,z; 
a_seqmoorev vv(clr,clk,w,x,y,z); 
initial begin clk=1'b0;clr=1'b1; #3 clr =1'b0; #50 $stop; end 
always  #2 clk = ~clk;   
endmodule 

Figure 12.11 Module Version 1 of the design for the FSM of Example 12.5; a test bench for 

the design is also shown in the figure. 

Figure 12.12 Simulation results of the set of modules in Figure 12.11. 
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 Figure 12.13 Synthesized circuit of the design module in Figure 12.11. 

12.4.1.2 Design Realization: Version 2 

An alternate design module is shown in Figure 12.14.  The transition output 

variables and the state transitions of the next-state variables have been combined 

in a common always block: The outputs are steered through at the clock edge; 

hence as many extra latches are inferred as the number of outputs. The simulation 

output waveforms are identical to those for Version 1 shown in Figure 12.12 and 

are not reproduced.  Six latches are implied – 2 for the state variables and four for 

the 4 output variables.  The synthesized circuit in Figure 12.15 too confirms the 

same.  In contrast, the coding in Version 1 above does not explicitly imply latches 

for the output variables. 

//sequence generator – moore machine 

`define s0 3'b000//wxyz=1000 

`define s1 3'b001//wxyz=1100 

`define s2 3'b010//0100 

`define s3 3'b011//0110 

`define s4 3'b100//0010 

`define s5 3'b101//0011 

`define s6 3'b110//0001 

`define s7 3'b111//1001 

continued 
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continued

module seqmoorev2(clr,clk,w,x,y,z); 

input clr,clk; 

output w,x,y,z; 

reg w,x,y,z; 

reg [2:0]present_state; 

//mainblock 

always@(posedge clk or posedge clr) 

begin 

 if (clr) 

 present_state =`s0; 

 else 

 begin 

  case(present_state) 

  `s0:begin present_state=`s1; {w,x,y,z}=4'b1000; end 

  `s1:begin present_state=`s2; {w,x,y,z}=4'b1100; end 

  `s2:begin present_state=`s3; {w,x,y,z}=4'b0100; end 

  `s3:begin present_state=`s4; {w,x,y,z}=4'b0110; end 

  `s4:begin present_state=`s5; {w,x,y,z}=4'b0010; end  

  `s5:begin present_state=`s6; {w,x,y,z}=4'b0011; end 

  `s6:begin present_state=`s7; {w,x,y,z}=4'b0001; end  

  `s7:begin present_state=`s0; {w,x,y,z}=4'b1001; end 

  default:  present_state=`s0;  

  endcase 

 end 

 end 

endmodule 

//test-bench

//In a moore machine the next_state logic is independent of primary inputs   

module test_seqmoorev2(); 

reg clr,clk; 

wire w,x,y,z; 

seqmoorev2 vv(clr,clk,w,x,y,z); 

initial begin clk=1'b0;clr=1'b1; #3 clr = 1'b0; #50 $stop; end 

always #2 clk = ~clk; 

endmodule 

Figure 12.14 Module Version 2 of the design for the FSM of Example 12.5; a test bench for 

the design is also shown in the figure. 
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Figure 12.15 Synthesized circuit of the design module in Figure 12.14. 

12.4.2 Mealy Machine 

The Mealy machine is shown in block diagram form in Figure 12.17.  It differs 

from the Moore machine at the output stage.  The inputs can affect the outputs 

directly.  Thus for the output So we have 

So = F4(Sn, A)

The changes in the input A reflect as corresponding changes in the outputs without 

the clock being directly involved:  To that extent the behavior is asynchronous. 

Counters with asynchronous Preset and Clear and Shift Registers with Preset are 

examples of Mealy machines.  A Mealy machine has to respond to changes in 

input in addition to the response to the active edges of the clock.  The same can be 

accommodated in various ways.  Figure 12.16 shows two possible realizations. 

always@(negedge clk or A)

assignments; 

Continuous assignments; 

always@(negedge clk or A)

Assignments; 

Figure 12.16 Two possible approaches to Mealy machine description. 
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Figure 12.17 A Mealy machine in block diagram form. 

Example 12.6 

A sequence generator is to have four binary outputs designated W, X, Y, and Z.

They are to follow either of two sequences depending on the value of a Boolean 

variable A:

If A = 0, the sequence to be followed is  

1000 1100 0100  0110  0010 0011 0001 1001 1000 . . . 

where W is the most significant bit and Z the least significant bit. 

If A = 1, the sequence to be followed is 

1001 0001 0011  0010  0110 0100  1100 1000 1001 . . . 

The encoding used for the Moore machine has been retained. The design is done 

on the following lines:  

The encoding, the set of present states, corresponding next states and 

respective outputs are shown in Table 12.15 for the sequence when A = 0: 

Table 12.16 shows the same when A = 1.   

Each of the outputs is a function of 4 variables, namely, Qa, Qb, Qc, and A.

The Karnaugh map representation of the functions is in Tables 12.17 to 12.20.  

The minimized functions are given by Equations (12.8) to (12.11). 

Each next state variable is also a function of Qa, Qb, Qc, and A; the functions 

are represented in Karnaugh map form in Tables 12.21 to 12.24. The 

respective minimized functions are given by Equations (12.12) to (12.14). 
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Table 12.15 State transition details for 

Example 12.6 for A = 0

Table 12.16 State transition details for 

Example 12.6 for A = 1 

Present state 
Next state for  

A = 0 
Present state 

Next state for  

A = 1 

State  

designation
QaQbQc QaQbQc

Outputs

WXYZ

State  

designation
QaQbQc QaQbQc

Outputs

WXYZ

S0 000 001 1000 S0 000 111 0001 

S1 001 010 1100 S1 111 110 0011 

S2 010 011 0100 S2 110 101 0010 

S3 011 100 0110 S3 101 100 0110 

S4 100 101 0010 S4 100 011 0100 

S5 101 110 0011 S5 011 010 1100 

S6 110 111 0001 S6 010 001 1000 

S7 111 000 1001 S7 001 000 1001 

Table 12.17 Karnaugh map for FSM 

output W (Example 12.6) 

Table 12.18 Karnaugh map for FSM 

output X (Example 12.6) 

QbQc    QbQc

00 01 11 10 00 01 11 10

00 1 1 0 0  00 0 1 1 1 

01 0 0 1 0  01 0 0 0 0 

11 0 0 1 1  11 1 1 0 1 
AQa

10 1 0 0 0  

AQa

10 0 0 0 0 

Table 12.19 Karnaugh map for FSM 

output Y (Example 12.6) 

Table 12.20 Karnaugh map for FSM 

output Z (Example 12.6) 

QbQc    QbQc

00 01 11 10 00 01 11 10

00 0 0 1 0  00 0 0 0 0 

01 1 1 0 0  01 0 1 1 1 

11 1 0 0 0  11 0 0 0 0 
AQa

10 0 0 1 1  

AQa

10 1 1 0 1 

cbacbacbaba QQQQQAQQQQQQAW  (12.8) 

bacabaca QAQQAQQQAQQAX  (12.9)

bacbabacba QAQQQQQQAQQQY  (12.10)

cababaca QQAQQAQQAQQAZ  (12.11) 
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Table 12.21 Karnaugh map for Ta

(Example 12.6) 

Table 12.22 Karnaugh map for Tb

(Example 12.6) 

QbQc    QbQc

00 01 11 10 00 01 11 10

00 0 0 1 0  00 0 1 1 0 

01 0 0 1 0  01 0 1 1 0 

11 1 1 1 1  11 1 1 1 1 
AQa

10 1 1 1 1  

AQa

10 1 1 1 1 

Table 12.23 Karnaugh map for Tc

(Example 12.6) 

QbQc     

00 01 11 10     

00 1 1 1 1       

01 1 1 1 1       

11 1 1 1 1       
AQa

10 1 1 1 1       

AYZTa  (12.12) 

AZATb  (12.13) 

Tc = 1 (12.14) 

The above FSM can be realized using a PLD.  However, here it is realized through 

a Verilog module.  The module and its test bench are in Figure 12.18.  The 

simulation waveforms are in Figure 12.19.  The synthesized circuit is shown in 

Figure 12.20. 

//sequence generator – mealy machine 

`define s0 3'b000//wxyz=1000 

`define s1 3'b001//wxyz=1100 

`define s2 3'b010//0100 

`define s3 3'b011//0110 

`define s4 3'b100//0010 

`define s5 3'b101//0011 

`define s6 3'b110//0001 

`define s7 3'b111//1001 

module p_seqmealy(a,clk,w,x,y,z,state); 

input a,clk; output w,x,y,z; output [2:0]state; 

reg w,x,y,z;  reg [2:0] state,next_state; 

continued 



DESIGN OF FINITE STATE MACHINES 431 

continued

initial begin 
 if (!x) 
  begin 
  state=`s0; 
  next_state=`s0; 
  end 
 else begin 
  state =`s7; 
  next_state =`s7; 
  end 
 end 
always@(posedge clk) 
state = next_state; 
always@(state) 
 begin 
  case(state) 
  `s0: {w,x,y,z}=4'b1000; 
  `s1: {w,x,y,z}=4'b1100; 
  `s2: {w,x,y,z}=4'b0100; 
  `s3: {w,x,y,z}=4'b0110; 
  `s4: {w,x,y,z}=4'b0010; 
  `s5: {w,x,y,z}=4'b0011; 
  `s6: {w,x,y,z}=4'b0001; 
  `s7: {w,x,y,z}=4'b1001;   
  endcase 
 end 

//mainblock 
always@(clk) 
 begin 
 case(state) 
  `s0: next_state=a?`s7:`s1;  
  `s1: next_state=a?`s0:`s2;  
  `s2: next_state=a?`s1:`s3;  
  `s3: next_state=a?`s2:`s4;  
  `s4: next_state=a?`s3:`s5;  
  `s5: next_state=a?`s4:`s6;  
  `s6: next_state=a?`s5:`s7;  
  `s7: next_state=a?`s6:`s0;  
 endcase 
 end 
endmodule 

continued
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continued

//test-bench

module p_tst_seqmealy(); 

reg a, clk; wire w,x,y,z; wire [2:0]state; 

p_seqmealy sm (a,clk,w,x,y,z,state); 

initial begin clk=1'b0;a=1'b0; #150 $stop; end 

always #2 clk = ~clk; 

always #60 a=~a; 

endmodule 

Figure 12.18 A design module for the FSM of Example 12.6.  A test bench is also included 

in the listing. 

Figure 12.19 Waveforms of the variables during the simulation of the module in Figure 

12.18.

Figure 12.20 Synthesized circuit of the FSM module in Figure 12.18. 
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12.5 EXERCISES 

A microcontroller is shown in block diagram form in Figure 12.21.  Its 

organization and working are briefly on the following lines:  

A clock unit generates a nonoverlapping two-phase clock – designated alpha 

and beta.

The program memory is of 1 Kb. 

The program counter (PC) is 10 bits wide.  Its output forms the address for the 

program memory. 

The instruction to be executed is fetched from the program memory and 

loaded into the instruction register (IR).  The program counter content forms 

address of the instruction.

The PC incrementer can increment the program counter by 1, 2, or 3 as 

desired; the incrementing is synchronous with one of the clocks. 

The instruction decoder decodes the instruction and provides the control 

outputs to the different units. 

A versatile register file (VRF), an ALU, a RAM, a serial I/O unit, a clock 

scaler and a move block byte (MBB) are the other units of the 

Microcontroller.

Instructions are fetched from the program memory and executed successively 

and cyclically. 

The microcontroller is to be developed in steps through the exercises given below. 

Serial I/O

unit

VRF

Clock

scaler

MBB

unit

VRF

controller

RAM

Program

counter

Program

memory

PC

Incrementer

Instruction

register

Instruction

decoder

ALU

Clock unit

Figure 12.21 A microcontroller in block diagram form. 
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 1. The instruction decoder block of a microcontroller is shown in Figure 

12.22(a).   Its clock – called ‘alpha’ – is to work with output as shown in 

Figure 2.22(b).  Details are as given below: 

 a. Widths of register outputs are given in the figure. 

 b. The program memory is to be 1 Kb wide.  

 c. At every positive edge of the clock the program counter (PC) has to 

increment by one. 

 d. The PC output forms the address to the program memory:  Data at the 

location are transferred to the instruction register (IR) at the following 

negative edge of alpha clock.   

 e. The IR output is decoded by the instruction decoder.   

  The instruction decoder output is 24 bits wide – designated c0 to c23.  Set 

up the scheme and test it through a test bench.  The alpha clock is to be 

generated; the 8-bit IR content is to be output.  load the program memory 

with 1 Kb of random data.  Bring them out as IR output successively in the 

test-bench.  The instruction decoder may be ignored for the present. 

 2. Modify the scheme in Exercise 1 above by interposing a “PC Incrementer” 

between the clock and the PC as shown in Figure 12.23 to form the 

instruction decoder (ID) module.  The control bits c22 and c23 decide its 

role:

clock

program

counter

Instruction

register

Instruction

decoder

alpha

10 bit

8 bit

8 bit

c0 to c23

Program

Memory

0 1 4 5 8
t

alpha

clock

(a) (b) 

Figure 12.22 Figure for Exercise 1: (a) Instruction decoder block. (b) alpha clock. 
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clock

program

counter

Instruction

register

Instruction

decoder

alpha

10 bit

8 bit

8 bit

c0 to c23

Program

Memory

PC Incrementer

Alternate

register

16 bit

Figure 12.23 Figure for Exercise 2: A modified version of the instruction decoder block in 

Figure 12.22. 

 a. If c22 c23 = 00, increment the PC by one byte. 

 b. If c22 c23 = 01, increment the PC by two bytes; load the following byte 

to the alternate register (immediate memory addressing). 

 c. If c22 c23 = 10, increment the PC by three bytes; load the following two 

bytes to the alternate register (immediate memory addressing – two bytes 

of data). 

 d. If c22 c23 = 11, increment the PC by three bytes; load the following two 

bytes back to the PC (unconditional jump). 

 3. Set up a versatile register file (VRF) on the following lines: 

 a. 16 numbers of 8-bit registers addressed by 4 bits 

 b. A control vector c of 13 bits: 

i. c0 – c3 address A 

ii. c5 – c8 address B 

iii. c9  – c11 steer vector (SV) 

iv. c12 enable bit 

 c. Two buses aa and bb – 8 bits wide 

 d. Clock waveform (clock beta) as in Figure 12.24(a). 

 e. Carry out instructions as in Table 12.24.   If c12 = 1, VRF is active. If c12

= 0, VRF is inactive. 
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  The VRF will have a VRF controller – a decoder, a mux and a demux 

combined – [Figure 12.24(b)].   

  Realize the module, form a test bench, and test the module for all its 

functions. 

2 3 6 7 10
t

beta

clock

VRF
VRF

controller
ba

Control vector

bb

beta Clock

8

8

Figure 12.24 (a) beta clock waveform. Figure 12.24 (b) The VRF in Exercise 3 

in block diagram form. 

Table 12.24 Instructions linked to VRF in Exercise 3 

SV value Instruction

000 Clear VRF. 

001 Load data on bus ba to register of address A (8-bit store). 

010 Clear register of address A.

011 Read from register of address A into bus bb (8 bit load). 

100 Transfer content of register of address A into register of address B; content of 

register of address A to remain unaffected. 

101 Swap contents of register of address A and register of address B.

110 Load from ba to register of address A and bb to register of address B (16-bit 

store). 

111 Load from register of address A to ba and register of address B to bb (16-bit 

Load).

 4. Combine the ID and the VRF modules in the two previous exercises as 

shown in Figure 12.25.  Details of Instructions are in Table 12.25.  The 8-bit 

content of IR is the instruction to be carried out.  For the set of values of IR 

content given in Table 12.25, the control lines active are c0 – c11, c22 and 

c23.  All other control lines are zero.  Note that the IR values given in Table 

12.25 are all Opcodes.  The instruction decoder has to accept the 8-bit 

content of IR and generate all the necessary control signal values through 

appropriate combinational logic.   

 5. Combine the IR-VRF of the last exercise with an ALU.  A and B will be the 

source and destination addresses of the ALU operation for all the ALU 

instructions.  The ALU operation is specified by the bits b0-b2 of IR; the 

additional commitment of IR bits is follows:  

 a. b3-b4 specify A address 

 b. b5-b6 specify B address 
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ID module

VRF module

c0 - c11

ba
8 bit

bb

alpha clock

beta clock

8 bit

Figure 12.25 Combining ID and VRF units as in Exercise 12.4. 

Table 12.25 Instructions for the unit in Figure 12.25 

IR

content 

Instruction to be carried out No. of bytes by 

which the PC is to 

be incremented 

00H No operation 1 

01H Specify address of register A; load following byte into Ra   2 

02H Specify addresses of registers A and B;; load following 

word into the pair. 
3

03H Specify addresses of registers A and B; load the content of 

the pair into the PC. 
–

04H Clear VRF 1 

05H to 

0bH

All register based instructions in Exercise 3 above, as 

detailed in Table 12.24; every instruction is a 2 byte 

instruction with the 2nd byte specifying the A and B

addresses 

2

 c. b7 = 1 for ALU operation and 0 for other operations 

 d. Carry, borrow, half-carry, and zero bits are to be loaded into the 0Fh 

register of VRF. 

  Prepare a test bench for the design and test all assigned functions. 

 6. The above compact processor has some (many) limitations. When b7 = 1, 

127 Opcode possibilities exist; only eight of them have been used.  Others 

cannot be used.  Why? 

 7. Add a serial transmitter module to the unit in Exercise 5 as shown in Figure 

12.26.  Assign addresses 0Eh and 0Dh of VRF to RcR and TxR.  Specific 

details are as follows: 
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Serial transmitterClock scaler
alpha clock

c18 & c19 for

clock scaling

Control bits c20 &

c21 of ID module

Din

Dout
Txr RcR

Figure 12.26 Block diagram of the serial I/O unit to be added to the microcontroller. 

 a. In the Opcode b7 b6 b5 = 000 & b4 = 1 for serial transmission. 

 b. When IR = 10H transmit TxR content serially to Dout. 

 c. When IR = 11H, receive Din data and load it into RcR. 

 d. IR = 12H transmit as with IR = 10H but at half the clock rate. 

 e. IR = 13H receive as with IR = 11H but at half the clock rate. 

 f. IR = 14H transmit as with IR = 10H but at 1/4th the clock rate. 

 g. IR = 15H receive as with IR = 11H but at 1/4th the clock rate. 

 h. IR = 14H transmit as with IR = 10H but at 1/8th the clock rate. 

 i. IR = 15H receive as with IR = 11H but at 1/8th the clock rate. 

  Four possible clock values are specified here; use control bits c18 & c19 to 

select clock scale factor. 

 8. Form a processor by combining the Memory block of Exercise 5 in Chapter 

7 with ID, VRF, and serial I/O block above.  Have the following additional 

instructions:

 a. For IR content 20H to 2fH, load the following two bytes from the 

program memory into the MAR at beta clock.  In the following alpha

clock, do memory read and load into the register in VRF with address as 

the 2nd nibble of the Opcode. 

 b. For IR content 31H to 3fH load the following two bytes from the program 

memory into the MAR at beta clock.  In the following alpha clock, take 

the content of register from VRF with address as the 2nd nibble of the 

Opcode and do memory write at the address in MAR. 

 9. The processor built up above has room for only a limited set of Opcodes.  It 

is due to the limited IR width and the constraint imposed on it that b7 = 1 

means ALU operation.  The constraint was imposed to make the instruction 

decoder simple.  Remove this constraint and absorb further decoding onto it.  

With such a change, many more instructions can be accommodated as 

shown in Table 12.26. 
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Table 12.26 Part of a compact Instruction set for the processor 

Opcode Operation

00H to 0bH All the instructions in Exercise 5 above linking ID unit and the VRF unit. 

10H – 1fH Immediate-type ALU instructions; result to be put in the VRF register of 

address 0H. 

20 H– 2fH Load and store-type instructions between RAM, VRF, and the immediate 

bytes. 

30H – 3fH Fetch from memory, ALU operation and back to VRF. 

40H – 4fH Fetch from VRF, ALU operation, and back to memory.  

50 onward Serial transmit, serial receive, block move; provision for additions to the 

instruction set. 

 10. Add reset input to the processor in the above example.  All the registers and 

all the locations in the memory block should get reset and remain so as long 

as the reset line is high.  It includes the alpha and beta clocks also.  The 

reset input should remain low for 100 ns and revert to the high state 

automatically.  As soon as it goes high the processor should start working.  

It should start with t = 0 ns with the alpha clock waveform.  The program 

memory is to remain undisturbed during the reset mode (Note that the reset 

line is to be added to all the modules as an additional input).  Test the reset 

function through a test-bench. 

 11. Add “hold” input to the processor.  Normally the hold input should be low.  

As long as it remains high, the processor operation will remain suspended; 

PC, IR, all registers, memory locations, etc., will retain their stored values 

(Hint: Disable the clocks to all the blocks).  Test the hold function through a 

test bench. 

 12. “Move Bulk Byte” (MBB) unit: The unit is shown in block diagram form in 

Figure 12.27.  The MBB block is to move a block of data bytes to the 

memory block from ba bus; or it is to move a block of data bytes from the 

memory block to bus ba.  The movement is effected byte-wise on successive 

clock pulses.  MBB is a skeletal DMA unit.  Its activity is decided by the 

contents of three registers within.  They decide the starting address of the 

block (register strt), the size of the block (register sz), and the mode of 

transfer (bits M1 and M2).  Form the unit with the following functions:  

 a. The block is selected when the Select input goes high; any activity 

connected with the block is done with the select line held high.   

 b. When Load1 input goes high, the byte on the ba bus will be loaded into 

register strt (more significant byte of the starting address).  It will happen 

at the following positive edge of beta.   

 c. When Load2 goes high, the byte on the ba bus will be loaded into register 

sz (size) inside.  It will happen at the following positive edge of beta.
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 d. During the beta clock pulse following Load2, bits M1 and M2 will be 

loaded through the 0th and 1st bits on ba bus.  With such three successive 

load operations, MBB is ready for data transfer.   

 e. M1 decides mode and M2 decides the operation. M1M2 = 00 means the 

MBB is to do read operation with the processor in HOLD mode.  MM2 = 

01 means the MMB is to do write operation in hold mode.  MM2 = 10 

means that doing read operation in “cycle steal” mode.  MM2 = 11 means 

write operation in “cycle steal” mode.  

  Specify the sequence of activities for each of the operations. The bits M1, 

M2, Load1, Load2, and clocks alpha and beta are all to be used as inputs to 

a finite state machine and outputs WR, RD, SD (selective disable), and 

EBM (enable bulk move)  generated to conform to the above requirements.  

Design the FSM and test it through a test-bench.  Integrate it with the 

registers sz and strt to complete the MBB.  Prepare a test-bench for the 

MBB and test its functioning. 

Clock unit
MBB

beta

alpha

Load2

Load1

Select

EBM

ba

SD

RD

WR

Figure 12.27 The MBB unit considered in Exercise 12 in block diagram form. 

 13. Form two single byte ports and link them to the MBB; one is to the input 

port for data being written to the MBB and the other the output port for data 

read from it.  Form the composite module; test it with a test bench. 

 14. Designate two registers 0ch and 0bh in VRF as input and output ports.  

Assign two flags – data input flag (DIF) and data output flag (DOF) in the 

Status register (b6 and b5) dedicated to I//O operation.  Whenever data are 

written into the DIF, b6 of status register is set.  Whenever data in DIF is 

read, b6 of status register is reset.  Similarly, whenever data are written into 

the DOF, b6 of status register is set.  Whenever data in DOF are read, b6 of 

status register is reset.  Through a suitable test bench, test port allocations 

and assignments. 
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 15. Integrate the MBB and the memory block of Exercise 5 in Chapter 7.  Note 

that the data selected for movement of data start at the beginning of pages 

128 bytes apart.  Test the operation of the composite unit through a test-

bench. 

 16. Integrate the MBB with the processor; add the reset input to the MBB also.  

Note that Load1, Load2, Enable, M1 and M2 can be combined and output as 

one byte on the bb bus from the ID block of the processor.  Depending on 

the activity desired, the select bit can be made 1 or 0.  c17 of the ID unit is 

to be connected to the select input of the MBB block.  Load EBM into b7 of 

the status byte (0th byte of the VRF block).   

 a. Ready the processor for bulk writing into memory by writing into strt and

sz registers:  Hold mode is to be used. 

 b. Ready the processor for bulk reading from memory by writing into strt

and sz registers:  Hold mode is to be used. 

 c. Ready the processor for bulk writing into memory by writing into strt and 

sz registers:  Cycle steal mode is to be used. 

 d. Ready the processor for bulk reading from memory by writing into strt

and sz registers:  Cycle steal mode is to be used. 

  Assign Opcodes to the above instructions.  Test the functions through a test 

bench.  

 17. In the processor two registers of the VRF were designated as input and 

output registers, respectively.  Instead use separate ports as the basis: Attach 

an input port and an output port to the processor.  Use c15 and c16 of the ID 

module to read from the input port and write to the output port, respectively. 
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APPENDIX A 

Keywords and Their Significance 

always Start of a continuous type of behavior activity flow 
and Instantiation of an AND gate primitive 
assign Assign a value or an expression to a net or a 

variable 
automatic The qualified function / task is of a reentrant type 
begin Start of a block of statements 
buf Instantiation of a buffer primitive 
bufif0 Instantiation of a tri-state buffer primitive; On 

when the control input is at 0 state 
bufif1 Instantiation of a tri-state buffer primitive; On 

when the control input is at 1 state 
case Start of a multiway decision statement 
casex Start of a multiway decision statement: x and z

values are don’t cares 
casez Start of a multi-way decision statement: z values 

are don’t cares 
cell Design element such as module, primitive, etc.
cmos Instantiation of a CMOS switch primitive 
config Configuration for instantiation 
deassign Termination of a procedural continuous assignment 
default Unspecified instances in a configuration 
defparam Modified value of parameter(s) follows. 
design Library and cell of the top level module 
disable Termination of a concurrent activity 
edge Type of edge for timing checks 
else Alternative in a conditional assignment 
end Termination of a block definition  
endcase Termination of a case statement 
endconfig Termination of configuration for instantiation 
endfunction Termination of a function definition 
endgenerate Termination of multiple instantiations 
endmodule Termination of a module definition 

Design Through Verilog HDL. T. R. Padmanabhan and B. Bala Tripura Sundari
Copyright  2004 Institute of Electrical and Electronics Engineers, Inc.

ISBN: 0-471-44148-1
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endprimitive Termination of an UDP definition 
endspecify Termination of a specify block definition 
endtable Termination of a table definition 
endtask Termination of a task definition 
event A flag 
for Control execution of statement(s) by a three-step 

process 
force An overriding assignment on a variable / variables 
forever Continuous execution of  statement (s) 
fork Statements for concurrent execution 
function Start of definition of a function 
generate Multiple instantiation 
genvar The index variable in a generate loop 
highz0 0 state of a net with high source impedance 
highz1 1 state of a net with high source impedance 
if Conditional operator 
ifnone Default state-dependent path delay 
include Inclusion of specified file 
initial Start of an “only once”  type of behavior activity 

flow 
inout Declaration of port(s) of input or output types 
input Declaration of input port(s) 
instance A specific instance (to be followed by an expansion 

clause)
integer A variable of type integer 
join Termination of list of statements for concurrent 

execution
large Largest value of charge strength on a net 
liblist A set of libraries to be searched for the instance 
library A logical collection of cells 
localparam Parameter value not alterable externally 
macromodule Start of a module definition 
medium Medium value of charge strength on a net 
module Start of a module definition 
nand Instantiation of a NAND gate primitive 
negedge Falling edge of a net or variable 
nmos Instantiation of an NMOS switch primitive 
nor Instantiation of a NOR gate primitive 
noshowcancelled In case of anomalous delay specifications, avoid 

output transition to x state 
not Instantiation of a NOT gate primitive 
notif0 Instantiation of a tri-state NOT gate primitive: ON 

when control input is at 0 state 
notif1 Instantiation of a tri-state NOT gate primitive: ON 

when control input is at 1 state 
or Alternative event in sensitivity list 
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output Declaration of output port(s) 
parameter Declaration of a constant / constants 
pmos Instantiation of a PMOS switch primitive 
posedge Rising edge of a net or variable 
primitive Start of  an UDP definition 
pull0 Strength value of net (s) at 0 state 
pull1 Strength value of net (s) at 1 state 
pulldown A resistive connection of a net to logic 0 
pullup A resistive connection of a net to logic 1 
pulsestyle_onevent Possible transition of output to x state on event 
pulsestyle_ondetect Possible transition of output to x state on detection  
rcmos Instantiation of a resistive CMOS switch primitive 
real A variable or a constant of the real number type 
realtime Numerical value of simulation time 
reg A data storage element 
release Termination of an overriding assignment on a 

variable / variables 
repeat Execute a statement / statements a fixed number of 

times 
rnmos Instantiation of a resistive NMOS switch primitive 
rpmos Instantiation of a resistive PMOS switch primitive 
rtran A bi-directional resistive pass switch primitive 
rtranif0 A bi-directional resistive pass switch primitive; it is 

ON when control input is 0. 
rtranif1 A bidirectional resistive pass switch primitive; it is 

ON when control input is 1. 
scalared No restriction on  operation on vectors specified 
showcancelled Output transition to x state bypassing possible 

anomalous delay specifications  
signed The qualified variable has a sign associated 
small Smallest value of charge strength on a net 
specify Specific value assignments to parameters follow 
specparam Specifies values for the parameters that follow 
strong0 Strength value of net when in 0 state 
strong1 Strength value of net when in 1 state 
supply0 Connection to logic 0 supply 
supply1 Connection to logic 1 supply 
table Beginning of state table of a UDP 
task Start of a task definition 
time Time variable 
tran A bi-directional pass switch primitive 
tranif0 A bi-directional pass switch primitive; it is ON 

when control input is 0. 
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tranif1 A bi-directional pass switch primitive; it is ON 

when control input is 1. 
tri A net driven from multiple sources 
tri0 A net driven from multiple sources with resistive 

pulldown 
tri1 A net driven from multiple sources with resistive 

pullup 
triand A net (nets) driven  by multiple sources with AND- 

type output in case of conflict 
trior A net (nets) driven  by multiple sources with OR-

type output in case of conflict 
trireg A capacitive type net which can store charge 
use A binding for the cell specified 
vectored Restricted operation on vectors specified 
wait Wait for an expression to be true to start execution 
wand A net (nets) driven  by multiple sources with AND- 

type output in case of conflict 
weak0 Strength value of net (s) at 0 state 
weak1 Strength value of net (s) at 1 state 
while Execute a statement / statements until an expression 

becomes false 
wire A type of net 
wor A net (nets) driven  by multiple sources with OR 

type output in case of conflict 
xnor Instantiation of an XNOR gate primitive 
xor Instantiation of an XOR gate primitive 
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Truth Tables of Gates and Switches 

The truth tables for gates are given with two inputs each; it remains the same for 

multiple inputs as well. The inputs are designated as ‘Input 1’ and ‘Input 2’; the 

output values are in the respective cells of the table.  

Table B.1 Truth table of AND gate Table B.2 Truth table of OR gate 

Input 1 Input 1 

0 1 x z    0 1 x z

0 0 0 0 0  0 0 1 x x 

1 0 1 x x 1 1 1 1 1 

x 0 x x x x x 1 x x 

In
p

u
t 

2
 

z 0 x x x 

In
p

u
t 

2
 

z x 1 x x 

Table B.3 Truth table of NAND gate Table B.4 Truth table of NOR gate 

Input 1 Input 1 

0 1 x z    0 1 x z

0 1 1 1 1  0 1 0 x x 

1 1 0 x x 1 0 0 0 0 

x 1 x x x x x 0 x x 

In
p

u
t 

2
 

z 1 x x x 

In
p

u
t 

2
 

z x 0 x x 

Table B.5 Truth table of XOR gate Table B.6 Truth table of XNOR gate 

Input 1 Input 1 

0 1 x z    0 1 x z

0 0 1 x x 0 1 0 x x 

1 1 0 x x 1 0 1 x x 

x x x x x x x x x x 

In
p

u
t 

2
 

z x x x x 

In
p

u
t 

2
 

z x x x x 
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Table B.7 Truth table for Buffer and 

NOT gates

Input buf output NOT output 

0 0 1 

1 1 0 

x x x 

z x x 

Table B 8 Truth table of bufif0 gate Table B 9 Truth table of bufif1 gate 

Data input Data input 

0 1 x z    0 1 x z

0 0 1 x x 0 z z z z 

1 z z z z 1 0 1 x x 

x L H x x x L H x x 

C
o

n
tr

o
l

in
p

u
t

z L H x x 

C
o

n
tr

o
l

in
p

u
t

z L H x x 

Table B 10 Truth table of notif0 gate Table B 11 Truth table of notif1 gate 

Data input Data input 

0 1 x z    0 1 x z

0 1 0 x x 0 z z z z 

1 z z z z 1 1 0 x x 

x H L x x x H L x x 

C
o

n
tr

o
l

in
p

u
t

z H L x x C
o

n
tr

o
l

in
p

u
t

z H L x x 

Table B 12 Truth table of pmos and

rpmos gates 

Table B 13 Truth table of nmos and

rnmos gates 

Data input Data input 

0 1 x z    0 1 x z

0 0 1 x x 0 z z z z 

1 z z z z 1 0 1 x x 

x L H x x x L H x x 

C
o

n
tr

o
l

in
p

u
t

z L H x x C
o

n
tr

o
l

in
p

u
t

z L H x x 
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Adder, 239-244, 277-283, 290, 291 

 BCD, 147, 148 

ALU, 116-123, 143-145, 210-212

always, 161, 168,169

and, 48-50

Array of instances, 66 

ASIC, 4

assign, 128, 225-230

Assignment, 12 

 blocking, 201-204 

 concurrent, 201  

 continuous, 127-130 

  and delays, 133, 134 

  and nets, 131 

  and strengths, 132 

 nonblocking, 201-204 

  and delays, 204, 205 

 procedural, 160, 161 

  with delays, 184-187 

 procedural continuous, 227, 228 

 sequential, 161  

 vector, 135 

automatic, 285, 286

B
begin, 28, 161-163

Bidirectional pass switch, 328-329 

Block 

 disabling, 244-249 

 named, 163 

 nesting, 163 

buf, 51-52

Buffer, 51-52

bufif0, 64, 65

bufif1, 64, 65

Bus switcher, 151, 152, 329-331  

C
C language, 13, 16, 159, 219 

case, 205-210 

Case sensitivity, 31 

casex, 210-212

casez, 210-212

Clock, 184, 254, 255 

cmos, 318-321

CMOS

 NOR gate, 312-314  

 switch, 318-321 

Comment, 33, 34 

Comparator, 67-69  

Compiler directive, 385-392 

 define, 385 

Concatenation, 135  

Contention resolution, 102-109, 

334-337 

Counter, 170-179, 224, 225, 232, 

234  

 ring, 152-156 

D
Data types, 40, 41 

deassign, 225-230

default, 205-210

defparam, 42, 340

Delay, 15, 28, 91-102, 133, 134 

 assigning, 184-187, 191 

 conditional, 359-361 
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 distributed, 348 

 gate, 94-99  

 intra-assignment, 187, 188  

 net, 92-94  

 path, 348-371  

 pin to pin, 348-371  

 propagation, 97  

 with tri-state gates, 99-102 

 zero, 191 

Demux, 222-224, 227, 228  

Design description 

 levels, 11 

  behavioral, 13, 14  

  circuit, 11 

  data flow, 12  

  gate, 12 

disable, 244-249

display, 44, 374-378

Distributed delay, 348  

Dynamic shift register, 325-327 

E
else, 219-225

end, 28, 161-163

endcase, 205-210

endfunction, 274

endmodule, 18, 50

endprimitive, 293

endspecify, 348-361

endtable, 293

endtask, 286-287

Escaped identifiers, 32, 33  

Event, 38, 169, 170, 266-268 

Expression 

 bit width, 150, 151 

F
Finish, 29, 45, 381 

Finite State Machine, 418-432

 Mealy machine, 427-432  

 Moore machine, 419-427  

Flip-flop  

 clocked, 181, 182 

 D, 86-88, 183, 228-235 

 edge-triggered, 88-91, 153, 154, 

300, 301 

 RS, 83-86 

for, 238-244

 loop flowchart, 238 

force, 261-265

forever, 254-258

fork, 258-261

FPGA, 7  

Full adder, 71-72, 294-296 

function, 273, 274  

Function, 274 

 recursive, 284-286 

 scope, 284 

G
Gates

 resistive, 308 

 tri-state, 64-66 

H
Half adder, 70-71  

Hardware 

 trade off with speed, 283, 284 

HDL, 3, 9  

Hierarchical access, 14, 56-62,  

361-362, 393-404 

Hierarchical name, 375-377  

I
Identifier, 32 

if, 219-225

 loop flowchart, 220 

if–else, 219-225 

 loop flowchart, 221 

initial, 28, 161, 164, 165

inout, 17, 50

input, 17, 50  

Instantiation, 19-21 

integer, 34-36

Inverter 

 CMOS, 311, 312 

 NMOS, 317, 318 
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J
join, 258-261

K
Keyword, 31, 32  

L
large, 106

latch, 152, 153, 183, 298, 299  

 with NAND gates, 81 

Level

 behavioral level, 159, 160 

 data flow level, 127 

 gate level, 47-80 

 RTL, 14 

 switch level, 305 

Lexical tokens, 17, 31 

 comment, 33, 34 

 identifier, 32, 33 

 keyword, 31, 32 

 number, 34-38  

 operator, 43 

 string, 36-38 

 white space, 33 

Logic values, 38 

M
Macromodule, see module 

medium, 39, 106

Memory, 43  

Microcontroller design, 433-441 

Modeling, see Level  

module, 16-18, 50

Module  

 path, 349-371 

 stimulus, 18, 54, 55 

 structure, 16-21, 50 

 test bench, 18 

monitor, 29, 44, 380, 381  

Multiple always blocks, 194-197 

Multiple initial blocks, 167  

Mux, 73-79, 122, 146  

N
nand, 51, 52

negedge, 169, 170

Net, 40, 131 

 charge, 106, 107   

 types, 109-115  

nmos, 306 

NMOS inverter, 317, 318

nor, 51, 52

not, 51, 52

notif0, 64, 65

notif1, 64, 65

Number, 34-38 

 integer, 34-36  

 real, 36  

 sign, 35, 36  

   

O
Operand, 160 

Operation, 160 

Operator, 43, 136-150, 160 

 algebraic 

 arithmetic, 137, 138   

 binary, 137, 138  

 equality, 139  

 logical, 138-140 

 modulus 

 precedence, 148-150  

 relational, 138, 139  

 shift, 141  

 ternary, 141-143  

 unary, 137   

or, 51, 52

output, 17, 50

P
Parallel blocks, 258-261 

parameter, 42, 341-347, 372

Parameter, 42, 43, 339, 340 

 assignment, 341-347 

 declaration, 341-347  
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 module, 371-373 

 over-riding, 342-347 

 type, 347 

Parity bit generation, 274- 277 

Path delay, 348-371 

 conditional, 359-361 

 edge sensitive, 364-366 

PLA, 416 

PLD, 414-418   

PLI, 16  

pmos, 307

Port, 16, 21 

posedge, 169, 170

primitive, 293

Primitive, 12 

 gate, 47-52, 81  

 user defined, 292-302

Programmable Logic Device,  

414-418 

 programming, 416-418  

Programmable Logic Interface, 16 

pull0, 39

pull1, 39

pulldown, 309-311

pullup, 309-311

Pulse filtering, 367-371 

Q
Queue, 407-413  

R
RAM cell, 321-325, 331-333  

rcmos, 328

real, 41

realtime, 388, 389

reg, 41

release, 261-265

repeat, 236, 237

Ring counter, 152-156

rnmos, 308

rpmos, 308   

RS latch, 83-84  

Rtran, 328

rtranif0, 328

rtranif1, 328

S
Scalar, 41,42   

Shift register, 179-181  

 dynamic, 325-327

Simulation, 7, 24, 25, 28, 214, 215  

 concurrency, 13  

small, 39, 106 

specify, 348-361

specparam, 340, 351-352

stop, 45, 165, 381  

Stratified event queue, 215, 216 

Strength, 38-40, 102-109, 132  

 task for display, 377, 378 

String, 36-38 

Strobe, 378, 379

strong0, 39

strong1, 39

supply0, 39, 115

supply1, 39, 115

Switch primitive 

 bi-directional, 328-333 

 CMOS, 311-312, 318-321 

 NMOS, 306 

 PMOS, 307 

 resistive, 308 

 with delay, 333, 334 

Synthesis, 7, 14, 25-27  

System function, 16, 381-383 

 file related, 383-385 

 for random number, 381-383 

System task, 16, 44, 45, 374-381 

 file related, 383-385 

 for display, 44, 45 

 for output, 44, 45 

 timescale related, 386-392 

T
table, 293

task, 286-287

 enabling, 286 

 structure, 287 

Test
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 functional, 14, 15  

 timing, 14  

Test bench, 14, 18, 27, 54, 55 

time, 388, 389

 simulation time  

Time scale, 386-392 

 default, 388 

Time step, 28 

Tokens, see Lexical tokens 

tran, 328

tranif0, 328

tranif1, 328

tri, 40, 113

tri0, 114

tri1, 114

triand, 113

trior, 113

trireg, 38, 106

U
UDP, see User Defined Primitive 

User Defined Primitive 

 combinational, 292-294 

 instantiation, 295 

  with delay, 302  

 sequential, 297, 298 

V
Variable, 41 

 local, 164 

Vector, 41, 42, 135 

VHDL, 9  

W
wait, 192-195

wand, 109, 110 

weak0, 39

weak1, 39

while, 249-254

 loop flowchart, 249 

White space, 33 

wire, 40

wor, 111-113

write, 224, 374 

X
xnor, 51, 52

xor, 51, 52

Z
Zero delay, 191 
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